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ABSTRACT 

This paper identifies two novel techniques for face features 

extraction based on two different multi-resolution analysis tools; 

the first called curvelet transform while the second is waveatom 

transform. The resultant features are trained and tested via three 

improved hidden Markov Model (HMM) classifiers, such as: 

Structural HMM (SHMM), Deviance Information Criterion-

Inverse Weighted Average K-mean-SHMM (DIC-IWAK-

SHMM), and Enclosed Model Selection Criterion (EMC) 

coupled with DIC-IWAK-SHMM as the proposed methods for 

face recognition.  

A comparative studies for DIC-IWAK-SHMM approach to 

recognize the face ware achieved by using two type of features; 

one method using Waveatom features and the other method uses 

2-level Curvelet features, these two methods compared with a 

six methods that used in previous researches. 

The goal of the paper is twofold; using Deviance information 

criterion and IWAK-means clustering algorithm based on 

SHMM. 
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1. INTRODUCTION 
Face recognition has been studied extensively for more than 20 

years now. Since the beginning of 90‟s the subject has became a 

major issue; mainly due to its important real-world applications 

in areas like video surveillance, smart cards, database security, 

internet and intranet access. Multiresolution analysis tools, 

notably wavelets, have been found quite useful for analyzing the 

information content of images; hence they enjoyed wide-spread 

popularity in areas like image processing, pattern recognition 

and computer vision.  

After wavelets, many multiresolution tools were developed like 

contourlets, ridgelets, Curvelet etc. [1]. „Waveatom Transform‟ 

is a recent addition to this list of multiscale transforms. It has 

already been used to resolve image processing problems but not 

much work has been done to explore the potential of Waveatom 

transform to solve pattern recognition problems. In some recent 

works, Waveatom transform used in image processing in the 

field of image denoising, and the results obtained are the best 

one when compared to the state of art [2]. 

In the stage of classification, the HMM has a good capability, 

the first usage of Hidden Markov models has been in speech 

recognition for few decades [3]. Later HMM are being applied 

to face recognition area. In 2000, the maximum likelihood 

training for the continuous mixture embedded HMM was 

presented and used for face detection and recognition [4]. On the 

parallel line, the wavelet multiresolution analysis and HMM 

were combined in 2003 for face recognition. In this approach a 

face image is divided into a number of overlapping subimages 

and wavelet decomposition is performed on each of the 

subimages, and the performance was better than the original 

DCT based HMM [5]. 

Since HMMs are one-dimensional in nature, many researchers 

have tried to represent the two dimensional structural. In (2002), 

a generalization of the embedded hidden Markov models was 

used for face recognition. An application of the embedded 

Bayesian networks (EBNs) is presented for face recognition and 

introduced the improvement of this approach versus the 

“eigenface” and the embedded HMM approaches [6]. Later in 

(2003), low-complexity 2D-HMM (LC 2D-HMM) was 

proposed, which consists of a rectangular constellation of states, 

where both vertical and horizontal transitions are supported. In 

(2004), another approach is the 1D discrete HMM (1D-DHMM), 

which models a face image using two standard HMMs, one for 

observations in the vertical direction and one for the horizontal 

direction [7].  

One recently developed model for pattern recognition is the 

structural hidden Markov models (SHMMs) [8]. This approach 

allows the user to weight substantially the local structures within 

a pattern that are difficult to disguise. This provides a SHMM 

recognizer with a higher degree of robustness. The concept of 

SHMMs has been shown to outperform HMMs in a number of 

applications including handwriting recognition. 

Curvelet transform becomes a very popular multi-resolution 

transform after implementing its second generation. In face 

recognition, Curvelet transform seems to be promising [9-15]. 

The beginning was in [9], the face images were quantized from 

256 to 16 and 4 gray scale resolutions, the quantized images 

were decomposed using Curvelet transform. Three support 

vector machines SVM were trained using Curvelet coefficients 

and the decision was made by simple majority voting. In [10] 

the face image undergoes Curvelet transform. PCA was 

performed on the approximated coefficients. K-Nearest 

Neighbor classifier was employed to perform the classification 

task. In [11] as preprocessing step researchers converted face 

images from 8 bit into 4 bit and 2 bit representations. Curvelet 

transform was performed to extract feature vectors from these 

representations, and then the approximated components were 

used to train different SVMs. Researchers in [12] addressed the 

problem of identifying faces when the training face database 

contains one face image of each person. The Curvelet 

approximated coefficients was framed as a minimization 

problem. The original image and the reconstructed images of the 

non-linear approximations were used to generate the training set. 

A comparative study amongst Wavelet and Curvelet was found 
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in [13]. In [14] the Curvelet sub-bands were divided into small 

sub-blocks. Means, variance and entropy were calculated from 

these sub-blocks as statistical measures. Feature vector was 

constructed by concatenated each block measure. Local 

discriminant analyses (LDA) was carried out on feature vectors 

and the city-block distance was used for classification. 

Researcher in [15] decomposed a face image using Curvelet 

transform at scale 4. Next Least Square Support Vector Machine 

(LS-SVM) was trained using Curvelet features. 

The results in [11, 12, 13, 14, 15] have showed Curvelet based 

schemes were better than wavelet based recognition schemes[9]. 

Wavelet Packet, Cosine Packet and Wave Atom Transforms 

based electrocardiogram (ECG) compression is presented in 

2009 [16]. 

2. FEATURE EXTRACTION IN 

TRANSFORM DOMAIN 
Feature extraction is the most important step for any face 

recognition system. In reality, using local features is a mature 

approach to face recognition problem.  In this paper we will 

explain the extracted feature based Curvelet and Waveatom 

transform. 

2.1 Curvelet transform 
Curvelets was proposed by E. Candes and D. Donoho (2000) 

[17]. The idea of Curvelets is to represent a curve as a 

superposition of functions of various lengths and widths obeying 

the scaling parabolic law: . 

There is two generations of Curvelet transform. The first 

generation defines Curvelet between Wavelet and multiscale 

Ridgelet.  

In the second generation, two different implementations of 

Curvelet were founded: The first digital transformation is based 

on Unequally Spaced Fast Fourier Transform (USFFT), while 

the second is based on the wrapping of specially selected Fourier 

samples. The two implementations essentially differ by the 

choice of spatial grid used to translate Curvelets at each scale 

and angle. Where, a tilted grid mostly aligned with the axes of 

the window which leads to the USFFT. On the other hand, a grid 

aligned with the input Cartesian grid which leads to the 

wrapping-based. Both digital transformations having the same 

output, but the Wrapping Algorithm gives a more intuitive 

algorithm and faster computation time [18]. Therefore, Curvelet 

via wrapping will be used for this work. 

If we have the object g[t1,t2], t1≥ 0, t2< n as Cartesian array and 

ĝ [n1,n2] to denote its 2D Discrete Fourier Transform, then the 

architecture of Curvelets via wrapping is as follows: 

1. 2D Fast Fourier Transform (FFT) is applied to g[t1,t2] to 

obtain Fourier samples ĝ[n1,n2]. 

2. For each scale j and angle l, the product Ữj,l [n1,n2] ĝ[n1,n2] is 

formed, where Ữj,l [n1,n2] is the discrete localizing window. 

3. This product is wrapped around the origin to obtain ğj,l[n1,n2] 

= W(Ữj,l ĝ) [n1,n2]; where the range for n1,n2 is now 0≤ 

n1<L1,j and 0≤ n2<L2,j; L1,j≈2j and L2,j ≈ 2j/2 are constants. 

4. Inverse 2D FFT is applied to each ğj,l, hence creating the 

discrete Curvelet coefficients. 

2.2 Waveatom transform 
L. Demanety and L. Ying presented a new member in the family 

of oriented, multiscale transforms for image processing and 

numerical analysis. This is called Waveatom transform [19]. 

Suppose  are integer valued where  is the cutoff in scale, 

 is the cutoff in space and  labels the different wedges within 

each scale. Consider a one-dimensional family of wave 

packets , centered in frequency 

around  with  where 

 are positive constants, and centered in space around 

 . One-dimensional version of the parabolic scaling 

states that the support of each bump of   is of length 

 while . Dyadic dilates and translates of 

 on the frequency axes are combined and basis functions, 

written as: 

 

The transform  maps a function  onto a 

sequence of waveatom coefficients 

              

            

If the function u is discretized at xk = kh, h=1/N, k =1....N , then 

with a small truncation error (3) is modified as: 

 

A simple wrapping trick is used for the implementation of 

discrete wavelet packets and the steps involved are: 

1. Perform an FFT of size N on the samples of  . 

2. For each pair  wrap the product  by periodically 

inside the interval  then perform inverse FFT 

of size  of the result to obtain . 

3. Repeat step 2 for all pairs  . 

The positive and negative frequency components represented 

by: 

 

Hilbert transform  of eq. (4) represents an 

orthonormal basis L2(R) and is obtained through a linear 

combination of positive and negative frequency bumps weighted 

by i and –i respectively. 

 

 To extend Waveatom to be 2D, let , 

where  and , so from equation . 

 

A dual orthnormal basis, which is defined from the Hilbert-

transformed, 
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By now, combine the primal and dual (Hilbert-transformed) 

basis. More precisely, the recombination 

 

This combination provides basis functions with two bumps in 

the frequency plane, symmetric with respect to the origin, hence 

purely directional wave atoms. Together, and form the 

wave atom frame and may be denoted jointly as [19]. 

3. HMM BASED FACE RECOGNITION 
Each feature vector is modeled by continuous left-to-right 

HMMs. Each HMM state generates a mixture of Gaussian 

densities. The number of states and the number of densities per 

state that are appropriate to model each class depend on the 

amount of training data available for that class. Due to this, 

these numbers need some empirical tuning.  

In the training phase of face recognition system, each individual 

class in the database is represented by a HMM face model. First, 

the HMM is initialized. The image coefficients are segmented 

from top to bottom where each segment corresponds to a state, 

and the image data within a region is modeled by a multivariate 

Gaussian distribution. An observation sequence consists of all 

intensity values from each block. Next, model parameters are re-

estimated by a process called E-M procedure to maximize the 

model probability until convergence. In other words, one state is 

responsible for characterizing the observation vectors of human 

foreheads, and another state is responsible for characterizing the 

observation vectors of human eyes. For face localization, an 

HMM is trained for a generic model of human faces from a large 

collection of face images (as shown in Figure 1). [20] 

 

Fig 1: HMM observation vector 

To classify a tested face image, we have to found the HMM with 

the highest probability in the Viterbi decoding. So each face 

image would classify with independence of each other. A varied 

window feature vector is used by using five states and 

optimizing both of number of feature vector in the window, and 

the number of Gaussians densities per state. 

1. THE PROPOSED METHOD 
In this section, the approaches that used in our proposal methods 

for classifying the features of human face are explained. 

4.1 The Deviance Information Criterion  
One of the problems standard HMM suffers from is the need to 

know the number of parameter in advance. To overcome this 

shortcoming, the Deviance information criterion (DIC) was 

proposed. The DIC was defined as: 

 

Where  is a measure of how well the model  fits the data 

which correspond to the expectation with respect to ,  

is the effective number of parameters of the model, and  

was defined as: 

 

Where .  is the pattern contains sequence 

of local structure . Let  is the posterior 

mean of effective parameter, 

            

                 

The best model fits such data will have larger likelihood and 

smaller deviance. DIC was reformulated to, 

 

 can be obtained using forward algorithm for HMM. In 

order to calculate ,  the expected value   

has to be approximated ,  

 

  

 

When it is assumed that  depends only on  and , and the 

structure probability distribution is a Markov chain of order 1 

[21].  

4.2 DIC-SHMM 
A structural hidden Markov model is  

where:  is the initial state probability vector,   is the state 

transition probability matrix,  is the state conditional 

probability matrix of the visible observations,  is the posterior 

probability matrix of a structure given a sequence of 

observations, and  is the structure transition probability matrix. 

The DIC-SHMM is characterized by the following elements: 

1. H is the number of hidden states in the model. The individual 

states are labeled as 1,2..H, and denote the state at time t as qt. 

2. M, is the number of distinct observations oi . 

3.  = { }, where . 

4.  where 

. 

5. where  

 

6.  is the number of distinct local structure. 

7. S =  where  for each 

particular string . 

8. D = {   where

 

The DIC-HMM has four problems: probability evaluation, 

statistical decoding, structural decoding, and parameter 

estimation. 

The first problem is to determine the probability for such a 

model to produce such a sequence X.  It has been proven in [22] 

that the likelihood function of the observation sequence in 

equation (14) can be expressed as:  
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Then calculate  by substituting Equation 16 in Equation 10. 

The DIC value would be calculated by Equation 11. An  

can be obtained by summing over forward probability in the 

forward algorithm as in traditional HMM. 

The second problem is to determine the optimal state sequence. 

It is computed using Viterbi algorithm as in HMM. 

The third problem is to determine the optimal structure 

sequence. It can be computed using Viterbi algorithm. 

The last one is parameter estimation:  

1.  was estimated by Baum-Welch optimization technique. 

2.  was estimated by constrained Gaussian mexture posterior 

probability estimation technique. 

3.  was estimated by DIC instead of using ML in HMM. 

4.  and  were estimated as in traditional HMM. 

4.3 Inverse Weighted Average K-means 

Clustering Algorithm 
Another weakness of HMM is that it depends on k-means 

clustering algorithm to defined Gaussian mixture for each 

model. In few words, k-means algorithm tries to partitioning a 

data set into K prototypes where these prototypes in some way 

best represent the data. K-means suffers of many problems; 

sensitivity to prototypes initialization, dead prototypes, 

converges to local optimum and needs specifying the number of 

clusters in advance [23]. EM algorithm solves the last problem, 

but HMM model still suffer of the other ones. Actually, k-means 

uses Euclidian distance to centralize the prototypes, first we 

need to normalize this distance to work will with classes have 

different number of data points. The average distance seems to 

be compromised choice. 

Suppose  is the data point,  is the prototype,  is the number 

of data points, and  is the number of prototypes, 

   

 

The performance function was needed should have the following 

properties: first it would be minimum performance function to 

give good clustering. Second, it would contain relationships 

between all data points and all prototypes. Third, the distance 

between points and nearest prototype and maximize the distance 

between the prototypes. 

    

 

Now, the problem with this formula is that the function 

maximizes the distance between prototypes diverge, since the 

limit when goes to infinity of its integral does not exist. 

Let , 

 

So the maximization function would be the distance between the 

data points in such cluster and the other prototypes. This 

distance would be used as a weight in the minimization function, 

so the absolute value to the maximization function could be 

used. Both of the two distances (in-class distance and out-class 

distance) are convergence functions; since the limit when goes 

to infinity (zero) of out-class (in-class) distance integral exists 

and equals some constant.  

Let , 

 

 

This will yield to the following performance function: 

  

 

First, the prototypes will distributed amongst the data points, 

then the distance between data points and un-nearest prototypes 

will calculated. Finally, this distance will be used as a weighted 

factor to update the prototypes position, this is will continue till 

convergence.   

In order to optimize the performance, the partial derivative of 

this performance function with respect to such prototype would 

be calculated first, assign to zero, and solved for that prototype. 

Let  is the closest prototype to  and  is the set of other 

prototypes: 

 

 

                          

 

                       

 

 

Where is a set contains all of data points belong to cluster , 

and is a set contains all data points.  
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4.4 Enclosed Model Criteria   

HMM chooses the Maximum Likelihood model ( ) using the 

Maximum Likelihood criterion as follows: 

 

Where  is the dataset, and  is the maximum likelihood 

estimates parameters. HMM likelihood increases with the 

number of parameters in the model. The shortcoming of ML 

criterion is that there is no penalty to prevent the number of 

model parameters from increasing. On the other side, maximum 

likelihood estimation methods two attractive points; the first 

point is that they have good convergence properties as the 

number of training samples increases. The second point is that 

maximum likelihood estimation often can be found simply. 

HMM is good to deal with noisy or distorted data but it tends 

towered outputting high probability not for the proper class data, 

but for out-class data too. So HMM discriminant is reduced. 

To overcome this problem, it‟s needed to build enclosed models 

(out-class) for each class using included and occluded data. The 

procedure as follows: first of all, HMM standard model was 

trained using in-class data. Second, standard models recognition 

results are used to defined the confusion sets data. Again, HMM 

standard model was trained using out-class data. Finally, for 

each class, the final model ( ) was calculated using the 

following equation: 

 

                             

When ,  and are the maximum 

likelihood estimate of parameters for in-class and out-class, in-

class and out-class training data sets, and number for in-class 

and out-class training data sets respectively.  and  in-

class model and out-class model respectively [24].  

For DIC-SHMM, the final model ( ) is the difference 

between in-class model ( ) and out-class model ( ). 

 

5. EXPERIMENTAL RESULTS 
This section shows the Experimental results obtained and how it 

obtained, discusses it in deep, and compares it to show the 

benefit to use the proposed method. 

 

5.1 Data Collection 
Experiments were carried out using three datasets from different 

sources: ORL (AT&T) database, Essex Grimace database and 

Yale database, all sets are used to implement different 

Algorithms to recognize the human face. 

ORL (AT&T) database [25] contains distinct face images sets 

for 40 persons with dimension of 92 112, and each set consists 

of 10 different images for the same person. For some persons, 

images were taken at different times varying the lighting, facial 

expression (open / closed eyes, smiling / not smiling) and facial 

details (glasses / no glasses). All the images were taken against a 

dark homogeneous background with the faces in an upright, 

frontal position (with tolerance for some side movement). 

Sample images of this dataset are shown in Figure 2. 

 

Fig 2: Sample Images from ORL database. 

Essex Grimace database [26] contains sequence face images for 

18 persons each one has 20 images (180 200), all images taken 

with a fixed camera for male and female. During the sequence, 

the subject moves his/her head and makes grimaces which get 

more extreme towards the end of the sequence. Images are taken 

against a plain background, with very little variation in 

illumination. Sample images of this database are shown in 

Figure 3. For the purposes of the experiments carried out, the 

Essex faces were converted to grayscale before the training step.  

 

Fig 3: Sample Images from Essex Grimace Database. 

Yale dataset [27], contains 165 single light source images of 15 

persons under different viewing conditions (poses and 

illuminations). The image dimension is 510 364. Images are 

taken against a white homogenous background. Sample images 

of this database are shown in Figure 4.  

As preprocessing, first Color images of Essex Grimace database 

are converted to gray scale images using equation 32. Let R, G, 

and B be red, green, and blue value of colored image,  

 

 For each dataset, all face images are quantized into 8 gray 

levels. The intensity image was scaled and rounds produce an 

equivalent indexed image. Then cropped face region and resized 

it into 120 120. 

 

Fig 4: Sample Images from Yale database. 

In order to build a enclosed datasets; included data sets were 

built by add gray level to face image in different parts of faces 

while occluded data sets were built by cropping different parts 

of faces. Bellow, Figure 5 shows samples of out-class image 

from ORL and Yale datasets. Indeed, for each dataset, each 

person has two enclosed data classes; the first class is included 

data class which contains four included face images and six 

normal face images, the second class is occluded data class 

which contains four occluded face images and six normal face 

images.  
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Fig 5: Out-class Image Samples. 

5.2 Simulation Results 
In order to assess the efficiency of the proposed technique 

described in the previous section, a series of experiments were 

carried out using all databases separately. The experiments were 

carried out using five-fold cross validation. This involved 

dividing the training set images for each individual into five 

equally sized sets and using four of the sets for system training 

and the remainder being used for testing. The experiments were 

repeated five times with a different set being used for testing 

each time, to provide a more accurate recognition figure. 

Therefore, with both of ORL and Yale databases, eight images 

were used for training and two for testing during each run (one 

person). When using the Essex 95 database, 16 images were 

used for training and four for testing during each run. One 

SHMM model was trained for each individual in the database. 

During testing, an image was assigned an identity according to 

the SHMM model that produced the highest likelihood value. It 

was assumed that all testing individuals were known individuals. 

Accuracy of an individual run is thus defined as the ratio of 

correct matches to the total number of tested face images, with 

final accuracy equaling to the average accuracy from all of the 

five cross validation runs.  

The initial set of experiments was designed to establish if DIC-

IWAK-SHMM provided a benefit over SHMM for face 

recognition. DIC-IWAK-SHMM does not need to initialize the 

number of parameter like traditional SHMM. The experiments 

were carried out in both the Curvelet domain and Waveatom 

domain. The recognition accuracy for DIC-IWAK-SHMM face 

recognition is presented in Table 1. As can be seen from the 

table, the use of DIC-IWAK-SHMM instead of SHMM 

increases the recognition accuracy in all cases tested.  

Table 1 (a) reported the accuracy rate when tested using ORL 

database. For Curvelet features, the accuracy rate increased from 

96.75% for SHMM to 98% for DIC-IWAK-SHMM. The 

incorrect match rate for DIC-IWAK-SHMM is near 39% lower 

than SHMM model. On the Waveatom side, the performance 

increased to from 97.5% for SHMM versus 99% for DIC-

IWAK-SHMM. There is an evident decreasing of about 40% in 

the rate of false classification. 

Table 1 (b) summarized the correct classification rate when 

tested using Yale database. On the Curvelet side, the 

performance increased from 91.33% when SHMM was used to 

94% when DIC-IWAK-SHMM was used. On Waveatom side, 

the performance increased from 93.33% when using SHMM 

against 95.33% when using DIC-IWAK-SHMM. 

Table 1 (c) illustrated Essex Grimace database accuracy rate 

when used for testing. On the Curvelet side, the accuracy rate 

increased from 89.72% when SHMM was used up to 93.06% 

when DIC-IWAK-SHMM used. On Waveatom side, the 

accuracy rate increased from 91.94% when using SHMM up to 

94.44% when using DIC-IWAK-SHMM model. 

Table (1): Comparison of face identification accuracy (%) 

using SHMM and DIC-IWAK-SHMM 

(a): On ORL database 

Feature Extraction method SHMM DIC-IWAK-SHMM 

Two levels Curvelet 96.75 98 

Waveatom Transform 97.5 99 

(b): On Yale database 

Feature Extraction method SHMM DIC-IWAK-SHMM 

Two levels Curvelet 91.33 94 

Waveatom Transform 93.33 95.33 

(c): On Essex Grimace database 

Feature Extraction method SHMM DIC-IWAK-SHMM 

Two levels Curvelet 89.72 93.06 

Waveatom Transform 91.94 94.44 

5.3 Enclosed Model Selection criteria  
The last set of experiments was performed to study the effect of 

using DIC-IWAK-SHMM on enclosed data sets, for face 

recognition. The experiments were carried out in both the 

Curvelet domain and Waveatom domain. Table 2 summarizes 

the obtained results from included and occluded data sets.  

 Tables 2 (a) listed the results obtained for Curvelet features 

based DIC-IWAK-SHMM. It can be seen the big range in 

performance dropping due to included and occluded data sets. 

Actually, with ORL dataset the accuracy decreased of 10.75% 

and 18.75% for included and occluded data sets respectively. 

Also, the accuracy of Yale database decreased of 14.67% for 

included set and of 20.67% for occluded set. Finally for Essex 

Grimace, the accuracy decreased of 13.89% and 21.67% for 

included and occluded data sets respectively.      

Tables 2 (b) viewed the results obtained for Waveatom features 

based DIC-IWAK-SHMM. It can notice that exist of huge 

decreasing in accurate rate due to inclusion and occlusion 

effects. Actually, with ORL dataset the success rate decreased 

from 99% to 88.5% and 85.5% for included and occluded data 

sets respectively. Also, the accuracy rate of Yale database 

decreased from 95% to 84% for included set and to 78.67% for 

occluded set. Finally for Essex Grimace, the accuracy rate 

decreased from 94.44% to 82.5% and 77.22% for included and 

occluded data sets respectively.  

Table (2): Comparison of DIC-IWAK-SHMM identification 

accuracy (%) using both normal and enclosed datasets 

(a): Curvelet features. 

Dataset ORL Yale Essex Grimace 

Normal dataset 98 94 93.06 

Inclusion dataset 87.25 79.33 79.17 

Occlusion dataset 79.25 73.33 71.39 

(b): Waveatom features. 

Dataset ORL Yale Essex Grimace 

Normal dataset 99 95.33 94.44 

Inclusion dataset  88.5 84 82.5 

Occlusion dataset 85.5 78.67 77.22 

The remaining set of experiments was performed to show the 

benefit of using enclosed model selection criterion (EMC) 

coupled with DIC-IWAK-SHMM for face recognition, as the 

proposed method. The experiments were carried out in both the 
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Curvelet domain and Waveatom domain. The recognition 

accuracy is presented in Table 3 for included data sets. On the 

side of occluded data sets, the recognition accuracy is presented 

in Table 4. As can be noticed from the tables, the use of 

enclosed model selection criterion DIC-IWAK-SHMM 

increases recognition accuracy in all cases tested.  

Table 3 (a) reported the accuracy rate when tested using ORL 

database. For Curvelet features, the accuracy rate increased from 

87.25% for DIC-IWAK-SHMM to 88.75% for proposed 

method. The incorrect match rate for proposed method is near 

11.8% lower than DIC-IWAK-SHMM model. On the 

Waveatom side, the performance increased to from 88.5% for 

DIC-IWAK-SHMM to 89.75% for the proposed method. There 

is an evident decreasing of about 10.8% in the rate of false 

classification. 

Table (3): Comparison of DIC-IWAK-SHMM and proposed 

method (EMC coupled with DIC-IWAK-SHMM) with 

Inclusion dataset 

(a): On ORL database 

Extraction method DIC-IWAK-SHMM Proposed method 

2 levels Curvelet 87.25 88.75 

Waveatom 88.5 89.75 

(b): On Yale database 

Extraction method DIC-IWAK-SHMM Proposed method 

2 levels Curvelet 79.33 82 

Waveatom  84 86 

(c): On Essex Grimace database 

Extraction method DIC-IWAK-SHMM Proposed method 

2 levels Curvelet 79.17 81.67 

Waveatom  82.5 84.44 

Table 3 (b) summarized the correct classification rate when 

tested using Yale database. On the Curvelet side, the 

performance increased from 79.33% when DIC-IWAK-SHMM 

was used to 82% when the proposed method was used. On 

Waveatom side, the performance increased from 84% when 

using DIC-IWAK-SHMM to 86% when using the proposed 

method. 

Table 3 (c) illustrated Essex Grimace database accuracy rate 

when used for testing. On the Curvelet side, the accuracy rate 

increased from 79.17% when DIC-IWAK-SHMM used up to 

81.67% for the proposed method. On Waveatom side, the 

accuracy rate increased from 82.5% when using DIC-IWAK-

SHMM model up to 84.44% when using the proposed method. 

Table 4 (a) reported the accuracy rate when tested using ORL 

database. For Curvelet features, the accuracy rate increased from 

89.25% for DIC-IWAK-SHMM to 81.5% for proposed method. 

The incorrect match rate for proposed method is near 10.8% 

lower than DIC-IWAK-SHMM model. On the Waveatom side, 

the performance increased to from 85.5% for EMC-SHMM to 

87% for the proposed method. There is decreasing of about 

10.3% in the rate of false classification. 

Table 4 (b) summarized the correct classification rate when 

tested using Yale database. On the Curvelet side, the 

performance increased from 73.33% when DIC-IWAK-SHMM 

was used to 76% when the proposed method was used. On 

Waveatom side, the performance increased from 78.67% when 

using DIC-IWAK-SHMM to 80.67% when using the proposed 

method. 

Table 4 (c) illustrated Essex Grimace database accuracy rate 

when used for testing. On the Curvelet side, the accuracy rate 

increased from 71.39% when DIC-IWAK-SHMM used up to 

74.17% for the proposed method. On Waveatom side, the 

accuracy rate increased from 77.22% when using DIC-IWAK-

SHMM model up to 79.44% when using the proposed method. 

Table (4): Comparison of DIC-IWAK-SHMM and proposed 

method (EMC coupled with DIC-IWAK-SHMM) with 

Occlusion dataset 

(a): On ORL database 

Extraction method DIC-IWAK-SHMM Proposed method 

2 levels Curvelet 79.25 81.5 

Waveatom  85.5 87 

(b): On Yale database 

Extraction method DIC-IWAK-SHMM Proposed method 

2 levels Curvelet 73.33 76 

Waveatom  78.67 80.67 

(c): On Essex Grimace database 

Extraction method DIC-IWAK-SHMM proposed method 

2 levels Curvelet 71.39 74.17 

Waveatom  77.22 79.44 

5.4 Comparative Study 
For comparison purposes, an experiment was performed to find 

the accuracy for DWT/SHMM when using five images from the 

ORL database and Yale for training and five images for testing. 

As Table 5 shows, the DIC-IWAK-SHMM approach to face 

recognition compares well with other techniques from the 

literature that have used these training sets.  

The results demonstrate that high recognition accuracy can be 

achieved using DIC-IWAK-HMM approach for face 

recognition. The proposed technique has been found to be robust 

against significant variation in illumination and facial details 

(present in ORL and Yale) as well. When compared to the best 

performing method in the table (Curveletface + PCA + LDA 

[13]), DIC-IWAK-SHMM features work the best and show well 

gain in accuracy for ORL and YALE respectively. 

Table 5: Comparative results 

Method ORL YALE 

Curveletface + PCA [27] 96.6% 83.9% 

Curveletface + PCA + LDA [27] 97.7% 92% 

Curvelet-LDA [14] 98% 93.3% 

DCT/HMM [4] 84% NA 

DWT/SHMM[22] 97% NA 

Ridgelet/SHMM[22] 94.7% NA 

Curvelet/ DIC-IWAK-SHMM (Proposed) 98% 94% 

Waveatom/ DIC-IWAK-SHMM (Proposed) 99% 95.3% 

6. CONCLUSION  
This paper describes an DIC-IWAK-SHMM based approach for 

face recognition that uses Curvelet and Waveatom coefficients 

as features, this method is compared to the earier HMM-based 

face recognition systems in [4, 14, 22, 28], where the 

DCT/HMM, Curvelet-LDA, Curvelet+PCA+LDA, 

DWT/SHMM, and Ridgelet/SHMM approaches are used. 

The two proposed methods were carried out using three 

common databases: ORL (A&AT), Essex Grimace, and Yale 

databases, that are used to implement most of previous 

researches. 
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The proposed methods introduce the best recognition rate for all 

three databases, and the best result was obtained by using 

waveatom features for DIC-IWAK-SHMM and the second 

highest rate was achieved using curvelet feature for the same 

classifier. We can conclude that the proposed improved SHMM 

is more efficient and robust for face recognition, this 

improvement accomplished by using IWAK Means Clustering 

Algorithm, and Deviance Information Criterion. 
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