
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

14

Rule-based Knowledge Representation Inspired from
Finite Automata

Nabil M. Hewahi

Department of Computer Science
Islamic University of Gaza

Palestine

ABSTRACT

In this paper we present a method for rule based knowledge

representation. The proposed approach is inspired from Finite

Automata (FA). The inspired FA diagrams are easily used to

represent rule-based system and make it more reliable structure

in large complicated systems. One of the major additions that

gives the proposed structure its significance is that it can

represent the rules such that else case, the user text input or user

menu input, and the relation and sequence of inputs are

considered. The proposed diagram is called (RKRFA).

Keywords

Rule-Based Systems, Knowledge Representation, Finite

Automata

1. INTRODUCTION
In this section, we shall give a brief definitions about rule

structure and Finite Automata (FA). Our main concern is to

construct rule based systems using ideas inspired from FA. This

means FA is going to be used as knowledge representation. We

propose this approach to help designers to simplify and clarify

what is required from the software developers/programmer.

1.1 Rule Structure
The standard rule structure is very well known in the case of

expert systems. The structure of standard rule is (<IF condition

THEN action>). Standard rule structure is one well known

method in knowledge representation. Many attempts have been

tried to improve the standard rule structure to deal with Variable

Precision Logic (VPL) such as Censored Production Rules

(CPR) where certainty varies, while specificity stays constant

and has the form IF <premise> THEN <decision> UNLESS

<censors> [6]. Another form of VPL rule structure called

Hierarchical Censored Production Rules (HCPRs). A HCPR is a

CPR augmented with specificity and generality information,

which can be made to exhibit variable precision in the reasoning

such that both certainty of belief in conclusion and its specificity

may be controlled by the reasoning process [1]. Hewahi [3]

improved HCPR by proposing a rule called General Rule

Structure (GRS) to give more flexibility in directing the system

where to go if a certain rule fails to fire. The main usage of VPL

is real time systems. In [4] Hewahi used Hidden Markov Model

as knowledge representation for CPR and presented its usage in

network management systems in [5]. The main concern was how

to compute the certainty value of the CPRs using the statistical

model of HMM. All the presented rule-based knowledge

structures do not help much the code implementers to know the

importance of the sequence of the condition parts within one

rule, and also they do not illustrate whether the inputs are text

inputs (entered by the users) or entered through input menu. In

addition to that, such knowledge representation structures do not

show the relation between one condition with another within the

same rule if some input is entered incorrectly. This means what

inputs need to be reentered again if a certain input is entered

incorrectly. To make some of these problems clear, let us

consider the following rule

IF a and b and c and d THEN k

The above rule means if the conditions a, b, c and d are true then

we conclude k. Let us assume that a and c are given as default

input values and b and d are user inputs. Let us further assume

that if the user enters incorrect value for d, then a new value of b

must be reentered. The rule itself can’t explain this to the code

implementer. If we assume that all the inputs a, b, c and d are

user inputs, the implementer might think that the user can enter

the inputs a,b,c and d in the same sequence shown in the rule,

but this might not be true for a certain situation. For example a

and c could be in any sequence so a can be entered before or

after c but d must be entered after b. Another case is that how to

notify for example the implementer that a is user text input

while d is a menu user input. All the previous knowledge

representation approaches explained above can’t solve this

problem.

1.2 Finite Automata
Finite automata or called deterministic finite automata is a

diagrammatic representation of languages, it consists of the

following components [2]:

a. Set of finite number of states where there is only one

starting state and one or more final states (if any).

b. The set of the language alphabet Σ .

c. Transitions which are edges that connect one state to

another based on a certain alphabet input.

In FA, the outgoing transition from a state must carry one

alphabet. The number of outgoing transition is equal to the

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

15

number of alphabets in Σ. Because in our proposed approach we

might not need to have all the inputs to be exiting from each

state, we shall use None deterministic Finite Automata (NFA).

NFA is similar to FA but transitions going out from a certain

state might not carry all the inputs in Σ. Only the necessary

inputs are considered on the transitions going out of the state. To

make the NFA clear, let us consider Figure 1 and Figure 2. In

Figure 1, the NFA accepts all words that start with either 0 or 1.

The shortest accepted word is 01. Words such as 0010101, 101

and 10101 are accepted. In Figure 2, the shortest accepted word

is abc. It is clear that all the accepted words should end by c.

Words such as abcc, abcabc and abccabc are accepted.

2. THE PROPOSED KNOWLEDGE

REPRESENTATION
Our rule based knowledge representation mechanism is based on

the general concepts of NFA but not with the exact meaning as

given in NFA. Our proposed diagrammatic rule based

representation is called Rule-Based as Knowledge

Representation inspired from Finite Automata (RKRFA) and has

the following:

a. Σ is the system inputs and sub goals.

b. States are given in three different shapes where each

has a specific meaning Δ, Ο, □, ◊, ■. When Δ is used

between two transitions, it means the sequence of the

inputs on top of transitions is also valid if reversed. Ο

means that the sequence of inputs on top of the

transition is must. □ means this state represents a sub

goal. ◊ means “or” relation in a rule having also “and”

relation. ■ is used when a sub goal is an input among

other inputs considering the sequence of a certain

input with the sub goal.

c. We have transitions that transfer the situation from

state to another based on the input.

Let us consider the following case

Rule 1: IF a and k THEN z

Rule 2: IF e THEN m

Rule 3: IF n or b THEN f

Based on our proposed scheme the above rules are given in

Figure 3.

 a k e

Ο Δ □(Sub goal z) Ο (sub goal m)

(a) (b)

 Ο n

 □ (sub goal f)

 Ο b

 (c)

Figure 3. (a) Representation of Rule 1. (b) Representation of

Rule 2 (c) Representation of Rule 3.

In Figure 3(a), the Δ is used to inform the developer that the

input a is independent of input k and they can be inserted to the

system regardless of their order, but still both are necessary to

achieve the sub goal z. This implies that IF k and a THEN z is

exactly the same in execution as Rule 1. If in Figure 3(a) Ο is

used instead of Δ, this means k can only be inserted after input a.

In Figure 3(b), only the input e is required to achieve the sub

goal m. in Figure 3(c) f sub goal is only achieved when either n

or b is entered or given to the system.

Based on the explanation given above, we consider the

following cases:

Case 1: IF a and b THEN k

 ELSE IF g and c and d THEN g

This case can be represented as shown in Figure 4. The rule

checks if a and b are true irrespective of their input sequence, k

is achieved. If any of the inputs is wrong then else rule is

considered.

0,1

0 1

Figure 1. NFA for a language that accepts any word that

ends with 01.

a

a b

Figure 2. NFA for a language that accepts any ward starts

with words end with c.

c

c

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

16

 a b

 Ο Δ □ (sub goal k)

 g

 Ο

 c

 Δ

 d

 □ (sub goal g)

Figure 4. Illustration of RKRFA for case 1.

It is also to be noted from Figure 4 that if a or b is false then we

should go directly to the inputs for the ELSE case.

Case 2: If a and b and (c or d) THEN e

This case can be represented as shown in Figure 5.

 a b c

 Ο Δ ◊

 □ (sub goal e)

 d
 Figure 5. Illustration of RKRFA for case 3.

From Figure 5, ◊ state is used to illustrate that we have “or”

relation in the rule. This state also means that the “or” input

components can be in any order of inputs with the other inputs

as a and b. ◊ state also gives equal opportunity for the inputs of

c and d. If the order of the “or” relation component for any

reason must be checked before any other input, it can be located

at the beginning of RKRFA and then connected with Ο state.

Case 3: IF a THEN e

 IF a THEN x

 IF a THEN n

In this case if the input a is given, then we can conclude e, x and

n. To depict this case, we need to use the term ᴧ (known as

empty string in FA). Figure 6 illustrates this case.

It is clear from Figure 6, that if the input a is given then the

system can achieve e, x and n.

 a ᴧ □ (sub goal e)

 Ο Ο ᴧ □ (sub goal x)

 ᴧ □ (sub goal n)

 Figure 6. Illustration of RKRFA for case 3.

Case 4: In some cases, to help the system developer, whether the

input should be entered by the user or is selected from menu

among several choices. In all the previous cases the inputs are

assumed to be entered by the user, the question is how to

represent the input if it is selected from a given menu. Let us

consider the following rule

IF m THEN g

We want to further assume that the value of m should be

selected from a given menu. Figure 7 shows this case where the

shape of the loop on the top of the state means this value is

entered through a menu.

 m

 ᴧ

 Ο □ (sub goal g)

Figure 7. Illustration of Case 4.

We may also have for example a rule as below:

IF a,b THEN F

Let us assume a is input to be provided by the user and b is a

menu input, we also assume the order of the inputs is optional.

Figure 8 illustrates this case.

 b

 a ᴧ

 Ο Δ □ (sub goal f)

Figure 8. Illustration of the rule IF a,b THEN f.

Case 5: In case an input is given incorrectly, then another

previously given input has to be inputted again. Let us consider

Figure 9.

 a b c

…… Ο Ο Ο Ο……

 Figure 9. Illustration of Case 5.

In Figure 9, if the input b is wrongly entered, the input a has to

be also reentered. But what should be done if there are more

than one entered inputs needed to be reentered if a certain input

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.3, May 2011

17

is incorrectly entered. To illustrate this case, we consider Figure

10. Figure 10 says if c fails, then a and b must be reentered

again.

 a b c d

…Ο Ο Ο Ο Ο….

Figure 10. In this case if c is incorrectly entered, then the

inputs a and b must be reentered again.

One main question, what should be done if a certain input only

needed to be reentered in case of an input is entered incorrectly.

To solve this problem a dashed link is used instead of the solid

line. Figure 11 and Figure 12 depict this situation. In Figure 11,

if c is entered incorrectly, then a must be reentered again before

reentering c. The input b is neutral and need not to be reentered.

In Figure 12, if d is entered incorrectly, then reenter the inputs a

and b before reentering d. c input in this case need not to be

reentered again. In Figure 13, if d is reentered incorrectly, then

the inputs a and c is reentered before entering d again.

 a b c d

…….. Ο Ο Ο Ο Ο

Figure 11. If the input c is entered then a input has to be

reentered.

 a b c d

…….. Ο Ο Ο Ο Ο

Figure 12. If the input d is entered incorrectly, then a and b

inputs have to be reentered.

 a b c d

…….. Ο Ο Ο Ο Ο

Figure 13. If the input d is entered incorrectly, then a and c

inputs have to be reentered.

Case 6: If one of the inputs in the rule is a sub goal achieved

from a previous goal, then the state appearance in RKRFA is □.

Figure 14 shows this case where assumed g is a sub goal that is

achieved by another rule. If we want to omit the order between a

and g we use the ■. The ■ is similar as Δ, but the input in this

case is a sub goal. This is illustrated in Figure 15.

 a g c d

 … Ο □ Ο Ο Ο……

Figure 14. The g input is a sub goal with input sequence

restriction.

 a g c d

 … Ο ■ Ο Ο Ο……

Figure 15. The g input is a sub goal with the optional input

sequence between the sub goal g and the input a.

3. Conclusion
In this paper we presented a rule-based knowledge

representation inspired from finite automata called RKRFA. The

main benefit of RKRFA is that it can help the programmers to

write correctly the rules in rule based systems that can be used in

developing many systems such as expert systems. The proposed

approach can guide the programmers to know how the inputs are

sequenced and in which order they must be entered. Also

RKRFA helps the programmer to distinguish between the direct

user input or an input through menus .The proposed approach is

easy to develop and simple to understand, and reduces the gap

between the software designer and the programmer.

4. REFERENCES
[1] Bharadwaj K., Jain N., “Hirerichal Censored Production

Rules (HCPRs) System”, Data and Knowledge

Engineering, Vol. 8, pp. 19-34, 1992.

[2] Cohen D., “Introduction to Computer Theory”, John Wiley,

1998

[3] Hewahi N., “ A General Rule Structure”, Information and

Software Technology, 44, pp. 451-457, 2002.

[4] Hewahi N., “Hidden Markov Model for Censored Production

Rules”,ICIT 2009, May 3-5, Amman, Jordan, 2009.

[5] Hewahi N., “An Intelligent Approach For Network

Management Based on Hidden Markov Model”,ACIT 2010,

Dec. 14-16, Libya, 2010.

 [6] Michalski R., Winston P., “Variable Precision Logic”,

Artificial Intelligence 29, pp. 121-145, 1986.

