
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

10

A Security Model for Mobile Agent in Grid Environment

K.MuthuManickam

Senior Lecturer
Department of Computer Science and Engineering

Arunai Engineering College
Tiruvannamalai- 606 60, Tamilnadu, India

ABSTRACT
Grid is a system that coordinates resources that are not subject to
centralized control and provides environment for secure resource

sharing through geographically distributed networks. Grid system
lacks the autonomy and flexible behaviour. Mobile agents are
autonomous programs that live and roam in the distributed
environment, sense and act in the environment to achieve the goal.
We propose a communication model that integrates both Grid system
and Mobile Agent to perform parallel computations with secured
communication in a complete heterogeneous and distributed
environment. This framework is platform independent.

Categories and Subject Descriptors
[IBM's Aglets]: An aglet is a mobile agent. All aglets are derived
from an abstract class called Aglet. Aglets use an event driven
approach to mobile agents that is analogous to the Java library
Applet class. Each aglet implements a set of event handler methods
that define the aglets behaviour.

General Terms
Parallel computing, Distributed computing, Grid Computing, public
key encryption.

Keywords

Grid Architecture, Resource Management, Mobile Agent, Parallel
Virtual Machines.

1. INTRODUCTION

Both Grid system and mobile agent technology are common on
the way that they both are being explored in a distributed
environment. Both have their advantages and limitations when work
as community or group. As a community, Grid has limitations such
as Grid system can not anticipate and diagnose the changes to the

state. In the same way Agent system has also limitations such as
Agent framework does not provide support for secure interaction and
use many assumptions. So there is a need to integrate both
technologies to get true and full benefits of both technologies (Foster
et al., 2004, FIPA, 2001).

2. GRID SYSTEMS AND PRALLEL VIRTUAL

MACHINES

Grid computing is a kind of new technology which has been
known since 1990s. The idea is to provide computational resources

similarly to the way we get power supply. When you want power
supply, you may connect your devices to the power grid; when you
want computational resources, you may connect your device to the
computational grid. The actual motivation behind computational grid
was to solve complex scientific applications that require more
resources under a single administration.

A Grid does not rely on high speed networks and is more

available; they can be composed of computers spread around the
world, interconnected by Internet. A number of Grid systems have
been developed to monitor system changes to ensure the availability
of the resource in the heterogeneous environment. The most common
toolkit is Globus. This toolkit is more or less targeted towards the
Linux platform.

The Globus Toolkit is a very rich set of tools to establish a Grid

computing environment. It consists of information services, security,
data management, execution management, fault detection, portability,
communication, etc. The environment and the architecture of every
organization are different. The Globus Toolkit was conceived to
remove the obstacles that prevent seamless collaboration (Foster,
2006). Most of the Grid applications are implemented using Globus
Toolkit, with no modification simply by linking with a Grid-enabled

version of an appropriate programming library.

The concept of Grid has evolved from another similar paradigm

called PVM (Parallel Virtual Machine). The difference between Grid
and the PVM is that in Grid, the numbers of resources dynamically
join the virtual network, while the number of computational
resources in PVM is fixed (Mirza et al., 2003).

3. AGENT SYSTEMS

Mobile agents are also an emerging technology. A mobile agent is
a program that can migrate from one computer to another for remote
execution on behalf of a user on networks. The migrating agent is
capable to carryout and roams along with its characteristics;
execution state and program code and resume its execution on the
destination site on arrival. Most common benefits of mobile agents
are: reduce network load, overcome network latency, execute
asynchronously, adapt dynamically, robust and fault tolerance, and

heterogeneous (Danny. 1999).
The main problem in providing security to mobile agents is the

fact that the execution environment does not belong to the user who
has created the agent. As such after eh agent is launched, the user
does not have any control over the agent. A security solution is
therefore required which would guarantee the security of agents code
and its personal data.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

11

4. PROPOSED ARCHITECTURE

We propose a system where agent system will be explored on the
top Grid systems that will provide security, autonomy, dynamic
behaviour and robust infrastructure. The key features of the proposed
Agent based Grid Architecture are:

 Resuming of tasks (by using software agents) after a CPU

has returned back to its idle state. All the communication
and the execution of tasks are handled by software agents.

 Providing security to agents personal (confidential) data.

Support of task migration is provided by our architecture
due to the introduction of agents. It handles fault tolerance
by maintaining multiple copies of the task.

The architecture is actually a modification of Globus Toolkit

where agents are introduced. In this way we reduced the
communication overhead and provided support for task migration for

resource utilization. To avoid operating systems dependency we
selected Java as implementation tool. Java is feasible for both
perspectives:

 a) It is platform independence,
 b) Most of the agent frameworks are developed in Java. Our
recommendation is to use JAVA as the core programming
language for implementing the Agent Based Grid Computing

Framework.

Due to platform independence our modified framework enables

various platforms to integrate in forming a Grid Computing
environment.

4.1. Approach

We have recommended the use of Master-Slave design pattern for
the development of the Agent based Grid Computing Framework. In
our framework there is a single server and it is fixed. The server

actually manages the grid, whereas the nodes are dynamic. It is the
responsibility of the server to manage the entire grid. The master
agent has the logic for the distribution of processes into tasks and
recompilation of the results. This logic is provided by the user. The
tasks are then sent to nodes with idle CPU cycles in order to utilize
the free CPU cycles.

4.2. Programming Model

We propose a programming model that is a derivation of Master-

Slave pattern. Master class has all the controlling logic. It divides the
problem into small computable tasks which are called slaves. One
Master class, but one or more slave files can exist. During the
execution, the master thread will create slave threads, which will be
executing the slave code. These threads will be mapped to the Agents.
When a call to create a slave thread is made, a new task will be
created and assigned to any available agent, which will execute it.

It is assumed that the platform where the Agents execute the task
can eavesdrop on the agents data and communication hence
confidentiality is required for both. It is also assumed that the
platforms would not collude to compromise the data. An agent
platform may support multiple locations or meeting places where
agents can interact. Figure 1, which depicts the movement of an
agent among several agent platforms.

Fig. 1 Agent system Model

In conventional Client-Server systems the data is usually

encrypted with the data owner’s key to keep it confidential and when

the data is needed in communication it is .first decrypted and then
again encrypted using the public key of communication partner or the
session key used during the communication. In an agent environment
this is not an acceptable solution as the data is at one moment
unencrypted and accessible by the host (untrusted host on which the
agent resides). In our scheme, the data is first encrypted using the
encryption key of the agent. At the moment data must be exchanged
to another party, the data is again encrypted, but this time with the
encryption key of the communicating partner. A decryption process

then follows where the decryption key of the agent is used, such that
the overall result is encrypted data, which can only be deciphered by
the communicating party. This solution is referred as E-E-D. The
process is depicted in figure 2 below:

 Fig. 2 Confidentiality in agent communication.

A necessary condition for an encryption algorithm to

be used as E-E-D is:
DSK1 (EPK2 (EPK1 (M))) = EPK2 (M)

(1)
Where, PK1 and PK2 are the public keys of the agent and

communicating party respectively. SK1 and SK2 are their
corresponding private keys. It is assumed that there are more than
one secret keys generated by the agent corresponding to different
types of data. Initially the data to be encrypted is stored at the users

computer and in order to encrypt it, the user .first generates a key
pair for the agent depending on type of data. The user generates a
large random prime p and a generator α of the multiplicative group
Z* p of the integers modulo p. The user selects a random integer a1,
1<=a1<= p - 2, and computes :

Home

Platform

Home
Platform

Home

Platform

Home
Platform

Agent

Agent

Agent

Agent

Data

Epk1(data) Epk2(Epk1(data)

)

 Epk1(data)

Encryption Encryption Encryption

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

12

y1 = αa1 mod p
(2)

The agent’s public key is (p, α, y1) and its private key is a1.
The user encrypts the data (represented by parameter m) as follows.

He first selects a random integer k1, 1<=k1 <= p – 2 and computes:

γ1 = αk1 mod p; δ1 = my1 k1 mod p
(3)

The cipher text is c1 = (γ1, δ1). This is stored in the agent and can
be run on any platform at any host. At the moment that the agent
needs to give the personal data to another entity in the system, the
following process is started. The agent collects the communicating

partner’s (from here on called Bob) public key y2, which is formed
in the same way as the user’s public key (y2 = αa2 mod n). Bob’s
private key is a2. It must be noted here that in order to fulfill
equation (1), Bob must use the same generator and prime number for
generating its key pair as the user. The agent encrypts the cipher text
c1 using Bob’s public key y2, by the following computations:

γ2 = αk2 mod p; δ2 = δ1y2 k2 mod p

(4)
Where, k2, 1 <= k2 <= p - 2, is an integer chosen at random by

Bob. The second cipher text c2 is then formed by the pair (δ2, γ1). It
is now possible to decrypt it once using the agent’s private key:

m’=(γ1-a1) δ2 mod p = my2 k2 mod p

(5)
The result is an encryption of m based on PK2, e.g. y2. This is

sent to Bob, who can decrypt according to the normal AlGamal
decryption:

m= (γ2 -a2) m’ mod p
(6)

Decryption of m’ (6) should occur at different place than the one
where E-E-D operation took place as decryption of m’ results in the
plain text.

In order to adopt the above encryption scheme we propose a

model for communication which confirms to agent system model.

5. FRAMEWORK COMPONENTS

Following are the major components of the Architecture. Each

component will works as an agent.

a) Process Manager
The job of the process manager (agent) is to manage the user
process. It will maintain a data structure similar to the PCB.
Major responsibilities will include Process creation, Process
termination, Task creation, Task termination, Process and

Task Scheduling.
b) Resource Manager

This component (agent) will keep track of the agents available
on Grid: thier location and status. It will also cater the reqeust
for idle agent from task completed.

c) Process Allocator
The purpose of this component (agent) is to assign a task to an
agent. It will take a task from Process Manager and an agent
from Resource Manager, and then assign that agent the task.

After assignment it will send the agent for execution.
d) Agents Manager

Agent Manager (agent) will be responsible for creating and
destroying agents. It will also maintain an agent pool.

Fig. 3 Components of the Framework

e) Statistical Analyser

This component (agent) will interact with the other components
and collect the statistic from them. Statistical analyser will also be
responding to the queries regarding the statistics of the grid.

5.1 Application exploiting mobile agent

Matrix multiplication has been selected as a test case because it
falls in the category of distributed and parallel applications. Two
different approaches have been used to handle the problem. This
application was also tested on ACENET to prove its support to
distributed problem solving. It was Windows based agent platform
and does not support LINUX.

For Small Matrices:

• Master agent analyses the matrices and partitions 1 matrix st into

block of rows and 2nd into block of columns
• Master creates agents equal to the number of resultant matrix’s

cells and assign tasks to the agents
• Agents migrate to the idle nodes, or receives message, if

already there
• Perform calculations there

• Bring result to the Master agent
• Master agent places the result at specific location in the

resultant matrix

For Large Matrices:

• Master agent analyses the matrices
• Partitions 1st matrix into block of rows

• Master creates agents equal to the number of rows of the matrix
one

• Broadcast in full the second matrix to the agents
• Assign tasks to the agents
• Agents migrate to the idle nodes, or receives message, if

already there

• Each agent uses its block of the first matrix to multiply with the

whole of the second matrix

• Place result to the specific location in the resultant

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.2, May 2010

13

Fig. 4 Agents residing on hosts

Agents (Data agents) are residing on different hosts, which are
part of grid environment. Data Agent Manager will keep tracks of all
data agents.

5.2. Sample Application Exploiting IBM Aglets

We deployed Tahiti Server (implemented by IBM aglets) to

demonstrate the idea of using agents to divide and solve
computational problems. The following figures depict the creation of
Agents which is showing the division of the Matrix multiplication.

Fig. 5 Agents Creation on Tahiti server

Fig. 6 Retracting Agents on remote server

6. CONCLUSION

The key purpose of proposing this Agent based Grid architecture is

three fold:

a. To make the Grid computing environment more

efficient by exploiting software agents

b. To provide secured mobile agent communication

c. To exploit platform independence
In this paper we have proposed a cost-effective framework where
software agents and Grid systems are integrated and work in a
distributed and heterogeneous environment to solve parallel
computing. To test the functionality of the framework we proposed
an application of matrix multiplication. The main focus is on agents.
We have explicitly tried to provide data privacy to an agent. So that
the data possessed by the agents is secured at all times when it is

executing at any of the untrusted hosts.

7. REFERENCES

[1] Ian Foster (2002). What is the Grid? A Three Point Checklist

[2] Luis Ferreira, Viktors Berstis, Jonathan Armstrong, Mike
Kendzierski, Andreas Neukoetter, MasanobuTakagi, Richard
Bing-Wo, Adeeb Amir, Ryo Murakawa, Olegario Hernandez,
James Magowan and Norbert Bieberstein (2003). Introduction to

Grid Computing with Globus

[3] Danny B. Lange and Mitsuru Oshima(1998) Programming and
Deploying JAVA™ Mobile Agents with Aglets™

[4] Ian Foster and Carl Kesselman. Globus:A Metacomputing
Infrastructure Toolkit

[5] Ali Ghulam, Shaikh Zubair Ahmed, and Shaikh Noor Ahmed,
2009. “The Design and Implementation of an Agent Framework
to Support Distributed Problem Solving”, published as
proceedings European Computing Conference, Greece,
September 2007, later published as Chapter (Mulyi-agent

Systems) in Springer Verlag, 347-354.

[6] Czajkowski, K., I. Foster, N. Karonis and S. Tuecke, 1998. “A
Resource Management Architecture for Meta computing
Systems”, Proceedings of the 4 International Workshop on Job
Scheduling Strategies for Parallel Processing, Orlando, Florida,
USA.

[7] Foster, I., 2006. “Globus Toolkit Version 4: Software for
Service-Oriented Systems” IFIP International Conference on
Network and Parallel Computing, Springer-Verlag LNCS 3779:
2-13.

[8] Karnik, N.M., A.R. Tripathi, 1998. “Design issues in mobile

agent programming systems”, IEEE Parallel & Distributed
Technology, 6(3): 52-61.

[9] Mobile Agent Security, National Institute of Standards and
Technology, Special Publication 800-19, August 1999.Wayne
Jansen and Tom Karygiannis.
http://csrc.nist.gov/publications/nistpubs/800-19/sp800- 19.pdf

[10] Count
ermeasures for Mobile Agent Security, Computer
Communications, Special Issue on Advanced Security

[11] Techn
iques for Network Protection, Elsevier Science BV November

2000. Wayne Jansen.
http://csrc.nist.gov/groups/SNS/mobile_security/documents
/mobile_agents/ppcounterMeas.pdf

[12] T.
ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–72, 1985.

Host1

Agent1

Host2

Agent2

Host3

Agent4

Host4

Agent5

Agent7

Host5

Agent3

Agent6

Management
Server

Data Agent
manager

http://csrc.nist.gov/publications/nistpubs/800-19/sp800-%2019.pdf
http://csrc.nist.gov/groups/SNS/mobile_security/documents%20/mobile_agents/ppcounterMeas.pdf
http://csrc.nist.gov/groups/SNS/mobile_security/documents%20/mobile_agents/ppcounterMeas.pdf

