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ABSTRACT 
In this paper, Neural network algorithm is introduced to study the 

singular system of a linear electrical circuit for time invariant and 

time varying cases. The discrete solutions obtained using neural 

network are compared with Runge-Kutta(RK) method and exact 

solutions of the electrical circuit problem and are found to be very 

accurate. Error graphs for inductor currents and capacitor voltages 

are presented in a graphical form to show the efficiency of neural 

network algorithm. This neural network algorithm can be easily 

implemented in a digital computer for any singular system of 

electrical circuits. 

 

Keywords: Singular systems, Runge-Kutta method, Neural 

networks.   

1. INTRODUCTION 
 

RK methods is used to determine numerical solutions of 

problems modeled as initial value problems involving differential 

equations that arise in the fields of science and 

engineering[1,10,11,12,20,25,26,27,28,29]. This method was 

derived by Runge around the year 1894 and extended by Kutta a 

few years later. They developed algorithms to solve differential 

equations efficiently and give solutions closer to the  exact 

solutions. 

Singular systems contain a mixture of algebraic and 

differential equations. In that sense, the algebraic equations 

represent the constraints to the solution of the differential part. 

These systems are also known as degenerate, descriptor or semi-

state and generalized state-space systems. The complex nature of 

singular system causes many difficulties in the analytical and 

numerical treatment of such systems, particularly when there is a 

need for their control. The system arises naturally as a linear 

approximation of system models or linear system models in many 

applications such as electrical networks, aircraft dynamics, neural 

delay systems, chemical, thermal and diffusion processes, large-

scale systems, robotics, biology, etc.,[5,6,9,21] 

  

Neural network or simply neural nets are computing systems, 

which can be trained to learn a complex relationship between two 

or many variables or data sets. Having the structures similar to 

their biological counterparts, neural networks are representational 

and computational models processing information in a parallel 

distributed fashion composed of interconnecting simple 

processing nodes [33]. 

Neural networks could be used to provide a general link 

from measurements or device simulations to circuit simulation. 

The discrete set of outcomes of measurements or device 

simulations can be used as the target data set for a neural network. 

The neural network then tries to learn the desired behaviour. If 

this succeeds, the neural network can subsequently be used as a 

neural behavioural model in a circuit simulator after translating 

the neural network equations into an appropriate syntax-such as 

the syntax of the programming language in which the simulator is 

itself written. An efficient link, via neural network models, 

between device simulation and circuit simulation allows for the 

anticipation of consequences of technological choices to circuit 

performance. This may result in early shifts in device design, 

processing efforts and circuit design, as it can take place ahead of 

actual manufacturing capabilities: the device need not (yet) 

physically exist. Neural network models could then contribute to a 

reduction of the time-to-market of circuit designs using promising 

new semiconductor device technologies.  

The mainstreams of electronic circuit theory and neural 

network theory will in forthcoming decades converge into general 

methodologies for the optimization of analogue nonlinear 

dynamic systems. As a demonstration of the viability of such a 

merger, a new modelling method will be described, which 

combines and extends ideas borrowed from methods and 

applications in electronic circuit and device modelling theory and 

numerical analysis [2,7,8,18,23,24] the popular error back 

propagation method (and other methods) for neural networks     

[3,4,13,14,22,31] and time domain extensions to neural networks 

in order to deal with dynamic systems [15,16,17,30,32].  

 

 

2. STATEMENT OF THE PROBLEM 

2.1 Study of Linear Electrical Circuit 

Consider the physical model of an electrical circuit discussed by 

Chu and Lin [7] as shown in figure 1. 
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Figure1. Electrical Circuit 

 
This electrical circuit is governed by the following hybrid 

equations [34] 

 

i1            0     0  -1  -1    v1          0     0 

i4       =      0     0    0   1    v4 +      0     -1     Ea      (1) 

v2             1     0    0   0     i2         1      0      Jb  

v3         -1   -1    0    1     i3         -1    0  

  

Since ic = C c  and  v1 =   Li1 , substituting  i1   = 2 1  ,  i2 = 2 2 ,         

v3= 2i3  and  v4 = 2i4  into (1) we then  obtain 

 

2 1   0     0   -1  -1     v1 0   0 

    . 
  i4           =      0     0    0    1 2i 4        +  0   -1        Ea      (2) 

  

  v2    1     0    0    0 2 2 1    0   Jb 

   . 

2 3  -1   -1    0    1 i3            -1    0  

  
  

After re-arranging the terms, we obtain the singular system of 

equations as 

K (t)=Ax(t)+Bu(t)                                                  (3) 

 

With the initial condition  x(0)  = x0 

 

where  

   

        2     2     0      0           0      0      -1    0            0      0 

K =  2     2     0      0   A=   -1     0      1     0    B=  -1      0 

        0     0     0      0           1    -1       0     0            1      0 

        0     0     0      0           0     0       1    -1            0     -1 

 Where K is an n x n matrix, but singular in nature, 

therefore it is called singular systems. It is also called “generalized 

state space systems” or “descriptor systems”. A is an n x n matrix, 

B is an n x r matrix, x(t) is an n-state vector, and u(t) is an r-input 

vector. 

 

 In some cases, the variables have some inherent 

meaning such as voltage, current, position, velocity, or 

acceleration. or, the coefficient matrices have some special 

structures that may be lost by manipulating a system of the form 

in (3) into an ordinary state-space system. 

 

                                                                      

By taking Ea = 1+ t +   +  

 

and    Jb = 1 + t + t2 in  (3)                                                     (4) 

 

we obtain the exact solutions of (3) as 

 

v1(t) = -  - exp     t 

 

           -  + exp      t 

            - 27t +  –  + 163 

 v2(t) =  -  - exp     t 

                                

              -  + exp     t                                (5) 

 

               - 26t  +2t2 + 164 
 

  i3(t) = - 93exp      t – 93exp       t 

 

              -14t + 2t2  + 106 

   i4(t) = - 93exp     t – 93exp     t 

 

 

                    -15t + t2  + 105 

     with 

      v1(0) v2(0) i3(0) i4(0) T  =    70  71  - 80  -81  T 

 

The discrete solution of (3) with  x(t) =  [v1(t) v2(t) i3(t) i4(t)]
T  are 

compared with the solutions obtained by Runge-Kutta method and 

Neural network method and are shown in tables 1 to 4 along with 

the exact solutions calculated using (5).                           

 

The errors in RK- method is represented by the graph 

for the  variables v1(t), v2(t), i3(t) and i4(t) in Figures 2 to 5 at 

various time intervals. In solving (3) the following system of 

nonlinear differential equation has occurred. 
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       i  = fi (t, v) for i = 1, 2             

       i  =  fi (t, I) for i  = 3, 4                                                  (6) 

 

 

 

In the following sections the above system will be 

solved by RK-method and Neural network approach respectively. 
 

Table 1. Solutions of (3) and (5) for v1(t) 

 

S.No 

Time  

t(s) 

 

v1(t) 

Exact 

solution 
RK- solution 

Neural 

network 

solution 

1 0.00 70.000000 70.000000 70.000000 

2 0.25 75.156776 75.156799 75.156776 

3 0.50 80.904671 80.904674 80.904671 

4 0.75 87.289886 87.289889 87.289886 

5 1.00 94.365692 94.365698 94.365692 

6 1.25 102.19320

7 

102.193215 102.193207 

7 1.50 110.84228

5 

110.842396 110.842285 

8 1.75 120.39250

2 

120.392517 120.392502 

9 2.00 130.93420

4 

130.934219 130.934204 
 

 

Table 2. Solutions of (3) and (5) for v2(t) 

 

S.No 

Time 

t(s) 

 

v2(t) 

Exact 

solution 
RK- solution 

Neural 

network 

solution 

1 0.00 71.000000 71.000000 71.000000 

2 0.25 76.443237 76.443240 76.443237 

3 0.50 82.571335 82.571338 82.571335 

4 0.75 89.461761 89.461764 89.461761 

5 1.00 97.199028 97.199034 97.199028 

6 1.25 105.87549

6 

105.875504 105.875496 

7 1.50 115.59228

5 

115.592296 115.592285 

8 1.75 126.46021

3 

126.460228 126.460213 

9 2.00 138.60086

1 

138.600876 138.600861 

 

 

 

Table 3. Solutions of (3) and (5) for i3(t) 

 
Table 4. Solutions of (3) and (5) for i4(t) 

 

S. 

No 

Time 

t(s) 

 

i4(t) 

Exact 

solution 
RK-solution 

Neural 

network 

solution 

1 0.00 -81.000000 -81.000000 -81.000000 

2 0.25 -91.060478 -91.060481 -91.060478 

3 0.50 -102.182671 -102.182674 -102.182671 

4 0.75 -114.473595 -114.473598 -114.473595 

5 1.00 -128.052383 -128.052389 -128.052383 

6 1.25 -143.051559 -143.051570 -143.051559 

7 1.50 -159.618408 -159.618419 -159.618423 

8 1.75 -177.916580 -177.916593 -177.916580 

9 2.00 -198.127686 -198.127701 -198.127701 

 

 
 

Figure 2. Error graph for v1(t) 

S.

No 

Time 

t(s) 

 

i3(t) 

Exact 

solution 
RK- solution 

Neural 

network 

solution 

1 0.00 -80.000000 -80.000000 -80.000000 

2 0.25 -89.747978 -89.747979 -89.747978 

3 0.50 -100.432671 -100.432674 -100.432671 

4 0.75 -112.161095 -112.161101 -112.161095 

5 1.00 -125.052383 -125.052391 -125.052383 

6 1.25 -139.239059 -139.239072 -139.239059 

7 1.50 -154.868408 -154.868422 -154.868423 

8 1.75 -172.104084 -172.104099 -172.104084 

9 2.00 -191.127686 -191.127701 -191.127701 
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Figure 3. Error graph for v2(t) 

 

 
 

Figure 4. Error graph for i3(t) 

 

 

Figure 5. Error graph for i4(t) 

3. RUNGE–KUTTA SOLUTION 

RK algorithms have always been considered as the best 

tool for the numerical integration of ordinary differential 

equations (ODEs). Since system (6) contains n2 first order ODEs 

with n2 variables, RK method is explained for a system of two 

first order ODEs with two variables. 

k11 (i + 1) = k11 (i) +   (k1 + 2k2 + 2k3 + k4), 

k12 (i + 1) = k12 (i) +   (l1 + 2l2 + 2l3 + l4), 

where 

k1 = h * 11 (k11, k12), 

l1  = h * 12 (k11, k12), 

k2 = h * 11 (k11 +  ,  k12 +  ),                                                                               

l2 = h * 12 (k11 +  ,  k12 +  ), 

k3 = h * 11 (k11 +  ,  k12 +  ), 

l3 = h * 12 (k11 +  ,  k12 +  ), 

k4 = h * 11 (k11 + k3, k12 + l3), 

l4 = h * 12 (k11 + k3, k12 + l3). 

In the similar way, the original system(6) can be solved. 

 

 

4. NEURAL NETWORK SOLUTION 

In this approach, new feedforward neural network is 

used to change the trail solution of Eq. (6) to the neural network 

solution of (6). The trial solution is expressed as the difference of 

two terms as below (see [19]). 

      ( i, j)a ( t) = Aij – tNij (t, wij).           (7) 

The first term satisfies the TCs and contains no adjustable 

parameters. The second term employs a feedforward neural 

network and parameters wij correspond to the weights of the 

neural architecture. 

Consider a multilayer perception with n input units, one 

hidden layer with n sigmoidal units and a linear output unit. The 

extension to the case of more than one hidden layer can be 

obtained accordingly.  
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For a given input vector, the output of the network is  

Nij = i) (zi) where zi = ij)tj  + ui , wij  denotes 

the weight from the input unit j to the hidden unit i, vi denotes the 

weight from the hidden unit i to the output, ui denotes the bias of 

the hidden unit i and (z) is the sigmoidal transfer function. 

 

The error quantity to be minimized is given by 

E = i, j)a  - ij (t, ( i, j)a))
2.     (8) 

The neural network is trained till the error function (8) becomes 

zero. Whenever E becomes zero, the trail solution (7) becomes the 

neural network solution of Eq.(6). 

 

4.1 Structure of the FFNN 

 The architecture consists of n input units, one hidden 

layer with n sigmodial units and a linear output. Each neuron 

produces its output by computing the inner product of its input 

and its appropriate weight vector. 

 

Fig. 6. Neural network architecture. 

During the training, the weights and biases of the 

network are iteratively adjusted by Nguyen and Widrow rule [33]. 

The neural network architecture is given in the Fig. 6 for 

computing Nij. The neural network algorithm was implemented in 

MATLAB on a PC, CPU 1.7 GHz for the neuro computing 

approach.  

Neural network algorithm 

Step 1. Feed the input vector tj. 

Step 2. Initialize randomized weight matrix wij and bias ui. 

Step 3. Compute zi = ijtj+ ui 

Step 4. Pass zi into n sigmoidal functions. 

Step 5. Initialize the weight vector vi from the hidden unit to 

output unit. 

Step 6. Calculate Nij = i (zi) 

Step 7. Compute purelin function (Nij). 

Step 8. Repeat the neural network training until the following 

error function 

E = i, j)a  - ij (t, ( i, j)a))
2  = 0.   

  

4.2 Study of Time-Varying Linear Electrical 

Circuit 

In this paper we applied Runge-kutta  method for the time–

invariant electrical circuit problem and the results are compared 

with Neural network algorithm for studying the time-varying 

electrical circuit, which is represented by a singular system.  

Consider the electrical circuit depicted in Fig. 1 in 

section III. The following hybrid equation is obtained. 

2   2   0   0        1         0     0   -1   0      v1            0    0 

0   0   2   2        2     =    -1    0    1   0       v2     +       -1   0    Ea 

  

0   0   0   0          i3         1    -1     0    0      i3            1     0      Jb   (10) 

 

0   0   0   0         i4        0   0     1   -1   i4             0    -1  
This is of the form 

K (t) = Ax(t) + Bu(t)      (11) 

In order to study the effectiveness of the time varying singular 

system in electrical circuits, a hypothetical system is formed by 

transforming the matrices K, A, and B, which are basically time 

independent in (10) with time-varying components.  

 

Hence, the singular system of the time-varying electrical circuit is 

of the form 

 

2   2    0    0        1         0    0    -1   0          v1            0   0 

0   0   2t   2t        2      =     0     0    t     0         v2   +    -t    0        t 

0   0    0    0         i3               1    -1     0   0         i3      t     0    cos(t)                           

0   0   0    0          i4            0    0     t   -t         i4      0   -t    (12) 

 

This is of the form  K(t) (t) = A(t)x(t) + B(t)u(t). 
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The exact solution of (11) is                    

v1 =     -t2  -  +      

           +  

 v2 = v1 + t2 

 i3 = (t + 4) +  [sin(t) + 4cos(t)] -    (13) 

  i4 = i3 – cos(t). 

with initial conditions 

  v1(0)  v2(0) v3(0) i4(0) T  =    1   1   1  0  T 

 

The discrete solutions of (12) have been determined 

using Neural network algorithm (with step-size h=0.25) in (3) and 

are compared with the exact solutions of (12) presented in (13) 

along with the solutions obtained by using the Runge-Kutta 

method. These results are presented in Tables 5 to 8. This Neural 

network algorithm yields more accurate results when compared to 

the Runge-Kutta method. Errors between the exact and discrete 

solutions are also given in Tables 5 to 8. To exhibit the efficiency 

of the discussed methods, an error graph is presented for the 

variables v1(t), v2(t), i3(t) and i4(t) in    Figures. 7 to 10 at various 

time intervals. From this, we can observe that the Neural networks 

algorithm gives more accurate results when compared to the 

Runge-Kutta method. 

Table 5. Solutions of (3) and (13) for v1(t) 

S.No 

Time 

t(s) 

 

Time varying v1(t) 

Exact 

solution 

RK- solution 

 

Neural 

network 

solution 

1 0.00 1.000000 1.000000 1.000000 

2 0.25 0.960697 0.960700 0.960697 

3 0.50 0.842521 0.842524 0.842521 

4 0.75 0.646642 0.646646 0.646642 

5 1.00 0.376276 0.376284 0.376276 

6 1.25 0.036505 0.036516 0.036505 

7 1.50 -0.366008 -0.366021 -0.366008 

8 1.75 -0.823387 -0.823400 -0.823387 

9 2.00 -1.326949 -1.326964 -1.326949 

 

 

 

Table 6. Solutions of (3) and (13) for v2(t) 

S.No Time Time varying v2(t) 

t(s) 

 

Exact 

solution 
RK-solution 

 

Neural 

network 

solution 

1 0.00 1.000000 1.000000 1.000000 

2 0.25 1.023197 1.023200 1.023197 

3 0.50 1.092521 1.092524 1.092521 

4 0.75 1.209142 1.209145 1.209142 

5 1.00 1.376276 1.376280 1.376276 

6 1.25 1.599005 1.599011 1.599005 

7 1.50 1.883992 1.884000 1.883992 

8 1.75 2.239113 2.239124 2.239113 

9 2.00 2.673051 2.673066 2.673051 

 

Table 7. Solutions of (3) and (13) for i3(t) 

S. No 

Time 

t(s) 

 

Time varying i3(t) 

Exact 

solution 

RK-solution 

 

Neural 

network 

solution 

1 0.00 1.000000 1.000000 1.000000 

2 0.25 1.040643 1.040643 1.040643 

3 0.50 1.036691 1.036694 1.036691 

4 0.75 0.988188 0.988191 0.988188 

5 1.00 0.896933 0.896936 0.896933 

6 1.25 0.766301 0.766308 0.766301 

7 1.50 0.600964 0.600975 0.600964 

8 1.75 0.406530 0.406543 0.406530 

9 2.00 0.189110 0.189125 0.189110 

 

Table 8. Solutions of (3) and (13) for i4(t) 

S.No 

Time  

t(s) 

 

Time varying i4(t) 

Exact 

solution 

RK-solution 

 

Neural 

network 

solution 

1 0.00 0.000000 0.000000 0.000000 

2 0.25 0.071731 0.071734 0.071731 

3 0.50 0.159109 0.159112 0.159109 

4 0.75 0.256500 0.256503 0.256500 

5 1.00 0.356631 0.356637 0.356631 

6 1.25 0.450978 0.450986 0.450978 

7 1.50 0.530227 0.530238 0.530227 

8 1.75 0.584776 0.584789 0.584776 

9 2.00 0.605257 0.605272 0.605257 
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Figure7. Error graph for v1(t)for time varying cases 

 

Figure8. Error graph for v2(t)for time varying cases 

 

Figure9. Error graph for i3(t)for time varying cases 

 
Figure10. Error graph for i4(t)for time varying cases 

 

5. CONCLUSION 

 The discrete solutions obtained using the Neural 

network algorithm gives more accurate values when compared to 

the RK-method. From tables 1 to 8, we observe that the solutions 

obtained by the Neural network match well with the exact 

solutions of the electrical circuit problem irrespective of whether 

they are time-invariant or time varying cases, but the  RK- method 

yields a little error. From the error graphs presented in Figures 2 

to 5 and 7 to 10, we can observe that the RK-method have errors 

in the solution. 
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