
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

1

Workflow Mining: Discovering Loops in Process Models

V.R. Kavitha
VCET, Madurai, India

R. Kavitha
VCET, Madurai, India

Dr. N. Suresh Kumar
VCET, Madurai, India

ABSTRACT

The growing complexity of processes in many organizations

stimulates the adoption of business process management

techniques. Process models typically lie at the basis of these

techniques and generally, the assumption is made that the

operational business processes as they are taking place in

practice confirm to these models. Technologies such as

workflow management, Enterprise Resource Planning (ERP)

etc., typically focus on the realization of it [1], [2], [8]. The

current research in process mining still has problems in

mining some common constructs in workflow models.

Among these constructs are loops. Because loops are the

major concern for boundedness of any process model. This

paper discusses about representing workflow model using

Petri Nets and a method to identify loops. For identifying

loops topological sorting is used. In the literature process

logs are used to identify short loops of length two but the

proposed algorithm identify loops of any length.

Keywords

Workflow, Petri Net, Topological sort

1. INTRODUCTION
During the last decade, workflow management concepts and

technology have been applied in many enterprise information

systems. Workflow management systems such as Staffware,

IBM MQSeries, COSA, etc., offer generic modeling and

enactment capabilities for structured business processes. By

making graphical process definitions, i.e., models describing

the life-cycle of a typical case in isolation, one can configure

these systems to support business processes[4] , [5], [9], [10].

Besides pure workflow management systems, many other

software systems have adopted workflow technology.

Despite its promise, many problems are encountered when

applying workflow technology. One of the problems is that

these systems require a workflow design, i.e., a designer has

to construct a detailed model accurately describing the

routing of work. Modeling a workflow is far from trivial; it

requires deep knowledge of the workflow language and

lengthy discussions with the workers and management

involved.

In this work Petri Net is selected for representing workflow

models. The main idea behind selecting Petri Net is checking

boundedness property will be easy when the workflow is

represented as Petri Net. Since Petri Net is a directed graph

the proposed method uses topological sort to identify loops

present in a workflow. In the literature process logs are used

to identify short loops of length two but using the proposed

algorithm loops of any length is identified that is the major

advantage of the present algorithm.

2. PRELIMINARIES

This section introduces the techniques used in the remainder

of this paper. First, we introduce standard Petri Net notations,

then firing rules, Boundedness and Safeness.

2.1. Petri Nets

Petri net is a graphical and mathematical modeling tool

applicable to many systems. They are a promising tool for

describing and studying the information processing systems

that are characterized as being concurrent, asynchronous,

distributed, parallel, non-deterministic and/or stochastic. As a

graphical tool, they can be used as visual communication

aids. As a mathematical tool, it is possible to set up state

equations, algebraic equations and other mathematical

models governing the behavior of the system. The primary

difference between Petri nets and modeling tools is the

presence of tokens which are used to simulate dynamic

concurrent and asynchronous activities in a system. Figure:1

shows the example Petri Net.

A Petri net [3], [11] is a 5-tuple, PN = (P,T,F,W,M0) where:

P = { p1,p2,p3,….,pm} is a finite set of places,

T = { t1, t2, ……, tn } is finite set of transitions,

 is a set of arcs (flow

relation),

W: F -> { 1,2,3, ….} is a weight function,

Mo : P -> { 0,1,2,……} is the initial marking,

 and .

A Petri net structure N = (P, T, F, W) without any specific

initial marking is denoted by N. A Petri net with the given

initial marking is denoted by (N, M0).

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

2

Figure 1. Example Workflow model represented using Petri net

It defines arcs and assigns to each arc a non-negative integer

arc multiplicity; note that no arc may connect two places or

two transitions. Figure 1 [2]shows a P/T-net consisting of 8

places and 7 transitions. Transition A has one input place and

one output place, transition AND-split has one input place

and two output places, and transition AND-join has two input

places and one output place. The black dot in the input place

of A represents a token. This token denotes the initial

marking. The dynamic behavior of such a marked P/T-net is
defined by a firing rule.

2.2. Firing rule

Let (N = (P; T; F); s) be a marked P/T-net. Transition

is enabled, denoted (N, s)[t>, iff t ≤ s.

The firing rule –[->- N X T X N is the smallest relation

satisfying for any (N = (P,T,F),s) N and any T,

 t + t).

2.3. Boundedness

 A given Petri net with initial marking M0 is said to be

bounded if for any reachable marking, the number of tokens

in each place does not exceed a finite value [6] , [7].

A marked net (N = (P, T, F), s) is bounded iff the set of

reachable markings [N, s is finite. It is safe iff, for any
 and any p P, s’ (p) ≤ 1. Note that safeness

implies boundedness. The marked P/T-net shown in Figure 1

is safe (and therefore also bounded) because none of the 8

reachable states puts more than one token in a place.

3.1. TOPOLOGICAL SORT

Topological sort is an ordering of the vertices in a directed

acyclic graph, such that: If there is a path from u to v, then v

appears after u in the ordering. The graphs should be

directed, otherwise for any edge (u,v) there would be a path

from u to v and also from v to u, and hence they cannot be

ordered. The graphs should be acyclic, otherwise for any two

vertices u and v on a cycle u would precede v and v would

precede u. The ordering may not be unique.

Topological sorting can be used to schedule tasks under

precedence constraints. Suppose we have a set of tasks to do,

but certain tasks have to be performed before other tasks.

These precedence constraints form a directed acyclic graph,

and any topological sort defines an order to do these tasks

such that each is performed only after all of its constraints
are satisfied.

3.2 Algorithm for Topological Sort

After the initial scanning to find a vertex of degree 0, we

need to scan only those vertices whose updated in-degrees
have become equal to zero.

1. Store all vertices with in-degree 0 in a queue

2. get a vertex U and place it in the sorted sequence

(another queue).

3. For all edges (U,V) update the in-degree of V, and

put V in the queue if the updated in-degree is 0.
4. Perform steps 2 and 3 while the queue is not empty.

Complexity of topological Sort

The number of operations is O(|E| + |V|), where |V| - number

of vertices, |E| - number of edges. The number of operations

needed to compute the in-degree depends on the

representation:

Adjacency lists: O(|E|)

Matrix: O(|V|2)

For complete graph |E|=O(|V|2)

For example consider Figure 2 to find out the topological
sort. Compute the indegrees for the nodes present in Figure2:

V1: 0

V2: 1

V3: 2

V4: 2

V5: 2

A D E

C

B

AND

split

AND

join

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

3

Figure 2 : Example diagram for topological sort.

 Find a vertex with indegree 0: V1

 Output V1 , remove V1 and update the indegrees:

Sorted: V1

Remove edges: (V1,V2) , (V1, V3) and (V1,V4)

Updated indegrees:

V2: 0

V3: 1

V4: 1

V5: 2

 Find a vertex with indegree 0: V2

 Output V2 , remove V2 and update the indegrees:

Sorted: V2

Remove edges: (V2, V4) and (V2, V5)

Repeat the same process and remove the vertices V4, V3 and

V5.

The resultant topological sorting order is given by

: V1, V2, V4, V3, V5

4. PROPOSED ALGORITHM TO CHECK

FOR BOUNDEDNESS

In this section the details of new algorithm that can handle

loop identification is presented. The Petri net given in Figure

3 representing the workflow processes is taken as an input

since Petri net is also directed graph this property helps in

finding the loops present in the net by using the topological

sorting algorithm. The Petri net given in Figure 3 is

converted into a digraph which is shown in Figure 4.

Topological sorting is applied on the graph given in Figure 4.

Once the algorithm finishes its iteration it finds no node is

left out without process this implies that there is no loop

present in the net. This is because topological sort is possible

only if the given net is directed and acyclic. So, if all the

nodes are present in the output list then it is concluded that

no loop present in the net and the net is bounded.

Take another net given in Figure 6 and apply topological

sort. Nodes are selected with zero indegree. S1 is selected

because it is having in-degree zero the same way all other

nodes are added to the output list. Since the nodes P2, P4, P6

and P8 are in a loop it will never get indegree zero so it will

not be added in the output list when the algorithm terminates

after specified number of iterations. This implies that those

nodes which are not included in the output list are part of a

loop. This leads to the conclusion that this workflow may

lead to Unboundedness.

Figure 3: Workflow represented as Petri net

P3 P5 P7 P9

P10
SE SS P1

P2 P4 P6 P8

V1 V2

V3 V5 V4

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

4

Figure 4: Graph representation of the above Petri net for topological sort

Figure 5: Resultant graph after applying topological sort

Figure 6: Petri net with loop

4. CONCLUSION
This paper introduced the topic of how topological sort is

applied to find the loops present in a Workflow. Using a

number of simple examples the work is illustrated. The main

advantage of applying topological sort is it is easy to

implement and practically possible to apply if the workflow

grows in size. But there is a need to further address scientific

challenges. Problems like length of the loop, persons

involved in the loop duplicate tasks with noise etc., needs

more attention.

5. REFERENCES
[1] W.M.P. van der Aalst, A.J.M.M. Weijters, and L.

Maruster. Workow Mining: Discovering Process

Models from Event Logs. IEEE Transactions on

Knowledge and Data Engineering, 16(9):1128{1142,

2004.

[2] A.J.M.M. Weijters and W.M.P. van der Aalst. Process

Mining: Discovering Workflow Models from Event-

Based Data. In B. Kr¨ose, M. de Rijke, G. Schreiber,

and M. van Someren, editors, Proceedings of the 13th

SS P1

P2

P3

P4

P5

P6

P7

P8

P9

P10 SE

P3 P5 P7 P9

P10
SE SS P1

P2 P4 P6 P8

SS P1 P2
P3 P4 P5

P6 P7 P8 P9
P10

SE

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

5

Belgium-Netherlands Conference on Artificial

Intelligence (BNAIC 2001), pages 283–290, 2001.

[3] T. Murata. Petri Nets: Properties, Analysis and

Applications. Proceedings of the IEEE, 77(4):541–580,

April 1989.

[4] Ana Karla Alves de Medeiros, Antonella Guzzo,

Gianluigi Greco, Wil M. P. Van der Aalst, A.J.M.M.

Weijiters, Boudewijn F. van Dongen, and Domenico

Sacca. Process Mining Based on Clustering : A Quest

for Precision. BPM Workshops, LNCS 4928, Springer-

Verlag Berlin Heidelberg 2008

[5] W.M.P. van der Aalst and K.M. van Hee. Workflow

Management: Models, Methods, and Systems. MIT

press, Cambridge, MA, 2002.

[6] W.M.P. van der Aalst. The Application of Petri Nets to

Workflow Management. The Journal of Circuits,

Systems and Computers, 8(1):21–66, 1998.

[7] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters,

B.F. van Dongen, A.K. Alves de Medeiros, M. Song,

and H.M.W. Verbeek. Business Process Mining: An

Industrial Application. Information Systems,

32(5):713{732, 2007.

[8] S. Kumanan and K. Raja. Modeling and Simulation of

Projects with Petri Nets. American Journal of Applied

Sciences 5 , 2008.

[9] Yu Ru and Christoforos N. Hadjicostis. Reachability

Analysis for a Class of Petri Nets. Joint IEEE

Conference on Decision and Control and 28th Chinese

Control Conference P.R. China, 2009.

[10] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco,

And Domenico Sacca. Mining and Reasoning on

Workflows. IEEE Transaction on Knowledge and Data

Engineering, Vol 17, No.4 April 2005.

[11] Hemant Kr. Meena, Indradeep Saha, Koushik Kr.

Mondal, T. V. Prabhakar. An Approach to Workflow

Modeling and Analysis, OOPSLA, Oct 16-17, 2005

Saniego, CA, USA.

