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ABSTRACT 

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the 

elliptic curve analogue of the Digital Signature Algorithm 

(DSA). It was accepted in 1999 as an ANSI standard, and was 

accepted in 2000 as IEEE and NIST standards. It was also 

accepted in 1998 as an ISO standard, and is under consideration 

for inclusion in some other ISO standards. Unlike the ordinary 

discrete logarithm problem and the integer factorization problem, 

no sub exponential-time algorithm is known for the elliptic curve 

discrete logarithm problem. For this reason, the strength-per-key-

bit is substantially greater in an algorithm that uses elliptic 

curves. This paper describes the implementation of ANSI X9.62 

ECDSA over elliptic curve P-192, and discusses related security 

issues. 

Categories and Subject Descriptors 

D.4.6 [Operating Systems]: Security and Protection –access 

controls, authentication cryptographic control; E.3 [Data]: Data 

Encryption –Public key cryptosystem, standards. 

General Terms  
Algorithms, Security. 

Keywords 

integer factorization, discrete logarithm problem, elliptic curve 

cryptography, DSA, ECDSA. 

1. INTRODUCTION 

Cryptography is the branch of cryptology dealing with the design 

of algorithms for encryption and decryption, intended to ensure 

the secrecy and/or authenticity of message. The DSA was 

proposed in August 1991 by the U.S. National Institute of 

Standards and Technology (NIST) and was specified in a U.S. 

Government Federal Information Processing Standard (FIPS 186) 

called the Digital Signature Standard (DSS). Its security is based 

on the computational intractability of the discrete logarithm 

problem (DLP) in prime-order subgroups of Zp
*. Digital signature 

schemes are designed to provide the digital counterpart to 

handwritten signatures (and more). Ideally, a digital signature 

scheme should be existentially non-forgeable under chosen-

message attack. The ECDSA have a smaller key size, which 

leads to faster computation time and reduction in processing 

power, storage space and bandwidth. This makes the ECDSA 

ideal for constrained devices such as pagers, cellular phones and 

smart cards. 

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the 

elliptic curve analogue of the DSA. ECDSA was first proposed in 

1992 by Scott Vanstone [1] in response to NIST’s (National 

Institute of Standards and Technology) request for public 

comments on their first proposal for DSS. It was accepted in 

1998 as an ISO (International Standards Organization) standard 

(ISO 14888-3), accepted in 1999 as an ANSI (American National 

Standards Institute) standard (ANSI X9.62), and accepted in 

2000 as an IEEE (Institute of Electrical and Electronics 

Engineers) standard (IEEE 1363-2000) and a FIPS standard 

(FIPS 186-2) 

Digital signature schemes can be used to provide the following 

basic cryptographic services:  

 data integrity (the assurance that data has not been 

altered by unauthorized or unknown means) 

 data origin authentication (the assurance that the source 

of data is as claimed) 

 non-repudiation (the assurance that an entity cannot deny 

previous actions or commitments) 

In this paper, first we start with the cryptography schemes based 

on integer factorization (IF) and discrete logarithm (DL) in 

section 2. In section 3, we discuss ECC in detail. In section 4, we 

show the implementation and results. Further in section 5 and 6 

we compare and conclude respectively. 

2. CRYPTOGRAPHIC SCHEMES 

2.1 Integer Factorization 
In Integer factorization, given an integer n which is the product of 

two large primes p and q such that: 

n = p * q                                                                                 (1) 

It is easy to calculate n for given p and q but it is computationally 

infeasible to determine p and q given n for large values of n.  

One of the famous algorithms is RSA.  The RSA Algorithm is 

shown below: 

1. Choose two large prime numbers, p and q (1024 bits) 

2. Compute n = p * q and z = (p-1) * (q-1). 

3. Choose a number, e, less than n, which has no common 

factors (other than 1) with z. 
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4. Find a number, d, such that e * d -1 is exactly divisible 

(i.e., with no remainder) by z. 

The public key is the pair of numbers (n, e), private key is the 

pair of numbers (n, d). 

The encryption is done as follows: 

c = me mod n                         

(2) 

To decrypt the received cipher text message, c 

m = cd mod n                        (3) 

which requires the use of the private key, (n, d). 

Its security depends on the difficulty of factoring the large prime 

numbers.  The best known method for solving Integer 

Factorization problem is Number Field Sieve which is a sub-

exponential algorithm and having a running time of 

exp[1.923*(log n)1/3*(log log n)2/3] [2]. 

2.2 Discrete Logarithm 
Discrete logarithms are ordinary logarithms involving group 

theory.  An ordinary logarithm loga(b) is a solution of the 

equation ax = b over the real or complex numbers. Similarly, if g 

and h are elements of a finite cyclic group G then a solution x of 

the equation gx = h is called a discrete logarithm to the base g of 

h in the group G, i.e. logg(h). A group with an operation * is 

defined on pairs of elements of G.  The operations satisfy the 

following properties: 

1. Closure: a * b ε G for all a, b ε G. 

2. Associativity: a * (b * c) =  (a * b) * c for all a, b ε G. 

3. Existence of Identity: There exists an element e  ε G, 

called the identity, such that e * a =  a * e = a for all a ε G. 

4. Existence of inverse: For each a ε G there is an element b 

ε G such that   a * b =  b * a  =  e.  The element b is called 

the inverse of a. 

Moreover, a group G is said to be abelian if a * b  =  b * a for all 

a, b ε G.  The order of a group G is the number of elements in G. 

The discrete logarithm problem is to find an integer x, 0 ≤ x ≤ n-

1, such that gx ≡ h (mod p), for given g ε Z*p of order n and 

given h ε Z*p.  The integer x is called the discrete logarithm of h 

to the base g.  

Digital Signature Algorithm (DSA), Diffie Hellman (DH) and El 

Gamal  are based on discrete logarithms.   

The best known method for solving Discrete Logarithm problem 

is Number Field Sieve which is a sub-exponential algorithm, 

having a running time of exp[1.923*(log n)1/3*(log log n)2/3] [2]. 

2.2.1 Comparison with Integer Factorization 
While the problem of computing discrete logarithms and the 

problem of integer factorization are distinct problems they share 

some properties: 

 both problems are difficult (no efficient algorithms are 

known for non-quantum computers), 

 for both problems efficient algorithms on quantum 

computers are known, 

 algorithms from one problem are often adapted to the 

other, and 

 difficulty of both problems has been exploited to 

construct various cryptographic systems. 

2.2.2 Elliptic Curve Discrete Logarithm 
An elliptic curve Ek, [3] defined over a field K of characteristic ≠   

2 or 3 is the set of solutions (x, y) ε K' to the equation 

y2 = x3 + ax + b                          (4) 

a, b  ε K (where the cubic on the right has no multiple roots). 

Two nonnegative integers, a and b, less than p that satisfy: 

4a3 + 27b2 (mod p) ≠0                               (5) 

Then Ep (a, b) denotes the elliptic group mod p whose elements 

(x, y) are pairs of nonnegative integers less than p satisfying: 

y2 ≡ x3 + ax + b (mod p)                              (6) 

together with the point at infinity O. 

The elliptic curve discrete logarithm problem can be stated as 

follows.  Fix a prime p and an elliptic curve. 

Q= xP                           

(7) 

where xP represents the point P on elliptic curve added to itself x 

times. Then the elliptic curve discrete logarithm problem is to 

determine x given P and Q.  It is relatively easy to calculate Q 

given x and P, but it is very hard to determine x given Q and P. 

ECC is based on ECDLP.  ECDH and ECDSA are cryptographic 

schemes based on ECC.  The best known algorithm for solving 

ECDLP is Pollard-Rho algorithm which is fully exponential 

having a running time of √(∏*n /2)  [2]. 

3. ELLIPTIC CURVE CRYPTOGRAPHY 

Elliptic curve cryptosystems (ECC) were invented by Neal 

Koblitz [3] and Victor Miller [4] in 1985. They can be viewed as 

elliptic curve analogues of the older discrete logarithm (DL) 

cryptosystems in which the subgroup of Zp
* is replaced by the 

group of points on an elliptic curve over a finite field. The 

mathematical basis for the security of elliptic curve 

cryptosystems is the computational intractability of the elliptic 

curve discrete logarithm problem (ECDLP) [5]. 

ECC is a relative of discrete logarithm cryptography.  An elliptic 

curve E over Zp as in Figure 1 is defined in the Cartesian 

coordinate system by an equation of the form: 

y2 = x3 + ax + b                                                                      (8) 

where a, b ε Zp, and 4a3 + 27b2≠0 (mod p), together with a 

special point O, called the point at infinity.  The set E(Zp) 

consists of all points (x, y), x ε Zp, y ε Zp, which satisfy the 

defining equation, together with O. 

Each value of a and b gives a different elliptic curve.  The public 

key is a point on the curve and the private key is a random 

number.  The public key is obtained by multiplying the private 

key with a generator point G in the curve. 
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The definition of groups and finite fields, which are fundamental 

for the construction of elliptic curve cryptosystem are discussed 

in next subsections. 

 

Figure 1. An Elliptic Curve 

3.1 Groups 

A group with an operation * is defined on pairs of elements of G.  

The operations satisfy the following properties: 

 Closure: a * b ε G for all a, b ε G. 

 Associativity: a * (b * c) =  (a * b) * c for all a, b ε G. 

 Existence of Identity: There exists an element e ε G, 

called the identity, such that e * a =  a * e = a for all a ε G. 

 Existence of inverse: For each a ε G there is an element b 

ε G such that   a * b =  b * a  =  e.  The element b is called 

the inverse of a. 

Moreover, a group G is said to be abelian if a * b  =  b * a for all 

a, b ε G.  The order of a group G is the number of elements in G. 

3.2 Finite Field 

A finite field consists of a finite set of elements together with 

two binary operations called addition and multiplication, which 

satisfy certain arithmetic properties. The order of a finite field is 

the number of elements in the field. There exists a finite field of 

order q if and only if q is a prime power. If q is a prime power, 

then there is essentially only one finite field of order q; this field 

is denoted by Fq. There are, however, many ways of representing 

the elements of Fq. Some representations may lead to more 

efficient implementations of the field arithmetic in hardware or 

in software. If q=pm where p is a prime and m is a positive 

integer, then p is called the characteristic of Fq and m is called 

the extension degree of Fq.. 

3.2.1 Prime Field Fp 

Let p be a prime number. The finite field Fp called a prime field, 

is comprised of the set of integers {0,1,2,….,p-1}  with the 

following arithmetic operations: 

 Addition: If a, b ε Fp then a+b=r,  where r is  the 

remainder when a+b is divided by p and 0 ≤ r ≤ p-1 known 

as addition modulo p. 

 Multiplication: If a, b ε Fp then a.b=s,  where s is  the 

remainder when a.b is divided by p and 0 ≤ s ≤ p-1 known 

as multiplication modulo p 

 Inversion: If  is a non-zero element in Fp, the inverse of 

 modulo a modulo p_, denoted by a-1, is the  unique integer 

c ε Fp  for which a.c=1 

3.2.2 Binary Field F2
m 

The field F2
m, called a characteristic two finite field or a binary 

finite field, can be viewed as a vector space of dimension m  over 

the field F2 which consists of the two elements 0 and1. That is, 

there exist m elements α0, α1,…, αm-1 in F2
m such that each 

element α can be uniquely written in the form: 

α= a0 α0+a1 α1+……….+am-1 αm-1, where ai ε{0,1} 

Such a set {α0, α1,…, αm-1}  is called a basis of F2
m over F2.  

Given such a basis, a field element α can be represented as the 

bit string (a0 a1 ……….+am-1) Addition of field elements is 

performed by bitwise XOR-ing the vector representations. The 

multiplication rule depends on the basis selected. ANSI X9.62 

permits two kinds of bases: polynomial bases and normal bases. 

3.2.3 Domain Parameters 

The domain parameters for ECDSA consist of a suitably chosen 

elliptic curve E defined over a finite field Fq of characteristic p, 

and a base point G ε E(Fq). Domain parameters may either be 

shared by a group of entities, or specific to a single user. To 

summarize, domain parameters are comprised of: 

1. a field size q, where either q=p, an odd prime, or q=2m 

2. an indication FR (field representation) of the representation 

used for the elements of Fq 

3. (optional) a bit string seedE of length at least 160 bits 

4. 4. two field elements a and b in Fq which define the 

equation of the elliptic curve E over Fq' (i.e., y2 = x3 + ax + b 

in the case p>3, and y2 + xy = x3 + ax + b in the case p=2) 

5. two field elements xG and yG in Fq which define a finite 

point G=(xG, yG) of prime order in E(Fq) 

6. the order εof the point G,  with n>2160 and n>4√q and 

7. the cofactor h= #E(Fq)/n 

3.3 Elliptic Curves Operations over Finite 

Fields [6] 

The main operation is Point multiplication is achieved by two 

basic elliptic curve operations.  

1. Point addition, adding two points J and K to obtain another 

point L i.e. L= J + K, require 1 inversion and 3 multiplication 

operation. 

2. Point doubling, adding a point J to itself to obtain another 

point L i.e. L = 2J, requires 1 inversion and 4 multiplication 

operation. 

3.3.1 Point Addition 

Point addition is the addition of two points J and K on an elliptic 

curve to obtain another point L on the same elliptic curve. 

Consider two points J and K on an elliptic curve as shown in 

Figure 2. If K≠ -J then a line drawn through the points J and K 

will intersect the elliptic curve at exactly one more point –L.  

The reflection of the point –L with respect to x-axis gives the 
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point L, which is the result of addition of points J and K.  Thus 

on an elliptic curve L = J + K.  If K = -J the line through this 

point intersect at a point at infinity O. Hence J + (-J) = O.  A 

negative of a point is the reflection of that point with respect to 

x-axis [7].   

 

Figure 2. Point Addition 

3.3.2 Point doubling 

Point doubling is the addition of a point J on the elliptic curve to 

itself to obtain another point L on the same elliptic curve To 

double a point J to get L, i.e. to find L = 2J, consider a point J on 

an elliptic curve as shown in Figure 3.  If y coordinate of the 

point J is not zero then the tangent line at J will intersect the 

elliptic curve at exactly one more point –L.  The reflection of the 

point –L with respect to x-axis gives the point L, which is the 

result of doubling the point J, i.e., L = 2J.  If y coordinate of the 

point J is zero then the tangent at this point intersects at a point 

at infinity O.  Hence 2J = O when yj=0.  Figure 3 shows point 

doubling [7]. 

 

Figure 3. Point Doubling 

3.3.3 Algebraic Formulae Over Fp 

 P+O=O+P=P for all P ε E(Fp) 

 If P=(x, y) ε E(Fp)  then (x, y)+(x,-y)=O. (The point (x,-y) is 

denoted by –P,  and is called the negative of P,  observe that 

–P is indeed a point on the curve. 

 Point addition Let P=(x1, y1) ε E(Fp) and Q=(x2, y2) ε E(Fp) , 

where P≠ ± Q. Then P+Q=(x3, y3)  where  

x3= {(y2-y1)/(x2-x1)}
2 – x1-x2  and  y3= {(y2-y1)/(x2-x1)}(x1-

x3) –y1   

 Point doubling Let P=(x1, y1) ε E(Fp) where P≠ -P. Then 

2P=(x3, y3) where  

x3={(3x1
2+a)/2y1}

2-2x1   and y3={(3x1
2+a)/2y1}

2 (x1-x3) –y1   

 

3.3.4 Algebraic Formulae Over F2
m
 

 P+O=O+P=P for all P ε E(F2
m) 

 If P=(x, y) ε E(Fp)  then (x, y)+(x, -y)=O. (The point (x, -y) 

is denoted by –P,  and is called the negative of P,  observe 

that –P is indeed a point on the curve. 

 (Point addition) Let P=(x1, y1) ε E(F2
m) and Q=(x2, y2) ε 

E(F2
m) , where P≠ ± Q. Then P+Q=(x3,y3)  where  

x3= {(y2+y1)/(x2+x1)}
2 + {(y2+y1)/(x2+x1)}+ x1 + x2 +a 

and  y3= {(y2+y1)/(x2+x1)}(x1+x3) +x3 + y1   

 (Point doubling) Let P=(x1,y1) ε E(F2
m) where P≠ -P. Then 

2P=(x3,y3) 

where x3=x1
2+(b/ x1

2)   and y3=x1
2+{x1+(y1/x1)}x3 + x3 

4. IMPLEMENTAION AND RESULTS 

Elliptic Curve Digital Signature Algorithm is implemented over 

elliptic curve P-192 as mandated by ANSI X9.62 in C language.  

The Project contains necessary modules for domain parameters 

generation, key generation, signature generation, and signature 

verification over the elliptic curve.  

ECDSA has three phases, key generation, signature generation, 

and signature verification. 

ECDSA Key Generation: 

An entity A’s key pair is associated with a particular set of EC 

domain parameters D= (q, FR, a, b, G, n, h). E is an elliptic 

curve defined over Fq , and P is a point of prime order n in E(Fq),  

q is a prime.  Each entity A does the following: 

1. Select a random integer d in the interval [1,  n- 1]. 

2. Compute Q = dP. 

3. A’s public key is Q, A’s private key is d. 

ECDSA Signature Generation:.  

To sign a message m, an entity A with domain parameters D= (q, 

FR, a, b, G, n, h) does the following: 

1. Select a random or pseudorandom integer k in the interval [1, 

n-1]. 

2. Compute kP =x1, y1 and r= x1 mod n (where x1 is regarded as 

an integer between 0 and q-1). If r= 0 then go back to step 1. 

3. Compute k-1mod n. 

4. Compute s= k-1 {h (m)+ dr} mod n, where h is the Secure 

Hash Algorithm (SHA-1). If s = 0, then go back to step 1. 

5. The signature for the message m is the pair of integers (r, s). 
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ECDSA Signature Verification:  

To verify A’s signature (r, s) on m, B obtains an authenticated 

copy of A’s domain parameters D = (q, FR, a, b, G, n, h) and 

public key Q and do the following 

1. Verify that r and s are integers in the interval [1, n-1]. 

2. Compute w = s-1mod n and h (m) 

3. Compute u1 = h(m)w mod n and u2 = rw mod n. 

4. Compute u1P + u2Q =(x0, y0) and v= x0 mod n. 

5. Accept the signature if and only if v = r 

 

Figure 4. Signature Generation 

 

 

 

Figure 5. Signature Verification 

 

Results 

The following results are brought to highlight for given set of 

values. 

The SHA-1 result are shown along with the private and public 

set of keys 

SHA–1  

Input: “a” 

SHA Output:  86f7e437faa5a7fce15d1ddcb9eaeaea377667b8 

 

Input: “ABC” 

SHA Output: 3c01bdbb26f358bab27f267924aa2c9a03fcfdb8 

Key Pair Generation: 

198 bit random private key and corresponding public key: 

 

Private A= 

3410708343957475413710496549104959138812316708511486831983

98465 
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Public x of A= 

3089182225850909019933101519334356466906901301271156815371            

Public y of A= 

2934312592567055080539106109257350191706192298057173813254  

Private A= 

9784754507269478441147399409938745992633565457803056150961

4891         

Public x of A= 

5794350039132556514670158969918976743409250716115312636030            

Public y of A= 

1009024622477364832125741509919741456473929964192222324391            

    

Further for a given input file containing text had been taken and 

signature is generated and then verified by the values of r and s. 

 

Signature Generation: 

Input file="abcd" 

Private:0xd43fb7ff56a7486859d87f785db45b043129f6468ccff4

2d0001                   

Signature: 

r=0xb8d06fa44816c92b8b26f797e5f3cc07984d8b7f7e49a339                             

s=0xd74f17a1e19139d77558c6b2d16dcb1f4bb31da2ded25733   

                                          

Proof of verification 

If a signature (r, s) on a message m was indeed generated by A, 

then s = k -1 (h (m)+dr) mod n. Rearranging gives k ≡ s-1 (e+dr) ≡ 

s-1e + s-1 rd ≡we +wrd ≡ u1+u2d (mod n). 

Thus u1G +u2Q = (u1 +u2d) G = kG and so v=r as required. 

 

5. COMPARISON WITH RSA and DSA 

In all cryptography systems discussed so far, there is a 

comparative difficulty of doing two types of operations-a forward 

operation which must be tractable [8], and an inverse operation 

which must be intractable.  The degree of difference between the 

difficulties of these operations depends on the size of the key 

pairs.  The inverse operation increases exponentially whereas the 

forward operation increases linearly as the key size increases as 

in Figure 6.  Increase in key length give rise to complexity issues 

in both operations.  Thus ECC is preferred as it provides same 

level security at 160 bit key length as of 1024 bit key length in 

RSA. 

 

 

Figure 6. Difficulty of forward, inverse operation against key 

length 

 

Table 5.1 shows the comparison of ECC with RSA, DSA, and 

DH in terms of key length and time to break on machine running 

1 MIPS [9]. 

 

Table 1 Key comparison of Symmetric, RSA/DSA/DH, ECC 

Symmetric  RSA/DSA/DH ECC Time to break in MIPS 

years 

80 1024 160 10
12

 

112 2048 224 10
24

 

128 3072 256 10
28

 

192 7680 384 10
47

 

256 15360 512 10
66

 

 

5.1 Comparison of ECC with RSA  

1. RSA takes sub-exponential time and ECC takes full 

exponential time. For example, RSA with key size of 1024 

bits takes 3x1011 MIP years with best known attack where 

as ECC with 160 bit key size takes 9.6x 10^11 MIP 

years[10]. 

2. ECC offers same level of security with smaller key sizes. 

3. DATA size for RSA is smaller than ECC.  

4. Encrypted message is a function of key size and data size for 

both RSA and ECC. ECC key size is relatively smaller than 

RSA key size, thus encrypted message in ECC is smaller.  

5. Computational power is smaller for ECC. 

5.2 Comparison of ECDSA with DSA  

1. Both algorithms are based on the ElGamal signature scheme 

and use the same signing equation: s = k-1{h (m) + dr} mod 

n. 

2. In both algorithms, the values that are relatively difficult to 

generate are the system parameters(p, q and g for the DSA; 

E, P and n for the ECDSA). 
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3. In their current version, both DSA and ECDSA use the 

SHA-1 as the sole cryptographic hash function. 

4. The private key d and the per-signature value k in ECDSA 

are defined to be statistically unique and unpredictable 

rather than merely random as in DSA [11]. 

5.3 Advantages of ECC 

Thus, the ECC offered remarkable advantages over other     

cryptographic system.   

1. It provides greater security for a given key size. 

2. It provides effective and compact implementations for 

cryptographic operations requiring smaller chips. 

3. Due to smaller chips less heat generation and less power 

consumption. 

4. It is mostly suitable for machines having low bandwidth, 

low computing power, less memory. 

5. It has easier hardware implementations. 

So far no drawback of ECC had been reported. 

6. CONCLUSION 

Elliptic Curve Digital Signature Algorithm (ECDSA) which is 

one of the variants of Elliptic Curve Cryptography (ECC) 

proposed as an alternative to established public key systems such 

as Digital Signature Algorithm (DSA) and Rivest Shamir 

Adleman (RSA), have recently gained a lot of attention in 

industry and academia. 

The main reason for the attractiveness of ECDSA is the fact that 

there is no sub exponential algorithm known to solve the elliptic 

curve discrete logarithm problem on a properly chosen elliptic 

curve. Hence, it takes full exponential time to solve while the 

best algorithm known for solving the underlying integer 

factorization for RSA and discrete logarithm problem in DSA 

both take sub exponential time. The key generated by the 

implementation is highly secured and it consumes lesser 

bandwidth because of small key size used by the elliptic curves. 

Significantly smaller parameters can be used in ECDSA than in 

other competitive systems such as RSA and DSA but with 

equivalent levels of security. 

Some benefits of having smaller key size include faster 

computation time and reduction in processing power, storage 

space and bandwidth. This makes ECDSA ideal for constrained 

environments such as pagers, PDAs, cellular phones and smart 

cards. These advantages are especially important in other 

environments where processing power, storage space, bandwidth, 

or power consumption are lacking. 
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