
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

24

An Efficient Approach of Block Nested Loop Algorithm

based on Rate of Block Transfer

Deepak Shukla

Dr. Deepak Arora

Rakesh Kr. Pandey

K. K. Agrawal

Department of Computer Science and Engineering,
Amity University

Uttar Pradesh, Lucknow, India.

ABSTRACT
In this paper, an approach has been proposed that makes the

processing of join operation in database systems more efficient. In

join operation processing relations that take part in the join

process are required to be transferred to the main memory (RAM)

from hard disk. In join operation processing when block nested

loop algorithm is used to perform join between relations and

multiple blocks of the relations that take part in the joining

process are transferred from hard disk to main memory than in

this case the main memory buffer allotted to the blocks of relation.

Using this approach, multiple blocks are transferred for the

relations that participates in the join operation processing, instead

of transferring blocks one by one for each relation (or multiple

blocks for one relation) without worrying about the large and

small databases size. When this new approach is applied, the rate

of block transfer during join operation processing using block

nested loop algorithm get minimizes and join query processing

become efficient, without loosing the level of complexity of the

previous algorithms of block nested loop join(BNLJ).

General Terms
Algorithm for join operation processing based on rate of block

transfer.

Keywords
Databases, Query Processing, Block Nested-Loop Join (BNLJ),

RAM, and Hard Disk.

1 INTRODUCTION
Join operation combines tuples from two relations to produce the

join result. Join processing records of the relations are on the

whole expensive operations occurred in a database management

system [1]. So, all query optimization algorithms firstly deal with

joins [2]. In the previous years, many join techniques have been

designed for better processing of join operation [3] and [4]. Join

operation processing is the most expensive operation in database

system and there are many ways proposed in the past for

processing join query [5]. In database management systems it has

been assumed that all data reside on main memory (RAM). In the

past years the join algorithms analyzed has been firstly consisted

of reckoning the number of disk pages transferred during the join

operations [10].

In this paper the proposed approaches minimizes the number of

block transfer during the join operation. When two relations (are

placed on disk) are transferred from disk to main memory on the

basis of multiple blocks transfer for both of the two relations.

During this operation the complexity of the proposed algorithm is

also maintained. Relations are stored on the disk in the form of

files and these files are distributed on the disk’s segments. When

any join query is fired the operation performed is to transfer the

relation from main memory to disk either one by one tuples are

transferred for the relation to be joined or multiple tuples are

transferred.

In join operation processing when block nested loop algorithm is

used to perform join between relations and multiple blocks of the

relations that take part in the joining process are transferred from

hard disk to main memory than in this case the main memory

buffer allotted to the blocks of relation at outer loop of the join

algorithm is not less than that of five blocks and ()5−Z is the

maximum space allotted to the relation at inner loop of the join

algorithm. Because at the point when relation at outer loop gets

less space in main memory than blocks of relation at inner loop

shows the worst scenario so, to make it efficient many database

systems changes the positions of the relations from outer to inner

loop and vice- versa. For this reason, the proposed block nested

loop ()5−Z algorithm is the one that gives best results when rate

of block transfer is the comparison factor between the join

algorithms. It means that rate of block transfer minimizes when

block nested loop ()5−Z algorithm is used in joining of two

relations.

In this paper (section 2), discussion has been done on the basis of

the algorithm previously developed and analysis of effectiveness

is done as well. In section 3, an approach has been discussed to

minimize the rate of block transfers during join operation

processing without losing the level of complexities of previous

join algorithms. An algorithm also has been proposed for it. In

section 4, tables has been presented that compares the seek time,

complexity, rate of block transfer and effectiveness of algorithms

previously developed with the proposed algorithm. In section 4,

an analysis of expected result is presented and some experimental

results are also reported. In the final section, conclusion as well as

future work has been presented.

2 BACKGROUND
In database management systems, join algorithms are used for the

combination of the tuples from the relations for producing join

result based on a join condition. There are many different types of

Join algorithms [12]. Some times it is necessary to work with

multiple relations as they were contains data of same entity. Then

a single SQL query can manipulate data from all the relations.

Join are used to achieve this. Relations are joining on attributes

that have the same data type and width in the relations [17]. There

are many join algorithms for joining relations based on join

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

25

condition. And, these algorithms scans the relations participated in

the join operation to produce the joined relation as a result in the

buffer of main memory. [12].

In this paper, an effective approach to join query processing is

being proposed. So, for this it is proposed in this paper that how to

minimize the rate of block transfers during join operation

processing. Algorithms that support the proposed work for

evaluating join are [7].

Nested Loops Join (NLJ).

Block Nested Loops Join (BNLJ –one block at a time)

Block Nested Loops Join (BNLJ –multiple block at a time)

2.1 Nested Loops Join (NLJ)
In Nested loop join algorithm, pairs of nested for loops are used to

perform join operation. Relation ‘r’ is called outer relation and

relation ‘s’ is the inner relation of the join, since the outer loop for

relation ‘r’ contains the inner loop for relation ‘s’. The algorithm

uses the notation tstr ⋅ , where tr and ts are tuples; tstr ⋅

denotes the tuples constructed by concatenating the attribute

values of tuples tr and ts [15].

In Nested Loop Join, it is very necessary to find out which

relation is scanned by the outer loop and which is scanned by the

inner loop of the join algorithm as the relations are stored in the

form of file on the hard disk. The percentage of records in the

relation in database that will be joined with records in the other

relation of the same [16].

Let us assume that, number of tuples in relation ‘r’ = nr , number

of tuples in relation ‘s’ = ns , number of blocks of relation ‘r’

= bR , number of blocks of relation ‘s’ = bS , and number of

blocks fits in main memory at once = Z.

Algorithm: 1 Nested Loop Join (Tuple-at-a-time) [15]

for each tuple tr in r

{tuples of relation ‘r’ are scanned one by one.

 for each tuple ts in s

 {tuples of relation ‘s’ are scanned one by one.

 If join condition is true for ()tstr,

 add tstr ⋅ to the result.

 }

}

Algorithm for join applied on the block which resides on the main

memory. This algorithm ensures that how the join performed in

main memory. In the scanning of each tuple of relation ‘r’, it

should be clear that the tuples of relation ‘s’ is scanned nr times,

resulting ()nsnr ∗ scanning for total tuples during join operation

processing. In the scanning of one tuple for relation ‘r’, bS

blocks of relation ‘s’ has been scanned. In the scanning of nr

tuples for relation ‘r’, ()nrbS ∗ scan needed. Total scans are equal

to ()bRbSnr +∗ . nr seeks needed to scan relation ‘r’ and bR

seeks needed to scan relation ‘s’ [15]. Total seeks are equal

to ()bRnr + . Complexity = ()nsnr ∗Ο , where, nr and ns number

of tuples contained in relation ‘r’ and relation ‘s’ respectively.

2.2 Block Nested Loop Join (BNLJ-One

Block at A Time)
In Block Nested Loop Join, when relations ‘r’ and relation ‘s’ has

to be joined, the outer loop is for reading the blocks of relation ‘r’

and inner loop is reading the blocks of relation ‘s’. If relation ‘r’

and relation ‘s’ are small enough to fit into the main memory than

the join operation is performed more effectively [6].

In Block nested loop join, before performing the join operation

the relations to be joined are first placed into the main memory

[12]. In Block Nested Loop Join algorithm, the number of disk

accesses consists of two operations – one is to read the blocks of

relation ‘r’ and other to access the disk for reading the blocks of

relation ‘s’. [8].

Algorithm: 2 Block Nested Loop Join (Block-at-a-time) [9]

for each block bR of ‘r’ do

{blocks of relation ‘r’ are scanned one by one.

 for each block bS of s do

 {blocks of relation ‘r’ are scanned one by one.

 Compute bR bS in memory

 }

}

The Block Nested Loop Join algorithm is an advanced algorithm

of the nested loop join algorithm which is used for transfer of

blocks efficiently rather than transferring the tuples of the

participating relations in the join operation. The block nested loop

joins algorithm works by reading a block of tuples, from the outer

and inner relation [10]. In BNLJ (one block at a time) chunks of

each relation is transferred from hard disk to main memory where

join operations is performed [9].

Block nested loop join algorithms break the outer relation ‘r’ into

blocks that can fit into the main memory input buffer pages and

then scanning of all the inner relation ‘s’ for each block of the

outer relation is performed [12]. Key on outer relation, for each

block of relation ‘r’ is scanned, the bS blocks of relation ‘s’ are

scanned and for bR blocks of relation ‘r’, the ()bRbS ∗ times the

blocks of relation ‘s’ are scanned. The total block transfer is

()()bRbSbR +∗ , seek Time is ()bR∗2 and access complexity is

()4^nΟ [15].

2.3 Block Nested Loop Join ()2Z − (BNLJ-

Multiple Block Transfer)
Block Nested Loop Join (Multiple-Block-Transfer) divides

memory into two parts. Zr blocks are used for relation ‘r’ and

Zs blocks of main memory are used for relation ‘s’ [13]. If

()2−Z blocks of relation ‘r’ are transferred to main memory and

at ()thZ 1− location in the main memory one block of relation ‘s’

is placed then the tuples of block of relation ‘s’ are compared with

tuples in the ()2−Z blocks of relation ‘r’. After satisfying the join

condition, join result is produced as a joined relation.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

26

In Block Nested Loop Join ()2−Z , the number of blocks

transferred for relation ‘r’ is ()()2ZbR/ − and the number of

blocks transferred for relation ‘s’ is ()() bSZbR ∗− 2/ .

Algorithm: 3 Block Nested Loop Join ()2−Z [15]

for each block bR ()2−Z of relation ‘r’ do

{//block from relation ‘s’

 for each block bS of relation ‘s’ do

 {// tuples are scanned from bR

 for each tuple tr in bR do

 {//tuples are scanned from bS

 f or each tuple ts in bS

 {Test pair ()tstr, to see if they satisfy the join condition

 add tstr ⋅ to the result

 }

 }

 }

 }

 Block Nested Loop Join ()2−Z [15]:-

Use the largest size that can fit in main memory, considering that

space for the inner relation’s buffer and the output also.

If memory has Z blocks, read ()2−Z blocks of the outer relation

at a time and also read a block of the inner relation to join it with

all the ()2−Z blocks of the outer relation.

Total Block transfer = ()()() bRbSZbR +∗− 2/

Total seeks = ()()2/2 −ZbR

Complexity = ()4^nΟ

2.4 Block Nested Loop Join ()3Z − (BNLJ-

Multiple Block Transfer) [14]
It has been assumed that total number of blocks that fits in the

main memory is Z, total number of blocks in which relation ‘r’

fits on hard disk is bR , and total number of blocks in which

relation ‘s’ fits on disk is bS . If ()3−Z blocks of relation ‘r’ are

transferred from disk to main memory and two blocks of relation

‘s’ are transferred from hard disk to main memory in one scan

than the comparison is done and after satisfying the join condition

the tuples are joined and transferred to output buffer at Zth

location of main memory. Then, the total number of block

transfers decreases as compared to when transfer of ()2−Z

blocks and one block of relation ‘r’ and relation ‘s’ has been done

respectively. If bR is less than Z or bR equals to Z, then number

of blocks transfers for relation ‘r’ is ()()3/ −ZbR , and number of

blocks transfers for relation ‘s’ is ()()() 2/3/ bSZbR ∗− . Then, the

total block transfers during r join s is the addition of number of

block transfers from relation ‘r’ and number of block transfers

from relation ‘s’ which is ()() ()()() 2/3/3/ bSZbRZbR ∗−+− .

Fig 1: Transfer of Blocks from relation ‘r’ and relation ‘s’ to

main memory in block nested loop ()3Z − algorithm.

Let us assume that,

bR = total number of blocks on disk in which relation ‘r’ fits.

bS = total number of blocks on disk which relation ‘s’ fits.

 xr = Points to first tuple of first block of relation ‘r’ that is

transferred to main memory.

xs = Points to first tuple (first) of first block of relation ‘s’ in

main memory.

bpr = Block Pointer i.e., it points to the block which is to be

accessed.

bps = Block Pointer of blocks of relation ‘s’ in main memory.

i.e., it points to the block which is under consideration.

Z = Total number of blocks that can fit in main memory.

Let us assume that, ()3−Z blocks are transferred for inner loop

from disk to main memory at ()thZ 2− and ()thZ 1− location

transfer two blocks of relation ‘s’ in main memory. Zth location

is left and is used as an output buffer for join result. Assuming

relation ‘r’ is smaller in size in comparison to relation ‘s’.

Algorithm: 4 Block Nested Loop Join ()3−Z

()()3/ −= ZbRi

()()() 2/3/ bSZbRj ∗−=

While ()0≠i //blocks of relation ‘r’ outer loop

{Move ()3−Z blocks of relation ‘r’ in main memory.

 bpr points to first block of relation ‘r’ in main memory

 While ()0≠j //blocks of relation ‘r’ outer loop

 {Move two blocks of relation ‘s’ at ()thZ 2− and ()thZ 1−

 location of main memory.

 bps points to first block of relation ‘s’ in main memory

 While (xr reaches end of block pointed by bpr)

 {Check whether all tuples of bpr are exhausted or not.

Z-3 blocks of ‘r’

Input buffer for ‘s’

Output buffer

Join result

Relation ‘r’

Relation ‘s’

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

27

 Fig 2: Transfer of Blocks from relation ‘r’ and relation‘s’ to

main memory in block nested loop ()4Z − algorithm.

 While (xs reaches end of block pointed by bps)

 { Check whether bps are exhausted or not.

Compare tuples xr and xs and check the join

condition, if it satisfies then adds ()xsxr ⋅ to output

buffer.

;++xs

 } ;++xr

 } ;++bps ;−−j

 } ;++bpr ;−−i

}

3 PROPOSED WORK

3.1 Block Nested Loop Join ()4Z − (Author’s

Proposed Algorithm)
It has been assumed that total number of blocks that fits in the

main memory is Z, total number of blocks in which relation ‘r’

fits on hard disk is bR , and total number of blocks in which

relation ‘s’ fits on disk is bS . If ()4−Z blocks of relation ‘r’ are

transferred from disk to main memory and three blocks of relation

‘s’ are transferred from hard disk to main memory in one scan

than the comparison is done and after satisfying the join condition

the tuples are joined and transferred to output buffer at Zth

location of main memory. Then, the total number of block

transfers decreases as compared to when transfer of

()3−Z blocks and two block of relation ‘r’ and relation ‘s’ has

been done respectively. If bR is less than Z or bR equals to Z,

then number of blocks transfers for relation ‘r’ is ()()4/ −ZbR ,

and number of blocks transfers for relation ‘s’ is

()()() 3/4/ bSZbR ∗− . Then, the total block transfers during r join

s is the addition of number of block transfers from relation ‘r’ and

number of block transfers from relation ‘s’ which is

()() ()()() 3/4/4/ bSZbRZbR ∗−+− .

Let us assume that,

bR = total number of blocks on disk in which relation ‘r’ fits.

bS = total number of blocks on disk which relation ‘s’ fits

 xr = Points to first tuple of first block of relation ‘r’ that is

transferred to main memory.

xs = Points to first tuple (first) of first block of relation ‘s’ in

main memory.

bpr = Block Pointer i.e., it points to the block which is to be

accessed.

bps = Block Pointer of blocks of relation ‘s’ in main memory.

i.e., it points to the block which is under consideration.

Z = Total number of blocks that can fit in main memory.

Let us assume that, three blocks are transferred for inner loop

from disk to main memory at ()thZ 3− , ()thZ 2− and

()thZ 1− location transfer two blocks of relation ‘s’ in main

memory. Zth location is left and is used as an output buffer for

join result. Assuming relation ‘r’ is smaller in size in comparison

to relation ‘s’.

Algorithm: 5 Block Nested Loop Join ()4−Z (Author’s Proposed

Algorithm)

()()4/ −= ZbRi

()()() 3/4/ bSZbRj ∗−=

While ()0≠i //blocks of relation ‘r’ outer loop

{Move ()4−Z blocks of relation ‘r’ in main memory.

 bpr points to first block of relation ‘r’ in main memory

 While ()0≠j //blocks of relation ‘r’ outer loop

 {Move three blocks of relation ‘s’ at ()thZ 3− , ()thZ 2−

 and ()thZ 1− location of main memory.

 bps points to first block of relation ‘s’ in main memory

 While (xr reaches end of block pointed by bpr)

 {Check whether all tuples of bpr are exhausted or not.

 While (xs reaches end of block pointed by bps)

 {Check whether bps are exhausted or not

 Compare tuples xr and xs and check the join

 condition, if it satisfies then adds ()xsxr ⋅ to output

 buffer.

 ;++xs

 } ;++xr

 } ;++bps ;−−j

 } ;++bpr ;−−i

}

Z-4 blocks of ‘r’

Input buffer for ‘s’

Output buffer

Join result

Relation ‘r’

Relation ‘s’

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

28

3.2 Block Nested Loop Join ()5Z − (Author’s

Proposed Algorithm)
It has been assumed that total number of blocks that fits in the

main memory is Z, total number of blocks in which relation ‘r’

 Fig 3: Transfer of Blocks from relation ‘r’ and relation‘s’ to

main memory in block nested loop ()5Z − algorithm

fits on hard disk is bR , and total number of blocks in which

relation ‘s’ fits on disk is bS . If ()5−Z blocks of relation ‘r’ are

transferred from disk to main memory and four blocks of relation

‘s’ are transferred from hard disk to main memory in one scan

than the comparison is done and after satisfying the join condition

the tuples are joined and transferred to output buffer at Zth

location of main memory. Then, the total number of block

transfers decreases as compared to when transfer of ()4−Z

blocks and three block of relation ‘r’ and relation ‘s’ has been

done respectively. If bR is less than Z or bR equals to Z, then

number of blocks transfers for relation ‘r’ is ()()5/ −ZbR , and

number of blocks transfers for relation ‘s’ is

()()() 4/5/ bSZbR ∗− . Then, the total block transfers during r join

s is the addition of number of block transfers from relation ‘r’ and

number of block transfers from relation ‘s’ which is

()() ()()() 4/5/5/ bSZbRZbR ∗−+− .

 Let us assume that,

bR = total number of blocks on disk in which relation ‘r’ fits.

bS = total number of blocks on disk which relation ‘s’ fits

xr = Points to first tuple of first block of relation ‘r’ that is

transferred to main memory.

xs = Points to first tuple of the first block of relation ‘s’ in main

memory.

bpr = Block Pointer i.e., it points to the block to be accessed.

bps = Block Pointer of blocks of relation ‘s’ in main memory.

i.e., it points to the block which is under consideration.

Z = Total number of blocks that can fit in main memory.

Algorithm: 6 Block Nested Loop Join ()5−Z (Author’s Proposed

Algorithm)

()()5/ −= ZbRi

()()() 4/5/ bSZbRj ∗−=

While ()0≠i //blocks of relation ‘r’ outer loop

{Move ()5−Z blocks of relation ‘r’ in main memory.

 bpr points to first block of relation ‘r’ in main memory

 While ()0≠j //blocks of relation ‘r’ outer loop

 {Move four blocks of relation ‘s’ at ()thZ 4− , ()thZ 3− ,

 ()thZ 2− and ()thZ 1− location of main memory.

 bps points to first block of relation ‘s’ in main memory

 While (xr reaches end of block pointed by bpr)

 {Check whether all tuples of bpr are exhausted or not.

 While (xs reaches end of block pointed by bps)

 {Check whether bps are exhausted or not

 Compare tuples xr and xs and check the join

 condition, if it satisfies then adds ()xsxr ⋅ to output

 buffer.

 ;++xs

 } ;++xr

 ;++bps ;−−j

 } ;++bpr ;−−i

}

4 RESULT & DISCUSSION
Complexity of the proposed algorithm that works in transfer of

()4−Z and ()5−Z blocks is not increased but the rate of block

transfers and time efficiently decreases. It is shown in the table 1

that the complexities of the proposed algorithms named block

nested loop ()4−Z and block nested loop ()5−Z algorithm are

not increased in comparison to the previous join algorithms. So,

from the complexity point of views the algorithms proposed in

this paper are considerably good as they are good when rate of

block transfer is the comparing factor between the block nested

loop algorithms. It is also shown in the table 1 that form block

nested loop ()2−Z to block nested loop ()5−Z the complexity

is ()4^nΟ .

Table 1. Complexities Comparison

Algorithms Access Complexities

NLJ ()nsnr ⋅Ο

BNLJ(one block at a time) ()4^nΟ

BNLJ(Z-2) ()4^nΟ

BNLJ(Z-3) ()4^nΟ

BNLJ(Z-4) (Author’s Proposed) ()4^nΟ

BNLJ(Z-5) (Author’s Proposed) ()4^nΟ

Z-5 blocks of ‘r’

Input buffer for ‘s’

Output buffer

Join result

Relation ‘r’

Relation ‘s’

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

29

This is the table that shows the comparisons of previously

developed algorithm with the algorithm that has been proposed in

this paper. Seek time for of the proposed algorithms named block

nested loop ()4−Z and block nested loop ()5−Z algorithm are

calculated as ()()4/2 −∗ ZbR and ()()5/2 −∗ ZbR respectively.

Where, bR is the number of blocks of relation ‘r’ and Z is the

size in pages of main memory.

Table 2. Seek Time Comparison

Algorithms Seek Time

NLJ bSbR +

BNLJ(one block at a time) bR∗2

BNLJ(Z-2) ()()2/2 −∗ ZbR

BNLJ(Z-3) ()()3/2 −∗ ZbR

BNLJ(Z-4) (Author’s Proposed) ()()4/2 −∗ ZbR

BNLJ(Z-5) (Author’s Proposed) ()()5/2 −∗ ZbR

In Nested Loop Join algorithm, the number of tuples transferred

for relation ‘r’ is ()bSnr ∗ and the number of tuples transferred

for relation ‘s’ is bR , where nr is the number of tuples in relation

‘r’. And, the total number of tuples transferred is presented in the

table 3. In Block Nested Loop algorithm for one by one block

transfer, the number of blocks transfer for relation ‘r’ is bR and

the number of blocks transferred for relation ‘s’ is ()bSbR ∗ . The

total numbers of blocks transferred during block nested loop join

for one by one transfer of blocks is presented in the table 3. In

Block Nested Loop ()2−Z algorithm, the number of blocks

transferred for relation ‘r’ is ()()2ZbR/ − and the number of

blocks transferred for relation ‘s’ is ()() bSZbR ∗− 2/ . The total

number of blocks transferred during block nested loop join

()2−Z is presented in the table 3. In Block Nested Loop ()3−Z

algorithm, the number of blocks transferred for relation ‘r’

is ()()3/ −ZbR and number of blocks transferred for relation ‘s’ is

()()() 2/3/ bSZbR ∗− . The total number of blocks transferred

during block nested loop join ()3−Z is presented in the table 3.

Rate of block transfer is minimized for this algorithm by ½ for

transfer of blocks of relation ‘s’. In Block Nested Loop ()4−Z

algorithm, the number of blocks transferred for relation ‘r’ is

()()4/ −ZbR and number of blocks transferred for relation ‘s’ is

()()() 3/4/ bSZbR ∗− . The total number of blocks transferred

during block nested loop join ()4−Z that is proposed in this

paper is presented in the table 3. Rate of block transfer is

minimized for this algorithm by 1/3 for transfer of blocks of

relation ‘s’.

Table 3. Rate of Block Transfer

Algorithms No. of blocks transferred (in total)

NLJ(tuples) ()bRbSnr +∗

BNLJ (one block) ()()bRbSbR +∗

BNLJ (Z-2) ()() ()()()bSZbrZbR ∗−+− 2/2/

BNLJ (Z-3) ()() ()()() 2/3/3/ bSZbRZbR ∗−+−

BNLJ (Z-4)

(Author’s Proposed)
()() ()()() 3/4/4/ bSZbRZbR ∗−+−

BNLJ (Z-5)

(Author’s Proposed)
()() ()()() 4/5/5/ bSZbRZbR ∗−+−

In Block Nested Loop ()5−Z algorithm, the number of blocks

transferred for relation ‘r’ is ()()5/ −ZbR and number of blocks

transferred for relation ‘s’ is ()()() 4/5/ bSZbR ∗− . The total

number of blocks transferred during block nested loop join

()5−Z that is proposed in this paper is presented in the table 3.

Rate of block transfer is minimized for this algorithm by 1/4 for

transfer of blocks of relation ‘s’.

5 CONCLUSION AND FUTURE WORK
In this paper an approach has been presented that minimizes the

rate of block transfer during join operation processing. In this

paper the proposed approach extended the algorithm of block

nested loop join that is an effective approach to the join operation

processing. However, changing the number of block transfers

from disk to main memory is sufficient to minimize the rate of

block transfers during join relation ‘r’ and relation ‘s’. Some of

the main ideas of this paper are: (1) Avoid the fetching of one

block transfer for relation ‘s’, (2) For relation at inner loop, the

rate of block transfer is decreased by 1/5, (3) The complexity level

does not increase, and (4) Minimizes the number of scans.

Comparison of the proposed algorithm on the basis of access

complexity; seek time and the rate of block transfer has been

proposed. A number of issues are there as the future work for this

paper, it includes the implementation of the proposed algorithm

and previous ones also and comparing the test results of the entire

join algorithms for finding the best one on the basis of different

factors as comparing factors like seek time, cost and join

processing time etc.

6 ACKNOWLEDGMENTS
The authors are very thankful to their respected Mr. Aseem

Chauhan, Chairman, Amity University, Lucknow, Maj. Gen. K.K.

Ohri, AVSM (Retd.), Director General, Amity University,

Lucknow, India, for providing excellent computation facilities in

the University campus. Authors also pay their regards to Prof.

S.T.H. Abidi, Director and Brig. U.K. Chopra, Deputy Director,

Amity School of Engineering & Technology, Amity University,

and Lucknow for giving their moral support and help to carry out

this research work.

7 REFERENCES
[1] Noh, S.Y. and S.K. Gadia, 2008. Benchmarking temporal

database models with interval based and temporal element-

based time-stamping. Journal of System software, 81:1931-

1943.

[2] Sinha, M. and S.V. Chande, 2010. Query optimization using
genetic algorithms. Research Journal of Information

Technology, 2:139-144.

[3] Gracfe, G., 1993, Query evaluation techniques for large
database. ACM Computer Surveys, 25:73-170.

[4] Soo, M.D., R.T.Snodyrass and C.S. Jensen, 1994. Efficient
evaluation of the valid – time natural join. Proceedings of the

10th International conference on data engineering, Feb. 14-

18, Washington, DC, USA, PP: 282-292.

[5] Masaya NAKAYAMA, Masaru KITSUREGAWA and
Mikio TAKAGI, 1998. Hash Partitioned Join Method Using

Dynamic Destaging Strategy. Proceeding of the 14th VLDB

Conference Los Angeles, California.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

30

[6] Robert B. Hagmann, 1986. An Observation on Database
Buffering Performance Metrices. Proceedings of the 12th

International conference on very large Databases, Kyoto.

[7] M. H. Saheb, Oct. 2010. Efficient Algorithm for overlap –
join,. Information Technology Journal, 10:201206.

[8] David J. Dewitt, Jeffrey. F. Naughton and Donovan A.
Schneider, September, 1991. An Evaluation of Non-Equijoin

Algorithms. Proceedings of the 17th International

Conference on Very Large Databases, Barcelona.

[9] Philip W. Frey, Romulo Gonalves, Martin Kersten and Jens
Teubner, 2009. Cyclo Join: A Join that Spins without Getting

Dizzy. In the proceedings of ACM.

[10] Evan P. Haris and Kotagiri Ramamohanarao, 1996. Join
Algorithm Costs Revisited Technical Report 93/5.

[11] Laura M. Haas, Michael J. Carey and Miron Livny, 1993.
SEEKing the Truth about Ad Hoc Join Costs, May.Technical

Report #1148.

[12] Seo-young Noh and Shashi K. Gadia, 2005. Efficient Self
Join Algorithm in Interval-based Temporal Data Models.

Technical Report, Department of Computer Science, Iowa

State University, Ames, Iowa, USA.

http://archives.cs.iastate.edu/documents/disk0/00/00/03/86/in

dex.html.

[13] Michael L. Rupley, Jr. 2008. Introduction to Query
Processing and Optimization. http://www.cs.iusb.edu/

technical_repots / TR- 20080105-1.pdf

[14] Deepak Shukla, Rakesh Kumar Pandey, Deepak Arora and
Ajai Kumar Yadav, 2011. An effective approach for join

operation processing. 2nd National conference on Global

Trends and Innovations in Computer Application and

Informatics, April 9-10th, Meerut, India.

[15] Abraham Silberschatz, Henry F. Korth and S.Sudarshan,
2006. Database System Concepts, 5th Edition, Mc Graw Hill

Higher Education. [ISBN: 007-124476-X].

[16] Elmasri. R. and S.B. Navathe, 2009. Fundamentals of
Database Systems. 5th Edition, Pearson Education. [ISBN:

978-81-317-1625-0].

[17] Ivan Bayross, 2008. SQL, PL/SQL The Programming
Language of Oracle. 3rd Revised Edition, BPB

Publications. [ISBN: 81-7656-964-X].

