
International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

10

FPGA Implementation of RSA Encryption System

Sushanta Kumar Sahu
Deptt. of Electronics & Tele-comm. Engg.

VSS University of Technology, Burla.

Manoranjan Pradhan

Deptt. of Electronics & Tele-comm. Engg.
VSS University of Technology, Burla.

ABSTRACT

This paper presents the architecture and modeling of RSA public

key encryption/decryption systems. It supports multiple key

sizes like 128 bits, 256 bits, 512 bits. Therefore it can easily be

fit into the different systems requiring different levels of

security. In this paper simple shift and add algorithm is used to

implement the blocks. It makes the processing time faster and

used comparatively smaller amount of space in the FPGA due to

its reusability. Each block is coded with Very High Speed

Integrated Circuit Hardware Description Language. The VHDL

code is synthesized and simulated using Xilinx-ISE 10.1. It is

verified that this architecture support multiple key of 128bits,

256bits, and 512 bits.

General Terms

Security, Algorithms, Cryptography.

Keywords

RSA, VHDL, FPGA, modular multiplication.

1. INTRODUCTION
The art of keeping messages secure is cryptography.

Cryptography plays an important role in the security of data. It

enables us to store sensitive information or transmit it across

insecure networks so that unauthorized persons cannot read it.

The urgency for secure exchange of digital data resulted in large

quantities of different encryption algorithms which can be

classified into two groups: symmetric key algorithms (with

private key algorithms) and asymmetric key algorithms (with

public key algorithms) [1]. The asymmetric key algorithm

requires two different keys, one for encryption and other for

decryption as shown in figure 1.

Fig. 1 Public key cryptography

The RSA algorithm is a secure, high quality, public key

algorithm. It can be used as a method of exchanging secret

information such as keys and producing digital signatures.

However, the RSA algorithm is very computationally intensive,

operating on very large (typically thousands of bits long)

integers.

A vast numbers and wide varieties of works have been done on

this particular field of hardware implementation of RSA

encryption algorithm. A hardware implementation of RSA

encryption scheme has been proposed by Deng Yuliang & Mao

Zhigang. in [2], where they use Montgomery algorithm for

modular multiplication. A similar approach has been taken by C.

N. Zhang & Y. Xu. in [3]. This design scheme focuses on the

implementation of a RSA cryptographic processor using

Bit-Serial Systolic Algorithm.

This paper describes the implementation of RSA

encryption/decryption algorithm on FPGA using 128 bits key

size.

2. OVERVIEW OF RSA ALGORITHM
Figure 2 summarizes the different steps involved in RSA

algorithm. An interesting feature of RSA algorithm is that, it

allows most of the components used in encryption process are

re-used in the decryption process [5]. So this can minimize the

resulting hardware area.

Fig. 2 RSA algorithm

RSA encryption and decryption are mutual inverses and

commutative as shown in equation (1) and (2), due to symmetry

in modular arithmetic. Hence the encryption engine covers both

the operation of Encryption and Decryption.

The mathematics involved in modular arithmetic is as follows:

The integers A and B are congruent modulo m if and

only if A–B is divisible by m. This congruence is written as:

A ≡ B mod m

Encryption/ Decryption

Plaintext block M is encrypted to a cipher text block C by:

 C = M
e
 mod n (1)

The plaintext block is recovered by:

M =C
 d

 mod n (2)

RSA Key Generation

1. Choose two large primes p and q.

2. Compute n = p q

3. Calculate (n) = (p-1) (q-1)

4. Select the public exponent e € {1, 2, . . . , (n)−1}

 Such that GCD (e, (n)) = 1.

5. Compute the private key d such that d×e ≡ mod (n)

Output: public key: kpub = (n,e) and private key: kpr = (d)
Public Key Private Key

Plain

Text

Cipher

Text

Encryption Decryption Plain

Text

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

11

Where m is a positive integer is called modulus.

When A and B are divided by m, the same remainder is

obtained.

The sign “≡” indicates congruence.

For Examples: 14 ≡ 2 mod 12.

3. ENCRYPTION/ DECRYPTION
Encryption is the process of converting the plain text into a

format which is not easily readable and is called as cipher. The

conversion from plain text to cipher text involved some

mathematical operation only. Hence after generation of both

keys, the RSA encryption/decryption is just a modular

exponentiation operation. This mathematical operation is

represented as C=Me mod n [5], where C is cipher text, M is

plain text, e is the public key exponent, and n is the modulus.

This operation has involved a few modular operations: modular

multiplication, modular addition, and subtraction.

3.1 Modular Exponentiation Operation
Modular exponentiation operation can further simplified in to

series of modular multiplication and squaring operation. This

simplification is based on an algorithm known as square and

multiply algorithm. This algorithm is based on scanning the bit

of the exponent from the left (the most significant bit) to the

right (the least significant bit). In every iteration, i.e., for every

exponent bit, the current result is squared, If and only if the

currently scanned exponent bit has the value 1, a multiplication

of the current result by M is executed following the squaring.

This algorithm can be represented in pseudo code as shown in

figure 3.

Fig. 3 Square and Multiply Algorithm

Let us take an example exponent (e) = (21)10

Cipher text(C) =Message (M) 21

Hence binary equivalent of (21)10 is 1 0 1 0 1 (k=5)

Where k is number of bits of exponent

For ek-1 =1 C=M

For ek-2 =0 C=M2

For ek-3 =1 C= (M2)2=M4 C=M4×M=M5

For ek-4 =0 C= (M5)2=M10

For ek-5 =1 C= (M10)2=M20 C=M20×M=M21

3.2 Modular Multiplication
The modular multiplication problem is defined as the

computation of P = A × B (mod n), given the integers A, B, and

n. It is usually assumed that A and B are positive integers with 0

≤ A, B < n.

The square or multiplication operation is just a simple

multiplication. There are many approaches to perform
multiplication such as Multiply then divide, Interleaving

multiplication and reduction, Brickell’s method.

But in this paper Montgomery's algorithm is used. It avoids the

traditional “division” operation and uses "shift and addition"

operations to perform modular multiplication.

Let A and B are two k-bit positive integers, respectively. Let Ai

and Bi are the ith bit of A and B, respectively. The algorithm is

stated as follows:

Fig 4: Algorithm for Modular Multiplication.

Figure 5: Montgomery’s modular multiplier architecture

3.3 Addition/ subtraction
In this paper carry save adder is used to perform both addition

and subtraction operation. Subtraction means addition of a

number with 2’s complement of other number. Here a select line

is used to perform the selection of adder or subtracter. If A, B

are positive integers, and S is the result then S=A+B, when

select line (ADD) is 0 else S=A-B.

Input: M, e, n

Output: C = Me mod n

Let e contain k bits)

If ek-1=1 then C=M else C=1

For i=k-2 down to 0

C=C×C

If ei=1 then C=C×M

Input: A, B, n

Output: M = A×B mod n

M = 0;

For i = 0 to k

M=M+(A×Bi)

 if M0 = 1

 M = M/2;

 else

 M=(M+n)/2;

return M;

MUX

2

ADDER1

ADDER

SHIFT REGISTER

CONTROLLER

REGISTER

MUX

MUX

SHIFT

REGISTER

0 M

0 0 B

C A

R

International Journal of Computer Applications (0975 – 8887)

Volume 19– No.9, April 2011

12

4. RESULT & DISCUSSIONS
The RTL schematic diagram for 128 bit encryption engine is

shown in figure 6. The synthesis report for 128 bit

encryption/decryption is given in Table 1-3. By changing the

generic parameter; the RSA encryption module of different key

size may be obtained.

Figure 6: RTL Schematic Diagram of RSA

Encryption/Decryption System.

Table 1. HDL Synthesis Report (Macro Statistics)

Component Nos

Adders/Subtractors 3

34-bit adder 1

34-bit subtractor 2

Registers 430

1-bit register 403

32-bit register 7

96-bit register 4

128-bit register 16

Comparators 1

32-bit comparator equal 1

Xors 192

1-bit xor2 192

Table 2. Device utilization summary

 Available Used % of use

Selected Device 3s100evq100-4

Number of Slices 960 2366 246

Number of Slice Flip Flops 1920 2943 153

 Number of 4 input LUTS 1920 4325 225

Number of IOS 517

Number of bonded IOBS 66 517 783

Number of GCLKS 24 1 4

Table 3. HDL Synthesis Report (Timing Summary)

Speed Grade -4

Minimum period 9.895ns

Maximum Frequency 101.06MHZ

Minimum input arrival time before clock 6.697ns

Maximum output required time after clock 4.31

Speed Grade -4

Minimum period 9.895ns

5. CONCLUSIONS
The VHDL code for RSA Encryption/Decryption algorithm is

developed block wise. Optimized and Synthesizable VHDL

code for each block synthesized using Xilinx ISE 10.1 and

verified that functionally correct. The maximum clock frequency

is found to ne 101.061 MHz. Since the device require more than

100% resources, it is difficult to implement in FPGA.

6. ACKNOWLEDGMENTS
We would like to express our special thank and appreciation to

our parents for their support and encouragement throughout this

work.

7. REFERENCES
[1] SCHNEIER, B., 1996. Applied Cryptography: Protocols,

Algorithms, and Source Code in C, John Wiley & Sons.

[2] Deng Y., Mao Z., and Ye Y.,. 1998. Implementation of

RSA Crypto-Processor Based on Montgomery Algorithm.

[3] Zhang. C.N, Xu. Y and Wu. C., 1997. A Bit-Serial Systolic

Algorithm and VLSI Implementation for RSA.

[4] Hinek. M., 2010. Cryptanalysis of RSA and Its Variants.

[5] Rivest, R., Shamir, A., and Adleman, L, 1978. A Method

for Obtaining Digital Signatures and Public Key

Cryptosystems. Communications of the ACM.

[6] Stallings W.2003, Cryptography and Network Security:

Principles and Practices.

[7] Burnett S. and Paine S, 2001. RSA Security’s Official

Guide to Cryptography. McGraw-Hill.

[8] Ashenden P. and Lewis J, 2006. The Designer’s Guide to

VHDL. Morgan Kaufmann Publishers.

[9] Hwang E. Digital Logic and Microprocessor Design with

VHDL.

[10] Nedjah.N and Mourelle L.2002.Two Hardware

Implementation for the Montgomery Modular

Multiplication: Sequential versus Parallel. IEEE.

A (127:0)

B (127:0)

E (127:0)

clk

reset_I

start

N (127:0)
E_Valid

READY

