
International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

40 

 

Performance Evaluation of some Online Association Rule 
Mining Algorithms for sorted and unsorted Data sets 

Pramod S. 
Reader, Information Technology, 

M.P.Christian College of Engineering,  
Bhilai,C.G. INDIA. 

       

 
  

O.P.Vyas, 
Professor, IIIT-Allahabad, 

U.P. INDIA. 

ABSTRACT 

The association rules and its usage put forwarded lots of hopes in 

the field of data mining. The researchers in the field are going 
after the association rule mining techniques to find fastest as well 
as more precise association rules so that it will indirectly increase 
the profit of the company if we take it as an example. Here in this 
paper our effort is to do the performance evaluation of some of the 
existing association rule mining algorithms. Now a day’s, online 
association rule mining is getting its importance due to the 
popularity of internet as well as the changing behavior of the 

customer to depend internet for almost everything. The time 
required for generating frequent itemsets plays an important role. 
Some algorithms are designed, considering only the time factor. 
The implementations has been tested as by used the dataset from 
Freequent Itemset Mining(FIM) Dataset repository. The work 
yields a detailed analysis with deep understanding of the 
algorithms to elucidate the performance with standard datasets. 
The performance evaluation includes aspects like different 
support value, size of transaction and different datasets. 

 
Keywords- Data Mining, Frequent Itemset, Online Data Mining. 

1. INTRODUCTION 
The mining for association rules is a form of data mining 
introduced in [1]. The two basic parameters of Association Rule 

Mining (ARM) are: support and confidence. Support(s) of an 
association rule is defined as the percentage/fraction of records 
that contain XUY to the total number of records in the database. 
The count for each item is increased by one every time the item is 
encountered in different transaction T in database D during the 
scanning process. It means the support count does not take the 
quantity of the item into account. For example in a transaction, a 
customer buys three bottles of beers but we only increase the 

support count number of {beer} by one, in another word if a 
transaction contains a item then the supportcount of this item is 
increased by one. Support(s) is calculated by the following 
formula: 

Support(XY ) = (Support count of XY)\(Total number of 
transaction in D). 
 
Confidence of an association rule is defined as the 

percentage/fraction of the number of transactions that contain 
XUY to the total number of records that contain X, where if the 
percentage exceeds the threshold of confidence an interesting 
association rule X=>Y can be generated. Confidence(X,Y ) = 
(Support(XY )) \ (Support(X)). 

2. REVIEW OF ONLINE ASSOCIATION 

RULE MINING ALGORITHM 

2.1 Continuous Association Rule Mining 

Algorithm 
This is a two scan algorithm[2] and during the first scan, the 
algorithm continuously constructs the lattice of all potentially 
large itemsets. After each transaction, it inserts and/or removes 

some itemsets from the lattice. During the second scan the 
algorithm find out the precise support of each set in the lattice and 
continuously removes all small itemsets. Merging of two phases( 
Phase - I with Phase – II) will give the Continuous Association 
Rule Mining Algorithm(CARMA). 

 

2.1.1.PHASE-I Algorithm 

2.1.1.1Support Lattice & Support Sequence 
An itemset v in a transaction sequence denoted support i (v) as the 
support of v in the first i transactions. The lattice of itemsets are 
taken as V such that v we have the three associated integers are 
count(v), firstTrans(v) and maxMissed(v). A support lattice is a 
superset of all large itemsets in the first i transactions with respect 
to the support threshold s. 

An arbitrary support threshold can be specified by the user for 
each transaction processed. We get a sequence of support 

thresholds σ = (σ1, σ2,…) where σi denotes the support threshold 
for the i-th transaction. This is called as support sequence. For a 
support sequence σ and an integer i, denoted by ⌈σ⌉i the least 

monotone decreasing sequence which is up to i point wise greater 
or equal to σ and 0 otherwise. The ⌈ σ ⌉i is the ceiling of σ by 

avgi(σ) and denoting the running average of  σ up to i, i.e. avgi (σ) 

. 

 

The phaseI will constructs the supersets of all large itemsets and 
maintain a support lattice V while scanning the transaction 

sequence. At the beginning of the algorithm it  initialize V to 
P{Ø} and set count(∅)=0, firstTrans(∅)=0 and 
maxMissed(∅)=0. Suppose V is a support lattice up to transaction 

i -1, read the i-th transaction ti and to transform V into a support 

lattice up to i. Let  be the current user-specified support 
threshold and the lattice can be maintained as given below:  

a) Increment:Increment the count(v) for all itemsets v∈V that are 

contained in ti maintaining the correctness of all integers stored in 
V . 

b) Insert:  Insert a subset v of t i in V if and only if all subsets w of 
v are already there in V and are potentially large. i.e. 

maxSupport(w) > σi. It is based on set of all large itemsets are 
closed under subsets. This condition also limits the growth of V, 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

41 

 

due to the reason that, only minimal supersets of sets in V are 
added. Thus, the maximal cardinality of all sets in V increases at 
most by 1 per transaction processed. Inserting v in V, set 
firstTrans(v) = i and count(v) = 1, since v is contained in the 
current transaction ti. Since supporti(w) >supporti(v) for all 

subsets w of v and w⊂ti we get maxMissed(v) < maxMissed(w) + 
count(w) - 1. 

maxMissed(v) defined as 
min { max{⌊(i-1)avgi-1(⌈ σ ⌉i-1 ) ⌋, |v|-1 }, 

max Missed(ω⊂ v}         (1) 

In particular we get maxMissed(v) <= i-1,since the empty set is a 

subset of v, Ø is an element of V and the count of Ø equals  i, the 
current transaction index. 
3) Prune: required only small itemsets, i.e. maxSupport(v) < σi, 
are removed from V and if a set is removed then all its supersets 
are removed as well. 

2.1.2PHASE - II Algorithm 
Let V be the computed support lattice by by PhaseI. PhaseII uses 
the last user-specified support threshold σn as pruning threshold.  
At first, PhaseII removes all trivially small itemsets. That is 
itemsets with maxSupport < σn, from V. 

 PhaseII increments count and decrements maxMissed as by 
scanning the transaction sequence for each itemset contained in 
the current transaction, up to the transaction at which the itemset 
was inserted. Setting maxMissed(v) = 0 for an itemset v may lead 
maxSupport(w) > maxSupport(v) for some superset w of v. Thus 

we set maxMissed(w) = count(v)-count(w) for all supersets w of v 
with maxSupport(w) > maxSupport(v). PhaseII stops as soon as 
the current transaction index is past firstTrans for all itemsets in 
the lattice. The resulting lattice contains all large itemsets along 
with the precise support for each itemset. 

 

2.1.2.1Forward Pruning 
We extend the preliminary PhaseII algorithm described above by 
a forward pruning" technique, which allows us to remove some 
small singleton set v and all its descendants from V, before we 
reach firstTrans(v) even if  maxSupport(v)>σn. The general idea 
is the following: The insertion of v in V is guaranteed to take 
place, since its only subset is the emptyset which always has 
support 1. By an induction on ft-i we get that if 

⌈n.σ⌉ - count(v) + ⌊i.avg I(  ⌈σ⌉i) ⌋ >⌊(ft-1)avg ft-1 (⌈σ⌉ft-1 ) ⌋           
             

(2) 
The algorithm is as shown below 

Function CARMA(transaction sequence T, support sequence σ): 
 support lattice; 
Support lattice V; 
Begin 

V:= PhaseI(T, σ); V:= PhaseII(V,T, σ); 
Return V; 
End; 
Function PhaseI(transaction sequence(t1,….tn), support sequence 
σ=( σ1,…. σn): 
support lattice; support lattice V; 

Begin 
V:={Ø}, maxMissed(v):=0, firstTrans(v):=0,count(v)=0. 
For i from 1 to n do 
Increment: for all vϵ V with v ⊆ ti do count(v)++; 

Insert: for all v⊆ti with v∉V do 

If ∀ω ϲ  v: ω ϵ  V and maxSupport(ω)>= σi then V:= V ∪ {v}; 

maxMissed(v):=min{max{⌊(i-1)avgi-1(⌈σ⌉i-1⌋;|v|-1}, 

maxMissed(ω)+count(ω)|ωϲ v}; 
firstTrans(v):=i; count(v):=1;fi,od; 

Prune: remove vϵ V from V only if maxSupport(v)< i. 

If vϵ V is removed, remove all supersets as well; od;return; 
V;end; 
Function PhaseII(support Lattice V, transaction  
sequence(t1…….tn), support sequence ): 

support lattice; Integer ft, i=0; 
Begin 
Initial prune V:= V\{v ϵ  V| maxSupport(v) < n 

Rescan: while ∃v ϵ  V: i< firstTrans(v) doi++; 

for all v ϵ  V do ft := firstTrans(v); 
Adjust: if v ⊆ ti and ft<I then 

count(v)++, maxMissed(v)--;fi; 
if ft=i then maxMissed(v):=0; 

for all ω ϵ  V: v⊂ω and 

maxSupport(ω)> maxSupport(v) do 
maxSupport(ω) := count(v)-count(ω);od; fi; 
prune:  if maxSupport(v)< n then V:=V\{v}; fi; 

Forward Prune: if |v|=1 and v does not occur in t1…….ti and⌈ 
n. σn⌉-count(v)+ ⌊i.avgi  (⌈σ⌉i⌋ > ⌊(ft-1)avgft (⌈σ⌉ft-1 )⌋ then V:= 

V\{ωϵ V| v ⊆ ω };fi; return v; 
 

2.2.The Data Stream Combinatorial    

       Approximation  Algorithm 

2.2.1.DSCA Algorithm 
Basically DSCA[3] has two different phases during its execution, 

one is the transaction processing phase and the other is the count 
approximation phase. As a rule, it belongs in the phaseI. The latter 
phase is entered only when invoked by the user, and as the 
approximation is completed and the request is answered, it returns 
to the former phase immediately. The DSCA algorithm itself 
maintains a lexicographic order prefix tree, which will be null at 
the beginning. The main function of this tree is to keep the count 
information about I1 , I 2 , and (part of) I3 of the data stream for 

the approximation in the later step, where In denotes the n-
itemsets together with their counts. Different from Lossy 
Counting [4], FDPM[5], and most of the existing data-stream 
mining algorithms, the DSCA algorithm will not incrementally 
maintain the  potentially large itemsets of the entire data stream. 

If the stream data is keep on coming, DSCA just returns to the 
transaction processing phase and goes on. Unlike other stream 
mining algorithms, DSCA does not have the ‘‘concept drift” 

problem existing in the data- stream mining domain. Since DSCA 
just records the count information about I1 I2 , and (part of) I3 for 
each incoming transaction, it calculates the approximate counts of 
itemsets (of the entire data stream) after invoked. We have to 
identify whether an itemset is frequent or not by checking if its 
approximate count is above the minimum support threshold. We 
can approximate[3] the value of m-union term using the Eq. (1) as 
given below 

|A1 A2 …. Am | =   | |  (1) 

DSCA Algorithm is as given below: 

Input: A transactional data stream S, the minimum support 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

42 

 

Value(ms) 
Output: A list of frequent itemsets(F) 
Data structure: A lexicographic order prefix tree L; 
Method: 
Build an empty lexicographic order prefix tree L; 

While transactional data is still streaming in do begin 
Clear the contents in F(set F to be empty); 
While there is no request from the user do begin 
Read the next incoming transaction T from S; 
Find all 1-subsets and 2-subsets contained in T and 
             record(increase) their counts in the corresponding  
             nodes in L; 
             if the length of T>2 then begin 

            find all 3-subsets contained in T with the Skip- 
             andComplete technique, and record their counts in the  
            corresponding groups 
            end if; end while 
Find all large 1-items and 2-items in L and insert them into F 
        Calculate the counts of all 3-itemsets by Eq(1) with  
      m=3 and k=2, together with the counts bounding 
              technique; 

            Correct the approximate supports of 3-itemsets with  
              the group counts; 
              Insert every large 3-itemsets(n>3) by Eq(1)  
   With k=3 in both the depth-first manner and the  
             lexicographic order; 
             Insert every large n-itemset into F; 
             Output the frequent itemsets list F; end while. 
 

2.3.estDec METHOD  
All the itemset that appear in a data stream are not significant for 
finding frequent itemsets. The itemset that has very less support 
than a predefined minimum support is not very much required to 
monitor since it cannot be a frequent itemset in the near future. 
Therefore it can be delayed until be a frequent itemset in the near 
future. When the estimated support of a new itemset become large 

enough, it can called significant itemset and it can be inserted in 
to the lattice. Here in the estDec method that maintains a 
triple(cnt, err, MRtid)  in every node for its corresponding itemset 
e. The count of the itemset e is denoted by cnt. The maximum 
error count of the itemset e is denoted by  err. Finally, the 
transaction identifier of the most recent transaction that contains 
the itemset e is denoted by MRtid. 

The estDec[6] method is composed of four phases: parameter 

updating  phase (Phase I), count updating phase (Phase II), 
delayed- insertion phase (Phase III) and frequent itemset selection 
phase  (Phase  IV). When a new transaction Tk is generated in a 
data stream, the total number of transactions in the current data 
stream |D|k  is updated  in the parameter updating phase.  

|D|k = |D|k-1 x d+1 

In the count updating phase the counts of those itemsets in a 
monitoring lattice that appear in the new transactions are updated. 
All the paths of a monitoring lattice that are induced by the items 
of the transaction are traversed and the previous triple (cnt pre , err 

pre , MRtid pre ) of each node in the paths is updated to the  current 
triple (cntk , errk , MRtid k ) as follows:   

cntk = cntpre x d(k-MRtidpre)+1, 

errk=errpre x d(k-MRtidpre), MRtidk=k 

When the updated support, that is cntk / | D |k of an itemset in a 
monitoring lattice becomes less than a predefined threshold, the 
itemset is regarded as an insignificant itemset, so that it is pruned 
from the monitoring lattice as in conventional lattice-based data 
mining methods [7,8]. Anyhow, if a 1-itemset is pruned from a 

monitoring lattice, it is impossible to estimate its count later. 
Therefore, it does not required pruning. The threshold of this 
operation is defined as a threshold for pruning Sprn which should 
be less than a minimum support Smin. After all of these itemsets 
are updated, the delayed-insertion phase  is started in order to find 
any new itemset that has a high possibility to become a frequent 
itemset in the near future.  

A new itemset is inserted to a monitoring lattice only in the 

following two cases. At first the new 1-itemset appears in a newly 
generated transaction. In this case, the itemset is instantly inserted 
to a monitoring lattice without any estimation process. 
Consequently, the count cnt of every 1-itemset in a monitoring 
lattice is not an estimated value but an actual value. The second 
case is when the estimated support of an n-itemset (n≥2) that is 
not in the monitoring lattice is large enough to be monitored. In 
this phase, among the items of the new transaction, the items 

whose supports are less than Sins are not considered. While 
navigating the lattice according to the remaining items of the new 
transaction, the count of an insignificant itemset that is composed 
of a significant itemset and one of the remaining items is 
estimated by its maximum count Cmax(e). Due to the 
characteristics of a prefix lattice structure, there is no candidate 
itemset generation process. There is no candidate itemset 
generation process because such an itemset is identified 

systematically while navigating the lattice according to the 
remaining items in the new transaction.  

If any of its (|e|-1)-subsets in Pn-1(e) is not currently maintained in 
the monitoring lattice, the count of the itemset e is not estimated. 
This is because its Cmax(e) is always 0 in this case. Subsequently, 
the estimated support of the itemset can be found by the ratio of 
its count cnt over the current total number of transactions |D|k. If it 
is greater than or equal to a predefined threshold, the itemset is 
inserted to the monitoring lattice. This mechanism is called as a 

delayed-insertion operation and the pre-defined threshold for this 
insertion is defined as a threshold for delayed-insertion Sins which 
should be also less than a minimum support Smin. When an itemset 
e is inserted, all of its (|e|-1)-subsets should be significant. Due to 
this reason, it is possible to find the upper bound Cupper(e) of its 
actual count when it is inserted at the kth transaction. In other 
words, among the k transactions generated so far, at least |e|-1 
transactions that contain the itemset e are required to insert all of 

its subsets to the monitoring lattice in advance.  

Therefore, its actual count is maximized when these |e|-1 
transactions are most recently generated. The similar approach is 
used in [2]. The decayed count of the itemset e for the insertion of 
its subsets by these recent |e|-1 transactions is represented by a 
term cnt_for_subsets as follows: 

cntt_for_subsets = {1-d(|e|-1)}/(1-d)   (4) 
The maximum possible decayed count of the itemset e before the 

recent |e|-1 transactions is denoted by  
max_cnt_before_subsets and it is represented as follows: 
max_cnt_before_subsets=Sins x {|D|k-(|e|)-1)} x d(|e|-1) (5) 
Consequently, Cupper(e) can be found as follows:  
Cupper(e) = max_cnt_before_subsets+cnt_for_subsets           (6) 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

43 

 

If Cmax(e) in Eq.(2) is greater than the upper bound Cupper(e), 
Cupper(e) is used as its count cnt. Accordingly, the current triple 
(cntk, errk, MRtidk) of the itemset e in the corresponding node of 
the monitoring lattice is updated as follows:  
cntk=min{Cmax(e), Cupper(e)}    (7) 

errk= E(e)=cntk-C
min(e), MRtidk = k 

 

An itemset pruned at present can be inserted into the monitoring 
lattice in the future by the delayed-insertion operation if it appears 
frequently in new transactions.  

Consequently, Sprn should be less than Sins. As the gap between 
the two thresholds Sprn and Sins is enlarged, the possibility of 
repeating the insertion and pruning of the same itemset are getting 
reduced frequently. Furthermore, as the gap between these two 
thresholds is enlarged, the accuracy of frequent itemsets is 
improved while the size of a monitoring lattice is increased. 

The frequent itemset selection phase is performed only when the 
mining result of the current data set is required. It produces all 

current frequent itemsets in a monitoring lattice by the same way 
as in conventional mining methods [7,8] based on a prefix-tree 
lattice structure. When this phase is performed in the current data 
stream Dk, an itemset e is frequent if its current support {cnt x d(k-

MRtid)}/ |D|k is greater than a predefined minimum support Smin. 
Furthermore, its current support error {err x d(k-MRtid)}/|D|k can be 
found as well.  

All the insignificant itemsets in a monitoring lattice can be pruned 
together by examining the current support of every itemset in the 

monitoring lattice. This mechanism is called as a force-pruning 
operation and can be performed periodically or when the current 
size of a monitoring lattice reaches a pre-defined threshold value. 

estDec Algorithm: 

Input: A data stream D 
Output: A complete set of recent frequent itemsets Lk 

d: A given decay rate 
ML: A monitoring lattice 

ML= ϕ; 
For each new transaction in D{ 
Read current transaction Tk; 
//Parameter updating phase 
|D|k= |D|k-1*d+1; 
//Count updating phase 
For all itemset e s.t. e∈(2Tk- {ϕ} and e∈ ML{ 

cnt= cnt *d(k-Mrtid)+1;err=err*d(k-Mrtid);Mrtid=k; 
if (cnt/|D|k)<Sprn and |e|>1 //Pruning 

Eliminate e and it’s child node from ML;} 
//Delayed-insertion phase 
Tk

! = ItemFiltering(Tk); 
For all itemset e s.t. e∈(2Tk! –{ϕ}) and e∈ML{ 

If |e|= 1{ 
Insert e into ML;cnt=1;err=0;Mrtid=k 
}else{Estimate Cmax(e) and Cmin(e);  
If Cmax(e)>Cupper(e); 
Cmax(e)=Cupper(e) 
If (Cmax(e)/|D|k)>= Sins { 

Insert e into ML;cnt=Cmax(e);err=Cmax(e)-Cmin(e);Mrtid=k;}}} 
//Frequent itemset selection phase 
Lk=ϕ; 
For all itemset e∈ML{ 

cnt=cnt*d(k-Mrtid);err=err*d(k-Mrtid);Mrtid=k; 

If (cnt/|D|k)>=Smin 

Lk=Lk∪ {e};}} 
 

3. IMPLEMENTATION AND   

     COMPARISON 
A data stream is a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Due to this reason, it is 
impossible to maintain all elements of a data stream, as a result, 
data stream processing should satisfy the following requirements 
[1]. First, each data element should be examined at most once to 
analyze a data stream. Second, memory usage for data stream 

analysis should be restricted finitely although new data elements 
are continuously generated in a data stream. Third, newly 
generated data elements should be processed as fast as possible. 
Finally, the up-to-date analysis result of a data stream should be 
instantly available when requested. In order to satisfy these 
requirements, data stream processing becomes more tedious task. 

The three algorithms mentioned in II are implemented in JAVA 
and the results are plotted. The performance evaluation  study 

showing that the estDec outperforms the other two algorithms in 
memory usage as well as the total performance of the algorithm in 
both the cases of sorted and unsorted transaction set. We have 
tested all the three algorithms with five Data sets and all of them 
are available in Freequent Itemset Mining Dataset Repository[9]. 
Transactions of each data set are looked up one by one in 
sequence to simulate the environment of an online data stream. 

 

3.1 Sorted /Unsorted transaction set 
We have found from our studies that the way in which we 
inputting the transaction will have a role to reduce/increase the 
memory space as well as the searching performance in the lattice. 
The transaction sets in online transactions are not in the order 
based on the item’s name or anything. It is always based on the 
order it entered. We have found that if we make a little 
modification before it giving to the lattice as by sorting based on 

the item name it will be easier to keep in the lattice without much 
redundancy in the items available in the lattice. 

In the above described algorithms DSCA is using the sorted 
transaction items for updating the lattice. Therefore we have not 
been used the DSCA algorithm unsorted items performance test. 
The unsorted transaction items are inputed to the other two 
algorithm implementations and the results are plotted. 

 

 

Fig 1: Threshold Vs Time/Memory for T10I4D100K Dataset 
(Sorted) 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

44 

 

 

Fig 2:Threshold Vs Time/Memory for T40I10D100K Dataset 
(Sorted) 

 

 

Fig 3: Threshold Vs Memory/Time usage for retail_set Dataset 
(Sorted) 

 

Fig4: Threshold Vs Time/Mem.Usage for accident Dataset 
(Sorted) 

 

 

Fig5: Threshold Vs Time/Mem.Usage for KOSARAK Dataset 
(Sorted) 

 

 

Fig6: Threshold Vs Time/Mem.Usage for T10I4D100K(Unsorted) 

 

 

Fig7: Threshold Vs Time/Mem.Usage for T40I10D100K 
(Unsorted) 

 

 

Fig8: Threshold Vs Time/Mem.Usage for  retail_set(Unsorted) 
 

  



International Journal of Computer Applications (0975 – 8887)  

Volume 2 – No.6, June 2010 

45 

 

 

Fig9: Threshold Vs Time/Mem.Usage for  KOSARAK(Unsorted) 

 

 

Fig10: Threshold Vs Time/Mem.Usage for  accident(Unsorted) 

 

4. CONCLUSION 
In this paper, we have gone through the important three online 
algorithms namely CARMA, DSCA and estDec. The approach of 

this three online Data Mining algorithms are different and we 
have implemented all the three algorithms in java. In our study we 
have found that the estDec algorithm is outperforming the other 
two algorithms. There are lot more studies required to know about 
how it perform in different real time situations. We have made a 
situation of online data stream and one of the problem that noticed 

in the estDec as well as the other two algorithms, handling of  two 
task simultaneously (for the updation of lattice as well as the 
query answering) will reduce the performance. To improve the 
performance priority has to set. 

 

5. REFERENCES 
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association  

rules between sets of items in large databases. In Proc. of the 
ACM  SIGMOD Conference on Management of Data, pages 
207-216,Washington, D.C., May 1993. 

[2] C. Hidber. Online association rule mining. In Proc. of the 
ACM SIGMOD Int'l Conference on Management of Data, 
pages 145-156, Philadelphia, PA, May 1999. 

[3] J.F.Jea and C.W. Li , Discovering Frequent Itemsets over 
Transactional Data Streams  through an efficient and stable 
approximate approach. Elsevier Journel 2009. 

[4] Manku, G. S., & Motwani, R. (2002). Approximate 
frequency counts over data streams. In Proceedings of the 
28th international conference on VLDB (pp. 346–357). 

[5] Yu, J. X., Chong, Z., Lu, H., Zhang, Z., & Zhou, A. (2006). 
A false negative approach to mining frequent itemsets from 
high speed transactional data streams. Information Sciences, 
176, 1986–2015. 

[6] J.H. Chang, W.S. Lee, Finding recent frequent itemsets 
adaptively over online data streams, in: Proceeding of the 9th 
ACM SIGKDD, 2003, pp. 487–492. 

[7] Agrawal, R., and Shafer, J. 1997. Parallel mining of 
association rules. IEEE Transactions on Knowledge and Data 
Engineering 8(6). Record,  pages 255-264, New York, May 
13th-15th 1997. ACM Press. 

[8] J. H. Chang and W. S. Lee. Finding Recent Frequent 
Itemsets Adaptively over Online Data Streams. In Proc. of 
KDD, 2003. 

[9] B. Goethals and M. Zaki. FIMI ’03, Frequent Itemset Mining 
Implementations. In Proc.of the ICDM  2003 Workshop on 
Frequent Itemset Mining Implementations, 2003. 

 

 


