
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

39

Dynamic Interpolation B-Tree: A New Access Method

 Dr. P. Dinadayalan Dr. Gnanambigai Dinadayalan

 Department of Computer Science Department of Computer Science

 Kanchi Mamunivar centre for P.G. Studies Indira Gandhi College of Arts and Science
 Pondicherry, India Pondicherry, India

ABSTRACT
The performance of Object-Oriented Database depends on the

access method implemented in the data model. Dynamic

Interpolation B-tree (DIB) is a new indexing technique

supporting query processing in Object-Oriented Databases

which is effective and efficient for multimedia databases.

This is a new access method which supports range queries on

Object-Oriented Databases. DIB supports inheritance and

aggregation hierarchies. DIB has the structure of Dynamic

Interpolation B-tree. Dynamic Interpolation B-tree consists of

hashing and B-tree. Both hashing and B-tree are dynamic.

DIB technique is compared with other techniques obtained

from more traditional organizations. In this new technique all

the operations are done efficiently. The result shows that the

Dynamic Interpolation B-tree is significantly better than the

traditional indexing methods over a wide range of parameters

in terms of range of parameters, retrieval and update cost so

that the storage overhead grows slowly with the number of

indexed attributes.

Keywords
B-tree, DIB, interpolation, hashing, OODBS, databases and

index.

1. INTRODUCTION
Database Management Systems evolved from file systems,

which support storage of large amount of data. Researchers in

database field, however, found the data has its value, and

models based only on data should be introduced to improve

the reliability, security, efficiency of the access. Data models

[1][3][12] provide a way in which the stored data is organized

as specified structure or relation for quick access and efficient

management. Many models, such as Hierarchical model,

Network model, Entity- Relationship model, Functional

model, Relational model, Object-Oriented model [12], has

come into existence and played important roles since the

emergence of the database management systems. Each of

these models modeled the data and the relationship between

the data in different ways. Each of the models encountered

some limitations in being able to represent the data which

resulted in other models to compensate for the limitations.

Object-oriented database management system [1] [3] has been

developed in recent years. Object-oriented data model, which

is supported by the system, has three basic characteristics. The

first is the possibility of directly modeling complex, nested

object. The second is to organize classes (types) into

inheritance hierarchies. The third is to support high-level

declarative query languages. An important issue related to

query languages concerns optimization techniques and access

structures able to reduce query-processing costs. In this paper,

we are going to discuss and summarize some indexing

techniques for object-oriented data management system and

proposed approaches. Efficient execution of queries is

achieved by the allocation of suitable access structure and the

use if sophisticated query optimizers. Access structures

typically used in relational DBMSs are based on variations of

the B-tree structure or hashing techniques[1][2][3]. An index

is maintained on an attribute or combination of attributes of a

relation. Since an object-oriented data model has many

differences from the relational model, suitable indexing

techniques must be developed to efficiently support object-

oriented query language. An object-oriented database can be

organized along two dimensions: aggregation, and inheritance

[4]. We will discuss indexing techniques for those two

dimensions respectively and also present integrated

organizations supporting both two dimensions. The rest of the

paper is organized as follows. In Section 2 summarizes the

access methods proposed in the literature. Section 3

introduces the concept of Dynamic Interpolation B-tree and

possible approaches to implement the DIB. In Section 4, we

present the comparison and storage overheads. Finally, we

conclude the paper in Section 5.

2. RELATED WORK
OODBS offers completely a different kind of access pattern

than conventional databases [1][2][3][4]. This difference in

access pattern is mainly due to additional semantics offered

by the data model of object-oriented databases. These

semantic help of the index designer take into account the

following factors into consideration:

 The object can be recursively composed of other

objects, this is called aggregation hierarchy [4].

 An object may be derived from another other object

thus forming an inheritance hierarchy [4].

 An object may be related to other objects by both

inheritance and aggregation hierarchies [4].

Fig. 1 is an example of aggregation and inheritance

hierarchies that are dealt in the following a Customers

database schema as shown in figure 1 is used as an example.

An Order consists of four attributes. First and last attributes

are of primitive types and other two attributes (Customer and

Item) are of composite types. Class Customer consists of

three attributes namely Customercode, Name and address.

Attributes Customercode, Name and Address are of primitive

data types. Class Item consists three attributes namely

Itemcode (primitive), Itemname (primitive) and Amount

(primitive). Class Order is inherited by two more classes

such as Oldcustomer and Newcustomer.

 2.1 Indexing on Aggregation Hierarchy
A class groups all objects with similar attributes and

behavior[4]. If specifies a set of attributes that define object

structure and a set of methods that define object behavior. An

attribute defines a name and the corresponding domain. The

domain associated with the attribute can either belong to a

primitive type like integer or non-primitive type like image.

The fact that a class is a domain of attribute of another class

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

40

establishes an association called aggregation relationship

between those classes. A number of indexing has been

suggested to answer queries efficiently along aggregation

hierarchies and they are Multi Index, Join Index, Nested

Index, Path Index, Access Relations and Direct Links.

Multi-index [2][4] is the first of the indexing technique for

OODBS. The first proposed organization for indexing

aggregation graphs is based on allocation a B+-tree indexes.

The B+-tree index is on each class traversed by the path. For a

multi-index organization, solving a nested predicate requires a

scanning of a number of indexes equal to the length of the

path. Under this organization the retrieval operation is

performed by:

 Using the results of this index lookup as keys for a

search on the index preceding the last one in the path

so on until the first index is scanned.

 Onward until the first index is scanned. Only reverse

traversal strategies can be supported using this

organization. The major advantage of multi-index is

the low update cost.

Figure 1. A Customer database for aggregation and
inheritance hierarchies

Join-index [2][4] was introduced to perform joins in relational

model efficiently and also was used to efficiently implement

complex object. A binary join-index is implemented as binary

relation and may be kept. An index, binary join index, is

implemented as binary relation and kept two copies. Each

repeat is implemented as a B+-tree. A Binary Join Index

sequence can be used in a multi-index organization to

implement the various index components along a given path

for aggregation graphs. Both forward and reverse traversal

strategies can be supported by a Join Index organization. As

the reverse traversal is suitable for solving queries and for the

forward traversal happens when it is necessary to identify all

objects. So all objects need to be determined that being

reference directly or indirectly by a given object. The reverse

traversal is already hold by the multi-index. Although, no

such technique does not support forward traversal, so

executed by directly accessing the objects. The advantages of

using a sequence of Join Index may be useful in complex

queries. Also the usage of a sequence of Join Indices may

make forward traversal faster when objects accesses are

expensive.

Nested index [2][4] provides a direct association between an

object of a class at the end of the path and the corresponding

instance of the class at the beginning of the path. The retrieval

using this organization is quite efficient. However the major

problem of this indexing technique is the update operations

which require access to several objects in order to determine

the index entries to be updated The update operations require

both forward and backward traversal of objects.

Path Index [2][4] maps a specific nested attribute to the

classes located along the given path. It is similar to nested

index with a single index being maintained on a path. Path

index can be used to solve nested predicates against all classes

along the path.

Access relation [2] is a generation of the join indices for

OODBS. Instead of supporting traversal (or join) of two

connected classes (relations), access support relations support

the traversal along the path arbitrary length. The relations

may be created by joining all of the classes on the path.

Similar to join indices, two copies of an access support

relation are stored and clustered correspondingly on the OIDs

of objects in the two end classes of the path.

Direct links [4] maintain links connecting objects in two

separate classes or fast object traversal. The direct links are

similar to projecting the OIDs of the end classes on the access

support relations. Thus, it may go from one end of the path to

the other end effectively.

2.2 Indexing on Inheritance Hierarchies
The inheritance hierarchy indexing is addressed in different

kind of approaches. The various approaches are analyzed and

considered about storage, update and retrieval costs. The

storage requirements of a class-hierarchy index is the total

number of index pages necessary to maintain the UIDs of all

instances of all classes on the class hierarchy rooted at the

indexed class. Retrieval costs depend on whether the query is

a point query or a range query.

The first group of approach is the SC-index, the H-tree and

the CG-tree group. The SC-index, H-tree and the CG-tree

group attribute values in the leaf nodes of B+-tree on the base

of a class where instance with the value appears. The second

group is the CH-tree and the hcC-tree group. In the following

section will discuss about these Indexing techniques.

Single-class index (SC-index) [4] is based on maintaining a

separate B+-tree on the indexed attribute for each class in the

inheritance hierarchy.[Maier et al] This approach is very

efficient for SC-queries. However, it is not optimal for CH-

queries, because it requires scanning all the indexes allocated

on the classes in the queried inheritance hierarchy.

Class-hierarchy index (CH-tree) [4] is based on maintaining a

unique B+-tree for all classes in the hierarchy. An index entry

in a leaf node may thus contain the OIDs of instances of any

class in the indexed inheritance hierarchy. However, the CH-

tree retrieves many unnecessary leaf node pages, when the

queries apply to a single class only. The performance of the

CH-tree has inverse trend with respect to the SC-index. The

CH-tree is more efficient for queries whose access scope

involve all classes in the indexed inheritance hierarchy,

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

41

whereas a SC-index is efficient for queries against a single

class.

H-tree [4] is a variant of the SC-index. H-tree is similar to the

SC-index in the way that B+-tree is maintained on the indexed

attribute for each class in the inheritance hierarchy. In the H-

tree, however, the B+-tree are linked based on their class-

subclass relationships by pointers in the internal nodes of the

B+tree. H+tree aims at improving the performance of the SC-

index for CH-queries.

CG-tree [4] enhance the H-tree by collecting all pointers

between different class’s indexes in special nodes which

create one additional level located just before the leaf node

level of B+tree. CG-tree avoids reading unnecessary internal

nodes so it provides more efficient than H-tree. However, the

CG-tree has a high storage overhead and update cost due to

the class directories.

X-tree is a dynamic indexing technique similar to the R-tree

and R*-tree. Data are stored in the leaf nodes, which appear at

the same level of the tree. Each leaf node entry consists of the

key value K, the object identifier OID and the identifier CID

of the class the object belongs to. If all entries with the same

key value K do not fit one leaf node, two or more nodes are

allocated and all node entries with same class identifier are

grouped together. The basic idea is to keep the structure as

hierarchical as possible, and at the same time to avoid splits in

the nodes that would result in high overlap.

3. DYNAMIC INTERPOLATION B-

TREE (DIB)
Indexing is a software technique used to retrieve the data from

the persistence storage. Index is usually maintained on an

attribute or its combination. Hashing and B-tree is the most

widely used technique for indexing relational databases and

earlier generation of databases. The current generation of

Database Systems, OODBS, also use either Hashing and B-

trees for indexing purpose. Hashing and B-trees have been

used by adding rich semantic features of OO Data model. A

survey made [1][2][3][4] show that the all OODBS use either

SC and CH trees for indexing purpose. SC and CH

techniques are not suitable to answer all kinds of point and

range queries. Hashing and B-tree variants are the

conventional indexing techniques. Hashing exhibits static

nature of data and uses digital properties of the keys while B-

tree exhibits dynamic nature and uses relational properties of

the keys to map the keys to the universe of key values.

In this paper, we propose a new technique, called Dynamic

Interpolation B-tree, to support efficient query evaluation in

object-oriented databases. By using this DIB technique the

physical structure of the database cannot be changed, since the

access structure is built on top of the actual database. It can

build on top of the actual database. Fig.2 shows the overall

architecture of the DIB. DIB combines the working of

hashing and B-tree. This index organization has a hash table.

Each entry in the hash table maintains a partial range of keys,

a pointer to B-tree which index all data in its range and its

height. In this index organization, both the hash and B-tree are

dynamic. Dynamic hashing is a combination of hashing

techniques with trie structure. A trie is a tree in which

branching is determined not by the entire key value but by

only a portion of it. In addition, branching is based on

consideration of that key alone, not on the comparison of a

search key with a key stored inside the node. The key can be

from any OIDs or attribute set. Any other key representation

can be easily converted to binary. The keys are binary

numbers set with n bits.

Figure 2. Structure of Dynamic Interpolation B-tree

The hashing technique allows the hash function to be

modified dynamically to accommodate the growth or

shrinking of the database. The dynamic hashing that grows to

handle more items. The associated hash function must change

as the table grows. Sometimes dynamic path directory shrinks

the table to save space when items are deleted. The dynamic

path directory in which the hash function is the last few bits of

the key and the table refers to buckets. Table entries with the

same final bits may use the same bucket. If a bucket

overflows, it splits, and if only one entry referred to it, the

table doubles in size. If a bucket is emptied by deletion,

entries using it are changed to refer to an adjoining bucket,

and the table may be halved.

B-tree on the other hand exhibits dynamic nature and uses

relational properties of the keys to map the keys to the

universe of key values. The B-tree is connected with the hash

table using a pointer. A B-tree is a tree data structure that

keeps data sorted and allows insertions and deletions in

logarithmic amortized time. It is most commonly used in
databases and file systems.

 An optimization of a tree which aims to keep equal numbers

of items on each sub-tree of each node so as to minimize the

maximum path from the root to any leaf node. As items are

inserted and deleted, the tree is restructured to keep the nodes

balanced and the search paths uniform. Such an algorithm is

appropriate where the overheads of the reorganization on
update are outweighed by the benefits of faster search.

In B-trees, internal nodes can have a variable number of child

nodes within some pre-defined range. When data is inserted or

removed from a node, its number of child nodes changes. In

order to maintain the pre-defined range, internal nodes may be

joined or split. Because a range of child nodes is permitted, B-

trees do not need re-balancing as frequently as other self-

balancing search trees, but may waste some space, since

nodes are not entirely full. The lower and upper bounds on the

number of child nodes are typically fixed for a particular

implementation.

Dynamic Interpolation B-tree Path Index will be effective and

efficient for multimedia databases. Both hashing and B-tree

are dynamic in DIB. Each entry in the hash table maintains a

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

42

partial range of keys, a pointer to B-tree which index all data

in the hash table and its height. It also maintains a header

which keeps track of minimum and maximum key value in the

whole key range followed by a count of entries in the hash

table.

The hash table search uses the interpolation formula. An

entry I in the hash table where the key K may be found is

computed by formula:

I = ((K – Klow) / (Khigh – Klow)) * n (1)

where Klow and Khigh are the least and highest key value in the

search space and n is the number of entries in it.

4. COMPARISONS AND STORAGE

OVERHEADS
To evaluate the performances of the three index organizations

(SC-tree, CH-tree, and DIB), then executed a large number of

simulation experiments on the basis of mathematical model.

Various experiments were conducted on DIB. The

performance of DIB is compared with that of SC-trees and

CH-trees. Initially, through a series of preliminary

experiments, it has determined the parameters that

characterize the topology of the database are those that can

affect in varying degrees the size and performance of an

index. From the result of these experiments it was found that

DIB organization offers better performance than the

traditional indices in nearly all classes. In this experiments

25,000 random objects are used in building the DIB. The DIB

organization is the combination of dynamic hashing and B-

tree. The searching time of Dynamic Interpolation B-tree

Path Index (DIB) is the sum of the searching time Dynamic

Hash table and B-tree.

4.1 Storage Cost
In all experiments performed, it has obtained that the

traditional indices have the lowest storage cost. In particular

Dynamic Interpolation B-tree has the best costs when in the

path there are inheritance hierarchies and aggregation

hierarchies while the other index organization has the highest

cost. Therefore, it may be preferable to privilege

organizations providing good performance, even if they have

less storage requirements.

Total_DIB_SearchTime= Hash_SearchTime + B-

Tree_Search time …….. (2)

4.2 Retrieval Costs
From the simulation experiments that have been performed,

the Dynamic Interpolation B-tree offers in general good

performance unlike the traditional organizations. The DIB

organization offers better performance than traditional indices

in nearly all cases. The SC-tree and CH-tree organizations are

advantageous only when most retrieval operations have as

target the last classes of the path. Therefore, the interesting

cases are those when the target of the query is one of the

classes at the beginning of the path. If the database has small

dimension, the traditional indices have costs that does not

differ much from the DIB organization. Also when all the

classes but the first class of the path are low, the costs of the

SC-tree and CH-tree are acceptable. Not how the position of

the target class of the query is important. In fact, if the target

class is the last of the path, the costs for the traditional

organizations are low while, if the position of the such class is

one, the costs of the SC-tree and CH-tree grow exponentially

for varying values and for different positions of the class. The

costs of the DIB organization do not depend on the presence

of inheritance and aggregation hierarchies, while this factor

influences the performance of the SC-tree organization. Its

costs, indeed, depend on the number of classes in the path,

unlike those of the CH-tree organization that only depend on

the length of the path. Another factor influencing the costs

SC-tree and CH-tree organizations is the length of the path

mainly when the target classes are positioned in the beginning

of the path. Also the cost of the DIB organization grows for

increasing dimensions of the range but to a lower degree than

the SC-tree and CH-tree organizations.

4.3 Delete Costs
A delete operation, unlike a retrieval operation, is generally

more expensive in a DIB organization than in the traditional

organizations. While the deletion of an instance from a class

is expensive for the SC-tree and CH-tree organizations only if

such class is characterized, this operation is expensive for the

DIB organization independently on the class from which the

instance is removed. There are some cases, however in which

the costs for the DIB organization are only slightly higher or

even lower than those of traditional organizations. An

optimal case for the DIB is when all indexed attributes are

single-valued. The trend of the costs of the DIB and of the

SC-tree and CH-tree just described is independent from the

presence in the path of inheritance and aggregation

hierarchies. In conclusion the DIB organization offers good

performance when all classes in the path have single-valued

indexed attributes or when only the first class of the path has a

multi-valued attribute in the path and all other classes have

single-valued indexed in the path, or when the delete

operation has as target the class of the path that has a high

value.

4.4 Insert Costs
The insert costs for the three organizations are lower than

those of delete operations, since the number of updates to the

index structure is smaller. The main difference between

delete costs and insert costs is for the DIB organization.

There is only one difference: while a delete operation has

costs for the DIB organization that are independent from the

class from which an object is inserted and immediately

following classes in the path have low value. In particular,

the performance of the DIB organization for the insert

operation is as good as the other organizations when the

classes at the beginning of the path have low value.

5. CONCLUSION
Dynamic Interpolation B-tree is an index organization for

Object-Oriented Databases which supports range queries

indexing several classes along aggregation and inheritance

hierarchies. DIB indexing technique is compared with the

other indexing techniques to overcome the limitation of the

later. Dynamic Interpolation B-tree organization offers the

best retrieval performance in most cases. The costs of various

organization for modification operations (delete, insert) are

highly depended on the object references topologies. It is

generally required to store enormous data and retrieve data

from the database in a shorter duration. The operations such

as insertions, deletions and updation are found to be working

properly. Due to the dynamic nature of objects, Dynamic

Interpolation B-tree structure is best suited for Object-

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

43

Oriented Databases. It is shown that this technique performs

better than most widely used indexing techniques.

6. REFERENCES
[1] Awais Rashid, Peter Sawyer, “A database evolution

taxonomy for object-oriented databases”, Journal of

Software Maintenance and Evolution: Research and

Practice, Volume 17, I ssue 2, p.p.93–141, March/April

2005.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, “The Data

Structures & Algorithms,” Addition –Wesley,1998.

[3] E. Bertino, “An Indexing Technique for Object-Oriented

Databases,” Proc. Seventh Int’l Conf. Data Eng., pp.

160–170, Kobe, Japan, 1991.

[4] E. Bertino and W. Kim, “Indexing Techniques for Queries

on Nested Objects,“ IEEE Trans. Knowledge and Data

Eng., vol. 1, no. 2, pp. 196–214, June 1989.

[5] R.J.Enbody, “Dynamic Hashing Schemes”, ACM

Computing Surveys, Vol.20, No.2, April 1998.

[6] A. Kemper and G. Moerkotte, “Advanced Query

Processing in Object Bases Using Access Support

Relations,” Proc. 16th Int’l Conf. Very Large Data

Bases, pp. 290–301, Brisbane, Australia, Aug. 1990.

[7] A. Kemper and G. Moerkotte, “Access Support in Object

Bases,” Proc. 1990 SIGMOD Conf., pp. 364–374,

Atlantic City, N.J., May 1990.

[8] W. Kim, “A Model of Queries for Object-Oriented

Databases,” Proc. IEEE Int’l Conf. Very Large Data

Bases, pp. 423–432, Amsterdam, 1989.

[9] W. Kim, K.C Kim, and A. Dale, “Indexing Techniques for

Object-Oriented Databases,” W. Kim and F.H.

Lochovsky, eds., Object-Oriented Concepts, Databases,

and Applications, pp. 371–394, Reading,Mass., Addison-

Wesley, 1989.

[10] W.C. Lee and D.L. Lee, “Combining Indexing Technique

with Path Dictionary for Nested Object Queries,” Proc.

DASFAA ’95,Fourth Int’l Conf. Database Systems for

Advanced Applications, pp.107–114, Singapore, Apr.

1995.

[11] D.L. Lee and W.C. Lee, “Using Path Information for

Query Processing in Object-Oriented Database Systems,”

Proc. Conf. Information and Knowledge Management,

pp. 64–71, Gathersberg, Md., Nov.1994.

[12] W.C. Lee and D.L. Lee, “Path Dictionary: A New

Approach to Query Processing in Object-Oriented

Database”, IEEE Transaction on Knowledge and Data

Engineering (TKDE), Volume 10, No. 3, May/June

1998, pp. 371-388.

[13] Paul Rodrigues, S.Kuppuswami, ”Concurrency of

Operations on IB-trees”, Pondicherry University,

Pondicherry, 2000.

[14] Paul Rodrigues, “Performance Amelioration of Object-

Oriented Databases ”, Ph.D report, 1999, Pondicherry

University, Pondicherry, India.

[15] Pichayotai Mahatthanapiwat, Wanchai Rivepiboon

,”Virtual path signature: An approach for flexible

searching in object-oriented databases”, International

Journal of Intelligent Systems, Volume 19, Issue 1-2,

p.p. 51–63, January/ February 2004.

