
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

33

Open Incremental Model- A Open Source Software
Development Life Cycle Model (OSDLC)

Sourav Mandal
Assistant Professor,

Computer Sc. & Engineering
Haldia Institute of Technology

Haldia, West Bengal, India

Shyamalendu Kandar
Assistant Professor,

Computer Sc. & Engineering
Haldia Institute of Technology

Haldia, West Bengal, India

Palash Ray
Assistant Professor,

Computer Sc. & Engineering
Haldia Institute of Technology

Haldia, West Bengal, India

ABSTRACT
Open-source software abbreviated as OSS is computer

software that is available with source code and is provided

under a software license that permits users to study,

change, and improve the software. For the commercial

software the source code and certain other rights are

normally reserved for copyright holders,i.e. the company

who developes the software. A group of people in a

collaborative manner often developes the Open source

software, not under the roof of a large organization. This

strategy makes open source software cheap, reliable and

modifiable if needed.

In this context we shall discuss mainly the features of Open

Source Software, Existing Open Source Software

development models and our proposed model named open

incremental model.

Keywords

OSS, OSDLC, Agile methodology , Open Incremental

Model

1. INTRODUCTION
Open Source software offers significant benefits,

compared to typical commercial products. Commercial

products often stress on advancement and updation of

visible features for getting marketing advantages. It is very

difficult to measure qualities attributes such as stability,

security, reliability etc. in case of Commercial Software.

Commercial software put notices basically on the quality of

mostly used features. Whereas Open Source software

developing community consists of very bright, very

motivated developers, who are mostly unpaid but are very

disciplined to their work In addition to that all the users of

Open Source software have access to the source code of the

software and debugging tools.[1,2]. For this reason the

users can suggest the developers about the bugs by

feedback or they can fix the bugs if possible by modifying

the source code and even can enhance the software by

providing actual changes to the source code. Because of

the availability of source code and right to modify the code

by users, sometimes the quality of software produced by

the Open Source software development community

exceeds the quality of same type software produced by

purely commercial organisations.[2]

As Open Source Software are not made by a group of

people under a common roof,[3] for this the open source

software does not follow the conventional model like

waterfall[4], iterative enhancement, spiral [4, 5]etc. Even

there is no standard open source development model also.

Some open source developers use some model as their own.

In this paper we are going to discuss some of those models

and have proposed a new model called open incremental

model, which can be used for open source software

development.

In this paper Section 2 describes the features of Open

Source Software, Section 3 describes some existing open

source software development model, Section 4 describes

proposed Open Incremental model, Section 5 puts light on

Validation of the proposed model, Section 6 describes the

future scope and Section 7 draws the conclusion.

2. FEATURES OF OSS
A source software has several features of their own. Some

of the features of Open Source Software are discussed

below[1].

Free Redistribution: License of the software should not

restrict any party from selling or giving away the software

as a component of an aggregate software distribution

containing programs from several different sources. The

license should not require a royalty or other fee for such

sale.

Source Code: The source codes are open. The executable

program or software should be accompanied with source

codes so that it can be easily distributed or modified as

needed.

Derived Works: Any person may modify, or update, or

reuse the source code as required. The derived works also

should be published and is allowed to redistribute under

same term and condition as the license of the original

software.

Author's Source Code Integration: Configuration

management or change management is very tough for this

kind of software. The license may restrict source code for

modification but it allows the distribution of patch files

with source code for modification. The derived work may

come up as new version or release under the same license.

No Discrimination Against Persons or Groups: There

are no such limitations or restrictions for selecting persons

or group for modification or up gradation. For getting

maximum benefit, the maximum diversity of persons and

groups should be equally eligible to contribute to open

sources.

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Software_license
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Copyright

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

34

No Discrimination against Fields of Endeavor: it may

not restrict the program from being used in a business, or

research. But it does not permit to be used commercially.

Distribution of License: The rights automatically

distributed with the program to the co developers with out

the need for additional license by those parties.

License Must Not Be Specific to a Product:

The program is extracted from that distribution and used or

distributed within the terms of the program's license, all

parties to whom the program is redistributed should have

the same rights.

License Must Not Restrict Other Software: There is no

restriction for other software to be open source that are

distributed along with the licensed open source software.

License Must Be Technology-Neutral: The license may

not highlight or refer any individual technology or style of

interface. It should not bind with any specific hardware or

software of Proprietorship Company.

3. EXISTING OPEN SOURCE

SOFTWARE DEVELOPMENT

MODEL
Several researchers have proposed life cycle models

derived from analyses of successful open source projects.

Opinions differ as to the stages that comprise a typical open

source development project. However, regardless of the

open source life cycle model that may be subscribed to, the

OSSD paradigm demonstrates several common attributes:

 parallel development and peer review,

 prompt feedback to user and developer

contributions,

 parallel debugging,

 user involvement, and rapid release times

 highly talented developers

Before describing the newly proposed model, we want to

describe some other models that are somehow used in some

open source software development projects. Mainly we

have explored two models. One model is proposed by the

United States Department of Defense (DoD) .The model is

as follows.[6]

Major features regarding this model are

1) OSS is developed by collaborative process.

2) Most OSS projects have some web location as

“trusted repository” where people can get the

“official” version of the program or software also

some related important information

(documentation, bug report system, mailing lists,

etc.). Users or developers can get the software

directly from the trusted repository, or get it

through distributors. Distributors are who acquire

it and provide additional value such as integration

with other components, testing, special

configuration, support, and so on.

3) The trusted developers are developers who are

allowed to modify the trusted repository directly.

At project start, the project creators or initiator

are mainly the trusted developers and they

determine who else may become a trusted

developer of this initial trusted repository. All

other developers can improve the software by

changing local copies and also can post their

versions to the internet. But they must submit

their changes to a trusted developer to update the

trusted repository.

4) Users can send bug reports to the distributor or

trusted repository and can be taken care

accordingly

 Figure 1.: OSS model proposed by DoD, USA

Developer

Trusted

Developer

Trusted

Repository

Distributor

Source Code

Bug Reports

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

35

Another model we like to discuss is ‘Agile methodology’

for software development. It is based on two popular SDLC

„iterative‟ and „incremental‟ development model where

requirements and solutions evolve through collaboration

between self-organizing and cross-functional teams. This

particular methodology suits better for OSS

development.[7,8,9]

In February 2001, 17 a group of software developers met at

Ski Resort in Snowbird, Utah, to discuss lightweight

development methods. From their discussion a a manifesto

named "Manifesto for Agile Software Development" was

published to define a new approach of software

development now known as agile software development.

Some of the manifesto's authors formed a non-profit

organization named Agile Alliance, that promotes software

development according to the manifesto's principles.

Principles behind the Agile Manifesto [7,8]

a. Satisfying the customer through early and

continuous delivery of valuable software.

b. Welcome changing requirements, even late in

development.

c. Deliver working software frequently

d. Business people and developers must work together

daily throughout the project.

e. Build projects around motivated individuals. Give

them the environment and support they need, and

trust them to get the job done.

f. Face-to-face conversation is the best form of

communication (co-location)

g. Working software is the primary measure of

progress.

h. Agile processes promote sustainable development.

The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

i. Continuous attention to technical excellence and

good design.

j. Simplicity.

k. Self-organizing teams

l. Regular adaptation to changing circumstances

The Agile model is described in Figure 2.

Agile methodology is very flexible to use. The opportunity

given by this model to the user makes it suitable for OSS

development also. More or less it‟s consisted of 5 phases.

[10] Brainstorming is running among various people for

requirement analysis all over the world using a common

forum to gather the features to be included in the software

according to their need. Then primary design along with the

relevant documents are made and kept in the web. Those

are controlled by a forum and supplied on request to the

motivated developer all over the world. After some

addition, the developers sends their version along with

source code. Other people give their feedback or report

bugs. The source codes are modified accordingly and after

consecutive verifications those are added with original

source code. Gradually over a certain period of time the

software moves to the maturity level.

Figure2: Agile Methodology for Software Development

Brainstorming

Design

D
ev

el
o

p
m

en
t

Quality

Assurance

Deployment

Requirement

Analysis

Prototype

Design

Iteration And

Feedback

collection

Identify and resolve bugs

Production &

Technical support

Release

to

Market

http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Snowbird,_Utah

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

36

4. OPEN INCREMENTAL MODEL
Major OSS are initiated by some group of people from

different organizations in voluntarily basis and contributed

by all interested people of different country and culture. It

some how may follow Evolutionary or Incremental Model

as it is started from very small unit and gradually increased.

But as this kind of software is not managed by a single

organization the requirement specification is confusing so

that design is dependent on individual perception and skill.

But all interested people create an open forum regarding

the development procedure where they put different queries

and answered by all as possible. Or sometimes the first

group of people who takes the initiation is creating an

organization and other people join accordingly.

There are mainly 11 steps in the newly proposed Open

Incremental Model. The diagram of the model is described

in figure 3.

Figure 3: Open Incremental Model

Phase 1: Concept

Some ideas have been thrown around by a few people.

Some codes have been written. A project site is up (Google

Code, CodePlex, etc) and there is maybe a working

prototype to show off and talk about. There are no such

documents placed there. A forum or website can be

launched due to this purpose.

Phase 2: Initiation/Bootstrap

There are one or two serious authors/committers. There

might already be one or two actual users experimenting

with the framework. The developments are continuously

going on. Few discussions are going on using some blog

posts on that forum or few related articles may be

published. A controlling authority can be formed who

guides or control the development process and program

code contributed from various people.

Phase 3: Early Development

A few more committers have signed on, but still there are

only one or two primary contributors. A few more users

have started playing with it now and are providing

feedback. A mailing list has certainly been set up. The

build is more stable and works in many environments.

Phase 4: Early Adoption

More committers are signing on now and contributing more

and more. The project is at a state with many of the

baseline features are done and the product is quite usable

now. There are a few dozen users experimenting with it

and even building some interesting applications upon it.

Multiple people are discussing about it and contributing a

bit. The forum/authority is starting to materialize the

discussion into categories and sub-topics. Some sparse

documentation has started to emerge in the form of some

limited API documents; some FAQ‟s and getting started

guides. So after this phase all contributors get a piece of

software and concrete guidelines. The tasks carried by

controlling authority are increased. Because now they have

to maintain the changes and modification made by different

contributor through out the world.

Phase 5: Refinement of the concept / specification

In this phase based on the feedback and development

scenarios the actual concepts may be refined and displayed

as guideline. The prototype or very first version of OSS is

now made. So any modification or refinement of the

original concept is done. The specification guidelines are

very concrete in this phase. This does not mean that the

modification of the concept are not done later phase. Any

good suggestions can lead to a new version of the OSS at

any phase.

Phase 6: Development

There are several devoted committers/contributor now,

cranking out serious features and functionality. The beta

versions are distributed for free. There are several users

using the OSS and post their feedbacks or queries on the

forum‟s wall/blog. The codes are available for download

regularly. Some restrictions may be imposed or not to get

it. The code is growing by all. It is really taking shape and

being fleshed out. At this point documentation is

“moderate” and is growing into more scenarios and topics.

Concept

Initiation/ Boot strap

Early Development

Early Adoption

Development

Testing

Adoption

Maintenance

Maturity

Mainstream

Refinement of the concept

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

37

Phase 7: Testing/ Validation

The developed code of single contributor is tested

individually by the developer and then uploaded to be

added with the main program code. The authority may test

it again after integrating with the main code. If some

modifications required the codes are again send to the

actual developer or published in the forum mentioning the

bugs so that contributor may debug it accordingly. The

forum can take help of the experts also.

Phase 8: Adoption

Many people are submitting patches and other forms of

contributions. The inner circle of committers is

growing. There are frequent “point” releases available for

download. There‟s now likely a basic installer which helps

configure your environment for the framework. Frequent,

in-depth blog posts by noted authors. The wiki (A web site

or set of web pages that allows almost anyone to edit and

add content) is now very rich and there are frequent

contributions. Documentation at this point is adequate. The

codes are now packaged and are distributed for free or with

very nominal cost.

Phase 9: Maintenance/ Support

After adoption of the OSS now it is time for maintaining

the software. Maintenance can be many types.

Corrective: Correcting errors that were not discovered

during the product development phase. This is called

corrective maintenance. The corrections are made available

to the users for free or as new release.

Perfective: Improving the implementation of the system,

and enhancing the functionalities of the system according

to the user‟s requirement. This is called perfective

maintenance.

Adaptive: Porting the software to work in a new computer

environment/platform or to cope up with new kind of

operating system. This is called adaptive maintenance.

It is a time consuming process and there is no exact

guidelines for that. Any type of maintenance may be

required any time and may be raised by any user or

developer any time. So that it is something like „as when

required‟.

Phase 10: Maturity

The maintenance phase may add a new kind of directions

and may lead to another phase of development and

sometimes refines the requirement. The contributors again

start to develop another version of the OSS. The concepts

are put in the wiki and guideline also. This process cycle

may run for several years or decades and slowly moves to

different levels of maturity.

There are so many patches and contributors that a hierarchy

has been set up to evaluate and approved changes.

Multiple releases create management issues with patches

and defects requiring more organization. There over a

thousand users by now. There are releases and installers

for various scenarios or environment. There is lots of

documentation activity at this phase.

Phase 11: Mainstream

In this phase, many of the original contributors have moved

on or are less involved. New generations of contributors

have taken over and are taking the project into different

directions and expanding it greatly. There are hundreds of

thousands of users. Perhaps there are even consulting

companies forming business services around the project

and offering commercial support. The project has its own

active web site with lots of content, guides, add-ons,

forums, blogs, etc.

5. VALIDATION OF THE PROPOSED

MODEL
Studying some OSSDLC models we can conclude that all

models are having different characteristics but basic

features are similar as stated in section 3.

All other existing models are based on the basic priority of

OSSD and useful. They also comprise different advantages

of OSSD. Also it is very tough to decide which one is

better and what are the relative disadvantages. Because of

lacking regulation and discipline among developers it is not

very easy to follow any OSSDLC models truly. Also if we

categorize the software according to Bohem‟1982 [4][5]

there are three types of software, Organic, Semi-detached

and Embedded, according to size, complexity and resource

required for development. Only first two types of software

can imply any OSSDLC easily. Also on the basis of the

size and complexity of the software some models may be

proved useful and efficient than others. Without proper

application of various OSSDLC on different OSS

development worldwide and surveying thoroughly the

effectiveness of different components can not be estimated

and compare usefulness. With the already existing models,

described in several research papers and case studies; some

advantages of using our proposed model validating the

basic features of OSS development methodologies are

given below.

Quality

Software

As collaborative development allows for

multiple solutions, OSS features result

in quality software. Also There is little

tolerance for failure to adhere to the

tacitly accepted norms [11][12].

A phase in our proposed model,

„Refinement of Concepts or

Specification‟ truly helps out to achieve

best solution and thus increase quality.

Development

Speed

Reuse of code increase development

speed. The more people are creating

code and adding value to a project, the

product is released quickly and it

becomes valuable to a user group.[13]

Critics question whether open source

provides a rapid development

environment and suggest that the result

could be slower given the absence of

formal management structures. The

open source community is likened to a

“large, semi-organized mob with a fuzzy

vision” [14] [12].

Our proposed model requires a very

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

38

good project initiation and control and

thus eliminates the problem of absence

of formal management structure or

irregularities if any.

User

Involvement

Users are generally treated as a valued

resource in the development process.

Utilizing users as co developers leads to

code improvement and effective

debugging. Users can assist developers

in finding system faults and

improvements, thereby reducing the

need (and cost) for extra developers to

perform the same function [15][11].

However, involving users closely can

become problematic as users tend to

create bureaucracies or ego problem,

which hamper development [14].

Proposed model emphasizes on

controlled user involvement as the

„Testing/ validation‟ and „Adoption‟

phase demands high quality

review/feedback and quality control.

Access to

existing code

Access to existing code is required for

parallel coding, debugging and testing.

Developers have access to the “open

source toolset”, a huge amount of other

open source project codes which can

speed up development. [16].

The proposed model is having these

characteristics.

Collaboration A further important feature of the OSSD

model is the nature of the development

community. Large numbers of

geographically dispersed programmers

are joined by the Internet to produce

complex software and largely without

pay. Reasons for participation in open

source projects are mainly due to lots of

challenge, improving skills, motivated

wish for human welfare, fun, as well as

for financial reward [11]

The proposed model ensures

collaboration in large in all phases.

Releases OSS is premised on rapid releases and

typically has many more iterations than

commercial software. This creates a

management problem as a new release

needs to be implemented in order for an

organization to receive the full benefit.

It is very tough to decide for

organizations whether these newer

versions will continue to support

business needs [12]

Our model is having a new release all

the time when it completes the

„Adoption‟ phase. The organizations

will use and suggest improvements at

general „Support‟ or „Maintenance‟

phase. That will definitely lead to newer

kind formal requirement or concept and

initiates another cycle of development.

Support issues

Wheatley [17] mentions the lack of

accountability from a single vendor.

While open source projects have a wide

variety of resources (developers

themselves, Internet mailing lists,

archives and support databases) that can

be tapped for support, the problem is

that there is no single source of

information, no help desk that provides

„definitive‟ answers to problems. Open

source developers are not contracted and

therefore cannot be forced into creating

documentation [14]

The „Refinement of Concept or

Specification‟ phase of the proposed

model leads to documenting the

requirements and modification history.

Also the „Validation‟ and „Adoption‟

phase may generate high quality review

report that can be used in future

development or release. The developers

also can do documentation with their

coding to increase their code acceptance.

6. FUTURE SCOPE
The advantages and disadvantages of a proposed model

will not be clear unless the model is used for developent of

some software project. In this resaerch work a new model

is proposed keeping in mind the laccunas of some already

existing models and efforts have been made to remove

those problems. Till it can not be said optimum as it is not

used for the implementation of any software project.

In a future work we shall try to use this model for some

Open Source Software developemnt to find its strong and

weak features. Also we shall try to find the complexity of

development, development speed, number of bugs present,

best testing methodology etc. of a Open Source Software

developed by this model.

7. CONCLUSION
Open source movement is a social movement. All people of

the world must be blessed with the advancement of

technology to improve their lifestyle. Technology must not

be indoored in some companies for their business profit.

With that it must be kept in mind that the developed

software must be adequate to fullfill the requirement of the

new technological advancement of the user. A universally

accepted standard model must be there for the development

of OSS, so that the developed software become a blessing

for a lage number of people scattered in the whole world,

not to a limited group of people. Research must go on, on

the open source development life cycle to find a universally

accepted model, so that user can get a standard software for

their uses.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.1, May 2011

39

8. REFERENCES
[1] “Characteristics of OSS”

http://www.opensource.org/docs/osd

[2] “Benefits of Using Open Source Software”

http://open-source.gbdirect.co.uk

[3] “Free Software Movement” http://www.gnu.org.in

[4] Pressman,Roger S, “Software Engineering”, McGraw

Hill, pp79-88.

[5] Jawadekar, “Software Engineering- Principles and

Practices”, TMH, pp 18-27

[6] “Open Source Licence Proposal”

http://cio-nii.defense.gov/sites/oss/

Open_Source_Software_(OSS)_FAQ.htm

[7] Beck, Kent; et al. "Manifesto for Agile Software

Development". http://agilemanifesto.org/. Retrieved

2010-06-14.

[8] Cockburn. A. “Agile Software Development”,

Addison-Wesley, 2002.

[9] DeMarco, T., Boehm, “The Agile Methods Fray”,

IEEE Computer, Vol 35, no 6 June 2002, pp 90-92.

[10] Schwaber, K, “Agile Process and Self-Organization”

http://aanpo.org/article/index , Agile Alliance, 2002.

[11] Rishab A. Ghosh, Bernhard Krieger, Ruediger Glott,

Gregorio Robles, “Free/Libre and Open Source

Software: Survey and Study” , International Institute

of Infonomics University of Maastricht, The

Netherlands June 2002

[12] Valloppillil, V. “Open source Initiative (OSI)

Halloween I: A (new?) software development

methodology” 1998

[13] Scacchi, W, “When is free/open source software

development faster, better and cheaper than software

engineering?” Institute for Software Research

University of California, June 2004

[14] N. Bezroukov, "Open Source Software Development

as a Special Kind of Academic Research (Critique of

Vulgar Raymondism)," http://firstmonday.org/issues/

issue4_10/bezroukov/index.html

[15] Eric Steven Raymond, “The Cathedral and the

Bazaar”http://www.tuxedo.org/~esr/] 2000

[16] Tom Adelstein, “How to Misunderstand Open Source

Software Development”, December 1, 2003,

http://www.consultingtimes.com/ossdev.html

[17] M. Wheatley, CIO Magazine, “The Myths of. Open

Source”, March 2004, http://

/www.cio.com/archive/030104/open.html

http://www.opensource.org/docs/osd
http://open-source.gbdirect.co.uk/
http://cio-nii.defense.gov/sites/oss/
http://en.wikipedia.org/wiki/Kent_Beck
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://firstmonday.org/issues/
http://www.consultingtimes.com/ossdev.html

