
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

5

An Efficient Text Compression for Massive Volume of Data

M.Baritha Begum
Assistant professor

 Saranathan College of Engineering

Trichy, Tamilnadu

Dr.Y.Venkataramani
 Principal

 Saranathan College of Engineering

Trichy, Tamilnadu

ABSTRACT
To propose a new text compression technique for ASCII texts

for the purpose of obtaining good performance on various

document sizes. This algorithm is composed of two stages. In

the first stage, the input strings are converted into the dictionary

based compression. In the second stage, the redundancy of the

dictionary based compression is reduced by Burrows wheeler

transforms and Run length coding. The algorithm has good

compression ratio and reduces bit rate to execute the text with

increase in the speed.

General Terms
Lossless text compression, Dictionary making algorithm

Keywords

Dictionary Based Encoding (DBE), Burrows-Wheeler

Transform (BWT), Run Length Encoding (RLE).

1. INTRODUCTION
In the field of computer science and theory, Data compression is

essential to evolve a method to compress a lengthy data or to

reduce the Bit-rate .This method involves the process of

encoding information using fewer bits than the original

representation .This process of compression reduces the

consumption of resources of data storage or transmission

bandwidth. However, any compressed data is required to be

decompressed to be used which may cause detrimental effect in

application. The design of data compression schemes involves

trade-offs among various factors, including the degree of

compression, the amount of distortion introduced and the

computational resources are required to compress and
uncompress the data.

Lossless data compression is a class of data compression

algorithms. It enables the process of reconstructing exact

original data from the compressed data. But in lossy data

compression, the reconstruction of approximate original data

leads to a better compression ratio. Original and decompressed

data being identical is important to use lossless data
compression.

Nowadays the need for the most efficient data compression

algorithms has been increased in recent years. The

implementation complexity, the large execution time and the

large memory size are needed in the compression and

decompression algorithms because of the large number of

symbols in the alphabet of the original information sources. [1]

Concerning compression ratio, one of the best compression

algorithms in practice is dictionary based text compression.

The rest of paper is organized as follows. Section 2 gives

background on text transformation algorithms. Section 3

presents dictionary making algorithm. Section 3.1 presents

Burrows wheeler transform. Section 3.2 presents Run length

coding. Section 3.3 presents decoding. Section 4 provides
performance analysis. Section 5 concludes the paper.

2. BACKGROUND ON TEXT

COMPRESSION ALGORITHMS
Any real number between one and zero is encoded as a message

in the arithmetic coding. Arithmetic coding typically has a better

compression ratio than Huffman coding, as it produces a single

symbol rather than several separate code words. Arithmetic

coding is a lossless coding technique. There are a few

disadvantages of arithmetic coding. Is One of the disadvantage

in this coding is that symbol can be decoded after receiving the

whole code word. But if a bit from the codeword is corrupted,

the entire message will be corrupted. Another is that there is a

limit to the precision of the number which can be encoded, thus

limiting the number of symbols to encode within a codeword.

There also exist many patents upon arithmetic coding, so the use

of some of the algorithms also call upon royalty fees. [4, 5]

In Huffman coding encode symbols with higher probability will

appear only minimum output namely a fewer bits. Each symbol

is represented as different amount of bits. No symbol code will

act as prefix for another symbol code. So the code which has

this property is called Prefix code. The drawback of Huffman

code is that maintaining structures with full Huffman Codes

requires limited code length to keep a code as an integer with

limited value. This can be achieved with some loss in

compression ratio. But with possible simplicity of structures,

speed of calculations can be a good reason to choose this coding.

[10, 11]

LZ77 uses the built in implicit assumption that patterns in the

input data occurs close together. Data streams that don’t satisfy

this assumption compress poorly. Another disadvantage of LZ77

is the limited size L of the Look ahead buffer. The size of

matched strings is limited to L-1,but L must be kept small, since

the process of matching strings involves comparing individual

symbols .If L were doubled in size, compression would improve,

since longer matches would be possible, but the encoding would

be much slower while searching for long matches. The size S of

the search buffer is also limited. [5]

Figure.1 illustrates the dictionary based text compression

algorithm. The original text file is provided as input to the

transformation by dictionary based compression, which outputs

the transformed text. This output is provided to an existing, data

compression algorithm (such as BWT with RLE), which

compresses the transformed text. To decompress, one merely

reverses this process, by first invoking the appropriate

decompression algorithm, and then providing the resulting text

to the inverse transform.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

6

Figure 1: dictionary based text compression incorporating a

lossless, reversible transformation

One well-known example of the text compression is the

Burrows-Wheeler Transform (BWT) [7] outlined in figure 1.

BWT combines with run length encoding [8, 9, 10, and 11] to

provide one of the best compression ratios available on a wide

range of data. However, none of these methods has been able to

reach the theoretical best-case compression ratio consistently.

Dictionary Based text compression approach is a new

compression algorithm developed while trying to attain better

compression ratio.

3 .DICTIONARY ALGORITHM
We extract the words mainly from Calgary Corpus files [12]

with 6, 18,108 numbers of words. The words having Upper case

letters are converted into words with lower case letters.

During the formation of table with words, occurrences of words

are checked, words occurring frequently are identified and they

are set in descending order according to their frequency. In this

method, it would generate 8900 words. In the first assignment,

ASCII characters are assigned for each word as a code.

!@#$%^&*()_+........ . Upto ASCII character of 255

For the remaining words from table, all ASCII characters are

combined with capital letter “A”-“Z” and assigned as follows to

get permutation 1.

A! A@ A# A$ A% A^ A& A* A (A) A_ A+……upto ASCII

character of 255.

B! B@ B# B$ B% B^ B& B* B (B) B_ B+………. upto ASCII

character of 255.

Z! Z@ Z# Z$ Z% Z^ Z& Z* Z (Z) Z_ Z+ …….. ..Upto ASCII

character of 255.

For the remaining words from the table with permutation 1, all

ASCII characters are combined with capital letter “A”-“Z” and

assigned as follows to get permutation 2

AA! AA@ AA# AA% AA^ AA& AA* AA (AA) AA_ AA+ ….

Upto ASCII character of 255

BB! BB@ BB# BB$ BB% BB^ BB& BB* BB (BB) BB_

BB+…. upto ASCII character of 255 ……

ZZ! ZZ@ ZZ# ZZ$ ZZ% ZZ^ ZZ& ZZ* ZZ (ZZ) ZZ_ ZZ+

……. upto ASCII character of 255.

The shortest code is assigned to most frequently used words.

The longest code is assigned to less frequently used words.

3.1 BWT Transform
The BWT is an algorithm that takes a block of data and

rearranges it using a sorting algorithm. The resulting output

block contains exactly the same data elements that it starts with,

differing only in their ordering. The transformation is reversible;

meaning the original ordering of the data elements can be

restored with no loss of fidelity.

The BWT is performed on an entire block of data at once. Most

of today's familiar lossless compression algorithms operate in

streaming mode, reading a single byte or a few bytes at a time.

But with this new transform, we want to operate on the largest

chunks of data possible. Since the BWT operates on data in

memory, it encounters files too big to process in one full swoop.

In these cases, the file must be split up and processed a block at

a time. The output result from this proposal of the dictionary

based compression transform is given to the BWT.

3.2 Run Length Coding
Run Length Encoding (RLE) is a simple and popular data

compression algorithm. It is based on the idea to replace a long

sequence of the same symbol by a shorter sequence. It includes

some interesting aspects for the RLE field too. An important

property of the output of the BWT is the presents of many runs,

which results in overestimating the probability of symbols

outside the run. This problem is called "Pressure of Runs" and

can be decreased by RLE. Besides that, a modification of the

MTF algorithm is described which moves the next symbol to the

second place in the list instead of the first place, except the old

position of the new symbol was 0 or 1. If the old position of the

new symbol is 1, it is moved to the first place only if the last

output number was different from 0.

The output of the BWT is applied to the RLE. The

implementation is simple. If successive bytes are equal, note the

frequency of its occurrence, then output the count value, and

continue encoding, of course to discard the repeated bytes. If the

bytes are not equal, then output the first, make the second the

first, and get the next byte as a second, and start again.

3.3 Encoding Algorithm
Extract words from input document are compared with

dictionary table words. If there is a match, it selects the

corresponding code. In this way the whole document is

converted into new coding format.

Example, a section of text from Calgary corpus paper looks like

this in the original text:

“Speech is our everyday, informal, communication medium.

But although we use it a lot, we probably don't assimilate as

much information through our ears as we do through our

eyes, by reading or looking at pictures and diagrams. You go

to a technical lecture to get the feel of a subject\ (em the

overall arrangement of ideas and the motivation behind

them\ (em and fill in the details, if you still want to know

Original text:

„Experiment

output‟

Transform encoding

(Dictionary based

compression)

Transformed text:

E2E>

Data

compression

(BWT with

RLE)

(BWT+RLE)

Compressed text

(Binary code)

Data

decompression

(RLE with

BWT)

(BWT+RLE)

Data

decompression

(BWT+RLE)

Original text:

„Experiment

output‟

Transform decoding

(Dictionary based

compression)

Transformed text:

E2E>

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

7

them, from a book. You probably find out more about the

news from ten minutes with a newspaper than from a ten-

minute news broadcast”

Number of characters required=545

Running this text through the dictionary based encoder yields

the following text:

N6~CCmv2!mF<AAA~C<mlA~E1C0F95!CV5A,D7!D,LS7I

9,PEË9N*,|qBB5Ý¡!qFAÁN¡µEu!Ò¡!NMÕ,úÇ:)¨•¨.)þÿ¸#öv;

kø+"Ó·ÇÙ•Á•Aê

Number of characters required=89

3.4 Decoding Algorithm
The decoding is easier than the encoding. The final encoding

output is taken and fed to run length decoder. Run length

decoder output is applied to the BWT decoder. In BWT decoder

output, upper case letters followed by single ASCII character is

identified as a code. If upper case letters are followed by two

ASCII characters, the second ASII character is identified as

separate code. Extracted code is compared with dictionary table

and corresponding words are collected in the output file. This

output file after processing looks the same as the initial

document since the compression and decompression is lossless.

4. PERFORMANCE ANALYSIS
From these experiments on the transformation algorithms

mentioned in section 3 using standard Calgary Corpus text file

collections. [12]

The performance issue such as compression ratio and Bits Per

Character (BPC) are compared for the seven cases i.e., simple

Arithmetic coding, Huffman with BWT, LZSS with BWT,

Dictionary based Encoding (DBE), Dictionary based Encoding

with BWT, Dictionary based Encoding with RLE and

Dictionary based Encoding with BWT and RLE. The results are

shown graphically and it is proved that DBE with BWT and

RLE performs better than all other techniques in compression

ratio, Bits per Character (BPC).

Table 1: List of files used in experiments

File name Size(byte) Description

Bib 111,261 Bibliography

Geo 102,400 Geological seismic data

Obj1 21,504 VAX object program

paper1 53,161 Technical Paper

Paper2 82,199 Technical Paper

Paper3 46,526 Technical Paper

Paper4 13,286 Technical Paper

Paper5 11,954 Technical Paper

Paper6 38105 Technical Paper

Progc 39,611 Source Code in “C”

Progl 71,646 Source Code in “Pascal”

Progp 49,379 Text: English Text

Fig.1: BPC comparison for Calgary corpus files

Fig.2: Compression Ratio Comparison for Calgary Corpus

Files

0
1

2
3
4
5

6
7

bi
b

ge
o

O
bj
1

pa
pe

r1

P
ap

er
2

P
ap

er
3

P
ap

er
4

P
ap

er
5

P
ap

er
6

pr
og

c

pr
og

l

pr
og

p

Arithmetic coding

Huffman BWT

LZSS BWT

Dictionary based

Dictionary

based+BWT+RLE

0

0.2

0.4

0.6

0.8

1

B
IB

G
E
O

O
B
J1

P
AP

E
R
1

P
AP

E
R
2

P
AP

E
R
3

P
AP

E
R
4

P
AP

E
R
5

P
AP

E
R
6

P
R
O
G
C

P
R
O
G
L

P
R
O
G
P

arithmetic coding

Huffman + BWT

LZSS + BWT

Dictionary based

Dictionary based+BWT+RLE

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

8

Table.2: BPC comparison for Calgary corpus files.

File

name
Arithmetic coding Huffman+BWT LZSS+BWT DBE DBE+BWT DBE+RLE

Dictionary

based+BWT+RLE

Bib 5.232 3.656 5.016 0.2 0.2 0.2 0.192

Geo 5.656 5.8 6.304 0.024 0.024 0.024 0.016

Obj1 5.968 4.768 5.288 0.08 0.08 0.08 0.08

paper1 4.984 3.616 4.976 0.36 0.36 0.352 0.352

Paper2 4.624 3.68 5.136 0.352 0.352 0.352 0.344

Paper3 4.712 3.856 5.336 0.528 0.528 0.528 0.512

Paper4 4.824 4.064 5.376 0.584 0.592 0.584 0.584

Paper5 5.064 4.056 5.256 0.552 0.552 0.552 0.552

Paper6 5.008 3.632 4.952 0.32 0.32 0.32 0.312

Progc 5.24 3.504 4.728 0.12 0.12 0.12 0.112

Progl 4.76 2.68 3.648 0.136 0.136 0.136 0.128

Progp 4.896 2.76 3.688 0.2 0.2 0.2 0.2

Table 3 Comparison of Compression Ratio

File

name
Arithmetic coding Huffman+BWT LZSS+BWT DBE DBE+BWT DBE+RLE DBE+BWT+RLE

Bib 0.654 0.457 0.627 0.025 0.025 0.025 0.024

Geo 0.707 0.725 0.788 0.003 0.003 0.003 0.002

Obj1 0.746 0.596 0.661 0.010 0.010 0.010 0.010

paper1 0.623 0.452 0.622 0.045 0.045 0.044 0.044

Paper2 0.578 0.460 0.642 0.044 0.044 0.044 0.043

Paper3 0.589 0.482 0.667 0.066 0.066 0.066 0.064

Paper4 0.603 0.508 0.672 0.073 0.074 0.073 0.073

Paper5 0.633 0.507 0.657 0.069 0.069 0.069 0.069

Paper6 0.626 0.454 0.619 0.040 0.040 0.040 0.039

Progc 0.655 0.438 0.591 0.015 0.015 0.015 0.014

Progl 0.595 0.335 0.456 0.017 0.017 0.017 0.016

Progp 0.612 0.345 0.461 0.025 0.025 0.025 0.025

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

9

5. CONCLUSION
This paper proposes a method of text transformation using

Dictionary based encoding. In a channel, the reduction of

transmission time is directly proportional to the amount of

compression. If the input text is replaced by variable length

codes with its length less than its average size, the size of input

text can be reduced by using dictionary based compression,

BWT and RLE. And if the coding scheme used is a highly

redundant coding scheme, this would increase the redundancy in

the input text. In this method, an experiment of transforming the

standard Calgary corpus data files by using various algorithms

was conducted. This method achieves good compression ratio

and reduces bits per character.

6. REFERENCE
[1] G.Hold and T.R Marshall, Data compression, John Wiley,

New York 1991.

[2] Jirapond Tadrat and Veera Boonjing, 2008”An Experiment

study on Transformation for Compression using stop lists

and Frequent words” IEEE Transactions on information

technology.

[3] Data compression: the complete reference By David

Salomon

[4] A.carus, A.Mesut, 2010,”Fast text compression using

Multiplies dictionaries”, Information technology journal

9(5) 1013-1021.

[5] M. Burrows and D. J. Wheeler. “A Block-sorting Lossless

Data Compression Algorithm”, SRC Research Report 124,

Digital Systems Research Center.

[6] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei, “ A

Locally Adaptive Data Compression Scheme”, Proc. 22nd

Allerton Conf. On Communication, Control, and

Computing, pp. 233-242, Monticello, IL, October 1984,

University of Illinois

[7] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei, “A

Locally Adaptive Data Compression Scheme”, Commun.

Ass. Comp. Mach., 29:pp. 233-242, April 1986.

[8] R.G. Gallager. “Variations on a theme by Huffman”, IEEE

Trans. Information Theory, IT-24(6), pp.668-674, Nov,

1978

[9] D.A.Huffman. “A Method for the Construction of Minimum

Redundancy Codes”, Proc. IRE, 40(9), pp.1098-1101, 1952

[10] Nelson C. Francisco, Nuno M. M. Rodrigues, Eduardo A.

B. da Silva, Murilo Bresciani de Carvalho, Sergio M. M. de

Faria, , October 2010 “Scanned Compound Document

Encoding Using Multiscale Recurrent Patterns” IEEE

transactions on image processing, vol. 19, no. 10.

[11] Umesh S. Bhadade Prof. A.I. Trivedi, January 2011

“Lossless Text Compression using Dictionaries”,

International Journal of Computer Applications (0975 –

8887) Volume 13– No.8.

[12] Compression test results, corpus.canterbury.ac.nz/

