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ABSTRACT 
Adaptive beamfomer which utilizes MVDR beamformer along 

with SMI (sample matrix inversion), actual data is not available 

to calculate the covariance matrix. Instead, covariance matrix is 

estimated from the available data. It may result in bad 

conditioning. To avoid this, diagonal elements are introduced in 

the correlation matrix, which is called diagonal loading. 

Diagonal loading can be inserted by adding a scaled version of 

identity matrix to impart Robustness to the adaptive 

beamformer. This proves to be efficient against signal mismatch 

due to low sample support and helps to achieve desired sidelobe 

level and SINR improvement. A  novel hybrid algorithm for 

MVDR-SMI beamformer with colored adaptive diagonal 

loading is proposed in this paper. The performance of the 

proposed method is compared with other  methods such as 

Conventional, MVDR-SMI-Diagonal Loading, MVDR-SMI-

Colored –DL, MVDR-SMI-Adaptive DL by conducting 

simulation experiments to prove its effectiveness in improving 

the directivity and SINR   

Keywords: Smart antennas, Adaptive beamforming, Uniform 

Linear Array, Minimum Variance Distortionless Response 

Beamformer (MVDR), Sample-Matrix Inversion(SMI), 

Adaptive colored diagonal loading 

1. INTRODUCTION 
Adaptive beamforming reveals to be a complementary means for 

signal-to-interference-plus-noise-ratio (SINR) optimization [6, 

7, 10]. In this paper, at antenna array elements level, the 

formation of a lobe structure that results from the dynamic 

variation of an element-space processing weight vector is 

controlled by an adaptive algorithm, which is the MVDR-

Sample Matrix Inversion algorithm [2, 7, 10]. It minimizes cost 

function reduction of a link’s SINR by ideally directing beams 

toward the signal-of-interest (SOI) and nulls in the directions of 

interference. In optimum beamformers optimality can be 

achieved in theory if perfect knowledge of the second order 

statistics of the interference is available. It involves calculation 

of interference plus noise correlation matrix niR + . For real 

world scenarios, the adaptive methods are followed to obtain 

optimality. In adaptive beamformer, the correlation matrix is 

estimated from collected data. In sample matrix Inversion 

technique a block of data is used to estimate adaptive 

beamforming weight vector. The estimate niR +
ˆ  is not really a 

substitute for true correlation matrix niR + . Hence there is 

degradation in performance. The SINR which is a measure of 

performance of the beamformer degrades as sample support (the 

number of data) is low. The lower band on sidelobe levels of the 

beamformer when no interference sources are found at an angle 

is also calculated. Training issues like the presence of desired 

signal in the correlation matrix niR +  is also dealt with. 

 

The paper is organized as follows. In Section 2, Problem 

formulation and general model is presented. In Section 3 

Adaptive beamforming with various beamforming methods are 

presented along with the Novel Hybrid algorithm -Adaptive 

colored diagonal loading.  In Section 4 simulation experiments 

are presented. Section 5 contains Results and discussions. 

Section 6  presents the conclusions. 

 

2. PROBLEM FORMULATION AND 
GENERAL MODEL 
An uniform linear array (ULA) of M elements or sensors is 

considered. Let a desired signal 0

~
S  from a point source from a 

known direction 0θ  with steering vector ‘ 0a ’ and  L number of   

J (jammer or) interference signals from unknown 

directions [ ],.......,, 321 Lθθθθ specified by the steering vectors 

[ ],,.....,, 321 Laaaa respectively impinge on the array. The white or 

sensor or thermal noise is considered as ‘n’. 

A single carrier modulated signal )(
~

0 tS  is given by 

   tFctStS )2cos()()(
~

00 π=                                         (1) 

 It is arriving from an angle 0θ  and is received by the ith sensor. 

The signal )(0 tS is a baseband signal having deterministic 

amplitude and random uniformly distributed phase and Fc  is the 

carrier frequency.  The symbol    � is used to indicate that the 

signal is a pass band signal. Let X1(k) be the single observation 

or measurement of this signal made at time instant k, at sensor 1, 

which is given as 

   n(k)+(k)]J…(k)J(k),][J......aa,[a+(k)Sa=(k)X T
L21L21001   (2)       

∑ =
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Hence the single observation or measurement made at the array 

of elements at the time instant k, called array snapshot is given 

as a vector with ‘T’ as the transpose, 

          T
M kXkXkXkXkX )]().......()()([)( 321=                          (4)                           

The general model of the steering vector [13] is given as 
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Also it is assumed that the desired signal, interference signals 

and noise are mutually uncorrelated.  

3. ADAPTIVE BEAMFORMING 
In optimum beamformer, a priori knowledge of true statistics of 

the array data is used to determine the correlation matrix which 

in turn is used to derive the beamformer weight vector. Adaptive 

Beamforming is a technique in which an array of antennas is 

exploited to achieve maximum reception in a specified direction 

by estimating the signal arriving from a desired direction while 

signals of the same frequency from other directions are rejected 

[17] - [21]. This is achieved by varying the weights of each of 

the sensors used in the array. Though the signals emanating 

from different transmitters occupy the same frequency channel, 

they still arrive from different directions. This spatial separation 

is exploited to separate the desired signal from the interfering 

signals. In adaptive beamforming the optimum weights are 

iteratively computed using complex algorithms based upon 

different criteria. For an adaptive beamformer, covariance or 

correlation matrix must be estimated from unknown statistics of 

the array snapshots to get the optimum array weights. The 

optimality criterion is to maximize the signal-to-interference-

plus-noise ratio to increase the visibility of the desired signal at 

the array output. In this paper it is assumed that the angle of 

arrival of the desired signal is known.  

3.1. Estimation of Correlation Matrix 
The correlation matrix can be estimated [6, 7, 8, 9] using 

different methods which would result in different performance 

and behavior of the algorithm. In block adaptive Sample Matrix 

Inversion technique, a block of snapshots are used to estimate 

the ensemble average of  Rx and is written as [8] 

∑ =
==

K

K

HH
x kxkx

M
kxkxER

1
)()(

1
)}()({                (6) 

nj
H

S RRaaM ++= 00
2σ                                                      (7) 

where M is the number of snapshots used and k is the time 

index, 
2
sσ  is the power of the desired signal and jR  and  nR  

are the jammer and noise correlation matrices, respectively and 

H is the complex conjugate transpose. The interference-plus-

noise correlation matrix is the sum of these two matrices   

njnj RRR +=+                                                              (8) 

 Where IRR nnn
2σ= , and 

2
nσ is the thermal noise power, I is 

the identity matrix. It is assumed that thermal noise is spatially 

uncorrelated.   

3.2. Conventional Beamformer 
The expectation value at the antenna elements is written as 

T
MM tXtXtXtXtXtXtxE )]().....()()][().....()([)]([ 2121= with

})()({ HtxtxER = .The output signal )()( txWty H= . This is 

the conventional beamformer output signal with beamformer 

weight w. Maximizing the beamformer output problem will 

result in )(}{
2

RwwyP HMax
w

Max

w
== ∑ .Solving this equation 

gives 

θθ

θ

aa

a
w

H
= where θa is the steering vector. 

3.3. MVDR Beamforming 
If ‘M’ number of sensors are used in a beamformer with spacing 

between them as d=λ/2, at any instant  

0

1

0

*
0 ).()(

θjk
M

k

k eWnsny
−

−

=
∑=                                                       (9) 

where 0θ  is  the phase difference from the reference input and 

‘θ’ may be written as θ=(2πd/λ) sin ф =π sin ф where ф is the 

angle of incidence. To protect all signals which are received 

from the wanted direction, a linear constraint may be defined as 

ganweW Hjk
M

k

k ==−
−

=
∑ )()(. 0

1

0

* 0 θθ                                          (10) 

The constraint  ‘g’ may be interpreted as gain at the look 

direction which is to be maintained as constant. A spatial filter 

that performs this function is called a linearly constraint 

minimum variance beamformer (LCMV). If the constraint g=1 

then the signal will be received at look direction with unity gain 

and the response at the look direction is    distortionless. This 

special case of LCMV beamformer is known as minimum 

variance distortionless response (MVDR) beamformer. 

Mathematically, a weight vector ‘w’ is to be calculated for this 

constrained optimization problem.  

Rwww *min
 Subject to 1* 0 =aw                                         (11) 

  Now the optimal weight vector may be written as     

                  )()(/)( 11 θθθ aRaaRw x
H

x
−−=                          (12) 

 This beamforming method experiences the following    

drawbacks  

1) Computational complexity in the order of 

)()( 32 NOtoNO .  
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2)  In the case of large array, low sample support 

i.e(M>>k), xR may result in singular matrix or ill-

conditioned. 

3.4. Sample Matrix Inversion (SMI) 
Sample matrix Inversion techniques solve the equation 

dxx rWR =0 directly by substituting the maximum likelihood 

estimates for the statistical quantities xR  and dxr  to obtain.  

                            dxrRW x
ˆˆ~ 1−=                                         (13) 

The maximum likelihood estimates of the signal                                                                                                                                                                                                             

correlation and cross correlation are ∑
−

=

=
1

0

~
M

k

H
Kkx xxR and 

k

M

k

dx xdr ∑
−

=

=
1

0

ˆ When the input signal is stationary the estimates 

only need to be computed once. However in cases where the 

signal statistics are time varying the estimates must be 

continuously updated. In SMI the convergence performance is 

quantified in terms of number of statistically independent 

sample outer products that must be computed for the weight 

vector to be within 3dB of the optimum. 

3.5. MVDR-SMI Beamformer with Adaptive 
Colored Diagonal Loading 
MVDR is an optimal minimum variance distortionless response 

beamformer. It is also referred as the full rank solution as it uses 

all ‘M’ adaptive degrees of freedom. It resembles the Wiener 

filter of the form 

rRW 1−=                                                                          (14) 

MVDR weight vector can be derived as  

[ ]
[ ] θθ

θ

σ

σ
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a
w
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H
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,

12
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−

−

=                                  (15) 

              = s 

w= ⊙ θa                                                 (16) 

where s is unit norm i.e 1=θθ aa H
and ⊙ is the Hadamard 

product. 

A standard method of estimating the covariance matrix is by 

constructing the sample covariance matrix 
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,

1
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)(, kx H
ni  is the kth training sample and k is the total number of 

training samples that are available. The sample covariance 

matrix niR ,
ˆ is the maximum likelihood estimate of the true 

covariance matrix niR , . Now the approach is called sample 

matrix inversion with MVDR beam forming and the weights are 

calculated as 

θ

θ

θ aRa

aR
W

ni
H

ni
SMIMVDR 1

,

1
,

)( ˆ
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−

−

− =                                              (18) 

The MVDR method may suffer from significant performance 

degradation when there are even small array steering vector 

errors. Several approaches for increasing robustness to array 

steering vector errors have been proposed during the past few 

decades. Diagonal loading, linearly constrained minimum 

variance (LCMV) beam forming, quadratically constrained 

beamforming and second order cone programming (SOCP) are 

some of them. In this work, adaptive colored diagonal loading is 

proposed to improve the SINR and to eliminate the steering 

vector errors. 

To overcome the above mentioned drawback no. 2 in section III. 

C, a small diagonal matrix is added to the covariance matrix. 

This process is called diagonal loading [15] or white noise 

stabilization which is useful to provide robustness to adaptive 

array beamformers against a variety of conditions such as 

direction-of-arrival mismatch, element position, gain, and or 

phase mismatch and statistical mismatch due to finite sample 

support[12],[14],[18]-[21].  Because of the robustness that 

diagonal loading provides it is always desirable to find ways to 

add diagonal loading to beamforming algorithms. But little 

analytical information is available in the technical literature 

regarding diagonal loading [11].  
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Fig 1 Conventional Beamforming Showing the Beampattern 

To achieve a desired sidelobe level in MVDR-SMI beamformer 

sufficient sample support ‘k’ must be available. However due to 

non-stationarity of the interference only low sample support is 

available to train the adaptive beamformer. We know that the 

beam response of an optimal beamformer can be written in 

terms of its eigen values and eigen vectors. The eigen values are 

random variables that vary according to the sample support ‘k’.  
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Hence the beam response suffers as the eigen values vary. This 

results in higher sidelobe level in adaptive beam pattern. A 

means of reducing the variation of the eigen values is to add a 

weighted identity matrix to the sample correlation matrix.   

 

The result of diagonal loading of the correlation matrix is to add 

the loading level to all the eigen values. This in turn produces 

the bias in these eigen values in order to reduce their variation 

which in turn produces side bias in the adaptive weights that 

reduces the output SINR. Recommended loading levels of 

22
Ln σσ ≤ < 

210 nσ where 
2
nσ  is the noise power  and 2

L
σ  is the 

diagonal loading level. The minimum loading level must be 

equal to noise power. Diagonal loading increases the variance of 

the artificial white noise by an amount 2
L

σ . This modification 

forces the beamformer to put more effort in suppressing white 

noise rather than interference. When the SOI steering vector is 

mismatched, the SOI is attenuated as one type of interference as 

the beamformer puts less effort in suppressing the interferences 

and noise [17]. However when 2
L

σ is too large, the beamformer 

fails to suppress strong interference because it puts more effort 

to suppress the white noise. Hence, there is a tradeoff between 

reducing signal cancellation and effectively suppressing 

interference. For that reason, it is not clear how to choose a good 

diagonal loading factor 2
L

σ  in the traditional MVDR 

beamformer. 

 

     This conventional diagonal loading can be thought of as a 

gradual morphing between two different behavior, a fully 

adaptive MVDR solution (L=0, no loading) and a conventional 

uniformly weighted beampattern (L=∞, infinite loading) [5]. 

The conventional DL weight vector can be calculated as 

)(]ˆ[ 12 θσα aIRW LDLMVDRDLMVDR
−

−− +=            (19) 

where DLMVDR−α  is the normalization constant given by 

)(]ˆ[)( 12 θσθα aIRa L
H

DLMVDR
−

− +=                    (20) 

and 2
L

σ  reduces the sensitivity of the beampattern to unknown 

uncertainties and interference sources at the expenses of slight 

beam broadening [3]. The choice of loading can be determined 

from L-Curve approach [12] or adaptive diagonal loading.  

In the presence of colored noise, DL can be applied which is 

termed as colored diagonal loading (CDL) and the morphing 

process may result in a beampattern of our choosing. The 

colored diagonal loading is similar to DLMVDRW −  but the 

diagonal loading level of 2
L

σ = ∞ , end point, can be altered by 

the term [5] 

)(]ˆ[ 12 θσα aRRW dqLDLMVDRCDLMVDR
−

−− +=                    (21) 

where dqR  is the covariance matrix that captures the desired 

quiescent structure. It may be determined directly based on 1) a 

priori information – where dqR , need not be a diagonal or 2) 

desired weight vector – where dqR  must be diagonal. It is given 

as  

))()](([ 1 θawdiagdiagR dqdq
−=                                         (22) 

where dqw  is the desired quiescent weight vector.  

In Adaptive Colored Diagonal Loading the loading level is 

calculated assuming the a priori information about the Signal to 

Noise Ratio (SNR) is available. 
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Fig 2 Mvdr-Colored Diagonal Loading 

The SNR can be estimated from link budget or using some SNR 

estimation algorithm. A variable loading MVDR.(VL-MVDR) is 

proposed in [16] in which the loading level is chosen as )ˆ( 2Rσ  

)(]ˆ[ 12 θσα aIRW ADLDLMVDRADLMVDR
−

−− +=              (23) 

where SNRMADL .=σ   [4]  
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Fig 3 MVDR- Adaptive Diagonal Loading Beampattern 
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As already discussed, white noise stabilization is nothing but 

diagonal loading in which the adaptive colored loading 

technique is embedded to get a novel hybrid method which is 

proposed as   

     )(]ˆ[ 1 θα aRRW dqDLMVDRACDLMVDR
−

−− +=        (24) 
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Fig 4 MVDR- Adaptive Colored Diagonal Loading 
Beampattern 

4. SIMULATION EXPERIMENTS 
For the proposed hybrid algorithm, a 10 element Uniform Linear 

Array is considered with SNR of 20 dB for the desired signal 

coming from θs = 0° and INR of 70 dB for two jammer signals 

coming from the directions θi =  -70°, and 30°. The element 

spacing is d = 0.5 λ. The beam patterns for various methods of 

beamforming are obtained and compared with the performance 

of MVDR-Adaptive colored Diagonal Loading. Fig 1 shows 

conventional beamformer. It is observed that the conventional 

beamformer performs well to get the maximum gain in the 

desired look direction of 0°. But its performance is worst 

regarding the cancellation of interferences. 

 

Fig 2 shows the MVDR Colored Diagonal Loading beam pattern 

which performs much better than the conventional beamformer. 

This shows a greater improvement in SINR than the 

conventional. The null is placed properly with out any angle 

deviation. Fig 3 shows MVDR-ADL beam pattern. Fig 4 shows 

MVDR-ACDL beam pattern. This beam pattern gives 

improvement in SINR when compared to other diagonal loading 

methods. The interferers’ angle and their corresponding beam 

responses are given below. 

 

 Interferer 1 at angle -70° :  -60dB 

 Interferer 2 at angle 30° :  -60dB 

 
5. RESULTS AND DISCUSSION 
5.1. Number of Elements 
For the ULA which is considered for simulation work, the 

beampatterns are analyzed by changing the number of elements 

as 4, 8, 12, 16, 24, 50 and 100. 
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Fig 5 Beampattern of various diagonal loading methods 

As the number of elements increases, the beam pattern shows 

higher resolution i.e the 3 dB beamwidth becomes much 

narrower from to 26° to 1° for conventional beamformer and 17° 

to 1° for adaptive diagonal loading beamformer. Finer or sharper 

beams are obtained when more number of elements are used. 

Sharper the beam, the beamformer is not susceptible to jammers. 

But the numbers of side lobes are also increased.. A trade off 

can be obtained to reduce the cost and to have a compact size. 

Hence a maximum of 16 elements are chosen for further 

analysis. 

 

5.2. Noise Effect 
An ULA with 16 elements is considered for analyzing the effect 

of noise on the peaks of the signal power. Signal to noise ratio 

(SNR) is varied in steps of 10 dB starting from 10 dB till 60 dB. 

As SNR increases the peak becomes sharper. It shows that the 

interference sources are suppressed to a maximum extent, so that 

it will not be a disturbance while extracting the signal even in 

the presence of strong interferers. 

 

5.3. Training Issues with the Number of 
Array Snapshots  
Increasing the number of array snapshots lead to complexity and 

computational cost but the performance of the beamformer 

increases. It is a trade off between the cost and the performance. 

This is shown in Fig 6. 
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Fig 6 Training issues with the number of snapshots 
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6. CONCLUSION 
In this paper a new Hybrid Robust adaptive beamforming 

algorithm – MVDR-SMI beamformer with adaptive colored 

loading is proposed with diagonal loading based on data 

dependent approach. This method is computationally efficient 

and proved its effectiveness in improving the SINR over the 

other methods discussed in this paper. 
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