
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

25

Multi-Client Multi-Instance Secured Distributed
File Server

Arun Singh, Ajay K Sharma, Ashish Kumar

Dr. B.R Ambedkar
NIT Jalandhar, India

ABSTRACT

This paper describes a Distributed File Server, implemented in

Java Sockets, based on TCP protocol. The server responds file

request of multiple formats like txt, doc, pdf, jpeg, mp3, mp4,

flv etc to multiple clients at a time. The requested server first

checks the requested file, with it. If file search is not successful

then it turns toward other servers connected to it.

The Dedicated Server performs client authentication based on

Ipaddress of connecting client and maintains list of files present

with other servers connected with it. The clients at it end

perform check on user requests, for better server performance.

The system proposed is well tested in our laboratory with 0, 2,

4, and 8 clients connecting in distributed environment. Results

of heap memory utilization and relative server utilization time

in serving varying number of clients is drawn and analyzed.

General Terms

Distributed System and Computer Networks.

Keywords

Java Server, File Server, Java Socket, TCP Server.

1. INTRODUCTION
TCP and UDP are two main networking protocols that can be

employed in distributed applications. TCP guarantees that once

a connection has been established between two parties, data sent

from one side to another will be in proper order without any

loss; this is because of acknowledgment and ordering of each

data packet. While UDP does not guarantee this, because data is

divided into data packets called datagram‟s, whose delivery is

not acknowledged, also at other end ordering of datagram‟s is

not performed [1].

In this paper we proposed and implemented Distributed Server

using TCP protocol, called MMSDFS (MultiClient

MultiInstance Secured Distributed File Server). The proposed

system is used to transfer multi format files from server to client

including text, document and pdf files etc, and the data loss in

which could not be tolerated. Integrity of data received in TCP

protocol is achieved at a cost efficiency and performance.

2. RELATED WORK
Java Sockets, RMI (Remote Method Invocation) of Sun

Microsystems or CORBA (Common Object Requests Broker

Architecture) of OMG (Object Management Group), are well

known used for distributed system development. RMI, one of

the core Java APIs since version 1.1., is a way that Java

programmers can write object-oriented programs in which

objects on different computers can interact with each other. A

client can call a remote object in a server, and the server can

also be a client of other remote objects. CORBA is well suited

for Distributed system working on different platforms with

varying specifications and environment [2, 3]. But the

implementation of RMI and CORBA are very complex and

specialized task. Hence, Java Socket is better choice for easy

implementation.

A P2P network is a network of computers or nodes where there

is a concept of equality that is anyone could act like a client if

required a data and the one who serves act like a server, it is

different from traditional client/server architecture where only

dedicated system could act like a server and requesting

computers would acts like client to it. If one of the client have

the data required by other client, in any case it could not serve

him, this become a major drawback in traditional client/server

architecture. Since all the nodes are equal in a P2P network,

there is no requirement of dedicated server, as each node can act

like both client/server and free to add or leave the network any

time, without disturbing others peers.

The P2P network architecture is mainly grouped into two

categories: centralized systems (Napster, BitTorrent etc.) and

decentralized systems (Gnutella, FreeNet etc.)[4].

It is found that P2P file sharing accounts for much more traffic

than any other application on the Internet, since transport of

data take place on Internet hence unsecure without encryption

and vulnerable for Intruders attack [5].

3. DESIGN AND IMPLEMENTATION OF

MMSDFS
Distributed client/server architecture, with single server

connected to other servers listed in its connecting data file, by

default it‟s three. Figure 1 shows the architecture view of

MMSDFS. The server composed of functionality of creating

multiple instances for each client, as

public class ts implements Runnable

{

Socket S;

ts(Socket S)

{

this.S=S;

}

public static void main(String aa[])

{

ServerSocket SS = new ServerSocket(8000);

While(true){

Socket S1 = SS.accept();

new Thread(new ts(S1)).start();

..

}}}.

After accepting the client connection [6], the server accesses the

client Ipaddress and checks it with the list of authenticated

clients with it. If the client Ipaddress present in its list then it

allows authenticated client to access the data file otherwise

close the connection at the same time without any transfer. The

required code is as

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

26

DataInputStream dis0=new DataInputStream (new

FileInputStream ("auth.txt"));

//S1 Socket Object

while((str0=dis0.readLine())!=null)

{

if(str0.equals((S1.getInetAddress()).toString()))

{

new Thread(new ts(S1)).start();

flag0=true;

break;

}}

if(!flag0)

{

S1.close();

//Close connection for unauthorized user

}

Figure 1. The Architecture view of MMSDFS

The server Administrator is provided the functionality of

looking the file present at server repository as

DataOutputStream dos0=new DataOutputStream(new

FileOutputStream("d:\\filename.txt"));

File folder=new File("d:\\shared");

/* „shared‟ folder content is shared in distributed environment*/

File[] lof=folder.listFiles();

for(int i=0;i<lof.length;i++)

{

if(lof[i].isFile())

{

System.out.println("File : "+lof[i].getName());

dos0.writeBytes((lof[i].getName())+"\r\n");

}

}

dos0.close();

Each server along with maintaining list of clients, who can

connect with it, maintains list of files present with its adjacent

servers. This list of files got updated each time server in the

neighborhood got startup. If the file requested by client is not

present with the dedicated server then instead of connecting to

all other servers in neighborhood, the dedicated server looks for

file name in its file list. If file is not present with adjacent

servers also then client will be responded with message „no‟. If

file is founded with any of the adjacent server, the dedicated

server sends file request to it and copy file on it, for future use

and send copy of file to client [7, 8]. The waiting distributed

servers looks like as in Figure 2. The server connecting to other

servers is handled by Java sockets [9] as,

DataInputStream dis=new

DataInputStream(S.getInputStream());

DataOutputStream dos = new

DataOutputStream(S.getOutputStream());

boolean flag=false;

name=dis.readUTF();

File folder=new File("d:\\b");

File[] lof=folder.listFiles();

for(int i=0;i<lof.length;i++)

{

if(lof[i].isFile())

{

if(name.equals(lof[i].getName()))

{

filename=name;

dos.writeUTF(filename);

flag=true;

break;

}

}

}

if(flag==false)

{

Socket S1 =new Socket("10.10.54.180",8001);

DataOutputStream dos1=new

DataOutputStream(S1.getOutputStream());

dos1.writeUTF(name);

DataInputStream dis1 = new

DataInputStream(S1.getInputStream());

filename=dis1.readUTF();

if((name.equals(filename)))

{

boolean b=false;

}}

Figure 2. The Distributed Servers in Waiting State

The client is provided with the functionality of authenticating

user input at its end, by checking the connecting server

Ipaddress at specified port. The client filter is shown in Figure

3. The client is dynamically connected to default server [9], if

required Ipaddress and port are not correct or does not exist. At

a time client could connect to only one server, but fetch data

from multiple servers, as shown in Figure 4. Each

intermediatory server will make a copy of requested data with

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

27

it, as shown in Figure 5. There is an additional functionality of

requesting file efficiently, by categorizing the request on the

basis of type of file required by user. This categorization is

much more efficient for video files and support multiple video

formats, the code for such categorized file transfer is given

below

Client code for requesting txt, doc, pdf, jpeg, mp3 etc. is as,

BufferedOutputStream bos = new BufferedOutputStream(fos);

try {

num_bytes_read = in.read(buf,0,buf.length);

current=num_bytes_read;

do{

num_bytes_read = in.read(buf, current,(buf.length - current));

if(num_bytes_read>=0)current += num_bytes_read;

}while(num_bytes_read>-1);

bos.write(buf, 0,current);

bos.flush();

bos.close();

}

catch (IOException e)

{

e.printStackTrace();

}

Client code for requesting video file such as mp4, flv etc. is as,

BufferedOutputStream bos = new BufferedOutputStream(fos);

try {

num_bytes_read=64;

do{

num_bytes_read=in.read(buf,current,num_bytes_read);

bos.write(buf, current, num_bytes_read);

current=current + num_bytes_read;

}while(num_bytes_read!=0);

bos.flush();

bos.close();

}

catch (IOException e) {

e.printStackTrace(); }

Figure 3. The Client filtering process

Figure 4. The Client Instance in Requesting State

Figure 5. Client Request manipulation in MMSDFS

4. PERFORMANCE EVALUATION
The implemented server is tested on Systems with Intel(R)

Pentium Processor(R) D CPU 2.80 GHz 2.79 GHz, 1.25 GB

Ram, Windows 7 (32 bit) Operating System.

The distributed servers composed of multiple files in multiple

formats meant for sharing over network. Each server composed

of dedicated folder which is shared between all servers. Each

server is provided with permission of only reading a file from

other server. The data files used for testing is mentioned in

Table1.

Table 1. The Server Repository

File Extension File size

Txt 822 Bytes

Java 1.99 KB

Docx 13.0 KB

PDF 52.0 KB

HTM 19.4 KB

MP3 6.80 MB

MP4 10.1 MB

FLV 39.6 MB

Server is tested for 0, 2, 4, and 8 numbers of clients, with

multiple requests in mixed format. The Heap memory utilized

by CPU running the dedicated server for responding to different

number of clients for different period of time is shown in Figure

6, 7, 8 and 9.

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

28

Figure 6. Server Connected to 0 Clients

Figure 7. Server Connected to 2 Clients

Figure 8. Server Connected to 4 Clients

Figure 9. Server Connected to 8 Clients

The figure 6, 7, 8 and 9 shows that for mixed format file

transfer, the heap memory utilization does not exceed 4M in

any case and after the file transfer the memory consumption

becomes almost constant. The figure 10, 11, 12 and 13 specially

shows the interaction time of clients with the server for file

transfer that is serving time versus time utilized for garbage

collection.

Figure 10. Server Connected to 0 Clients

Figure 11. Server Connected to 2 Clients

Figure 12. Server Connected to 4 Clients

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

29

Figure 13. Server Connected to 8 Clients

5. CONCLUSION AND FUTURE WORK
This article puts forward a kind of MultiClient MultiInstance

Distributed Java Socket Server, design and implemented for

limited number of users. The client/server system proposed is

effectively deployed in our laboratory, with three distributed

servers connecting with each other only at a time of file

transfer. The system is tested for selected multimedia files, so

Heap Memory utilization does not go beyond 4M but Server

Utilization time decreases with increase in number of clients,

due to type of request made by client and response is given by

single server or multiple servers. Transfer of data is

implemented for authenticated users identified by server

administrator prior to connection with the server in personal

network so system is well secured but static.

The work is going on to increase server performance by

distributing file request filtration at client level and increasing

data security during transmission.

6. REFERENCES
[1] Eitan Farchi, Yoel Krasny, Yarden Nir, “Automatic

Simulation of Network Problems in UDP-Based Java

Programs”, proceedings of the 18th International Parallel

and Distributed Processing Symposium, 2004 IEEE.

[2] Delin Hou and Huosong Xia,”Design of Distributed

Architecture based on Java Remote Method Invocation

Technology”, pp. 618, 2009 International Conference on

Environmental Science and Information Application

Technology (IEEE Computer Society 2009).

[3] V.Getov, G. von Laszewski, M. Philippsen, I. Foster,”

Multi-paradigm Communications in Java for Grid

Computing”, Communications of the ACM, Vol. 44, No.

10, pp. 118-125, 2001.

[4] Amol Vasudeva, Sandeepan, Nitin Kumar,” PASE: P2P

Network Based Academic Search and File Sharing

Application”, First International Conference on

Computational Intelligence, Communication Systems and

Networks in 2010.

[5] Yao-Nan Lien and Hong-Qi Xu, ” A UDP Based Protocol

for Distributed P2P File Sharing”, Eight International

Symposium on Autonomous Decentralized System in

2007.

[6] Ming Xue and Changiun Zhu, “The Socket Programming

and Software Design for Communication Based on

Client/Server”, Pacific-Asia Conference on Circuits,

Communications and System in 2009.

[7] What is peer-to-peer? Peer-to-Peer working group

http://www.p2pwg.org/

[8] J2SE 1.5.0 API Specification, available at

http://java.sun.com.

[9] Java Socket Tutorial, available at

http://www.cs.swan.ac.uk/~csneal/InternetComputing/Java

Sockets.html.

