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ABSTRACT 
This paper presents a terminal voltage control of a wind turbine 

Self Excited Induction Generator (SEIG). The wind turbine 

induction generator system is proposed to supply an isolated 

static load under widely varying conditions. The terminal voltage 

had been regulated by adapting the value of the excitation 

capacitance from Static VAR Compensator (SVC) using 
Artificial Neural Network (ANN) controller. The wind turbine 

operates over a wide range of operating conditions, which means 

that the terminal voltage of the induction generator is not 

constant. Changing the value of excitation capacitance by 

controlling the firing angle of SVC under different operating 

conditions can handle this problem. It is proved that SVC in the 
form of Fixed Capacitor –Thyristor Controlled Reactor (FC-

TCR) is used not only provide capacitive excitation for the 

isolated induction generator, but also it controls its terminal 

voltage at all different loads with variable speeds of the windmill 

prime-mover. ANN is used for on-line prediction of the suitable 

firing angles required to control the terminal voltage of the 

system under different operating conditions. 

Keywords 
Self Excited Induction Generator, Static VAR Compensator and 

Artificial Neural Network. 

 

Nomenclature 

RS, RR, RL     p.u stator, rotor and load resistances, 

respectively 

XS, XR, XM ,XL p.u stator, rotor leakage, magnetizing 

,exciting and load reactances, at base 

frequency, respectively 

ZL p.u load impedance 

fS                  synchronous frequency 

F                       p.u frequency 

v                   p.u rotational speed 

Eg, VT      p.u air gap and terminal voltages, 

respectively 

IS, IL    pu stator and load currents per phase, 

respectively 

XV              controllable reactance of SVC 

 λ  learning rate 

µ   momentum factor 

N number of training iterations. 
 

 

1. INTRODUCTION 
In recent years, it has been focused in new resources for 

electricity generation as wind, hydro…etc. The SEIG was used 

as the electromechanical energy converter in such generation 

schemes. The advantages of induction generators are low cost, 

robustness, absence of moving contacts and no need for DC 

excitation. The cost of an induction generator is about 40% - 
50% of that of a synchronous generator of the same capacity. 

The SEIG is capable of generating electrical energy from 

constant speed as well as variable speed prime movers. Such an 

energy system can feed electrical energy to isolated locations, 

which in turn can enhance agriculture production and improve 

the standard of living in remote areas. 

The magnitude of the terminal voltage of a SEIG depends upon 

the load impedance, excitation capacitance, and speed of the 

prime mover. The acceptability of such units depends upon the 

capability of the control system, which will provide constant 

voltage at different loads and different speed. Many 

investigations on the suitability, steady state analysis and output 

control of three phase SEIG have been made [1-5].  

SVC are widely used in power systems for several applications 

[6]. They are mainly used in voltage control purposes and in 

stability problem solutions. They are used for solving machine 

operation problems such as induction motor starting and 
induction motor short circuit problems solutions [7-11]. 

Recently, there have been excessive and attractive schemes of 

neural network used in power system control since they hold a 

promising future to solve problems that have so far been difficult 

to handle with classical analytical methods. Among these control 

schemes, the back propagation based neural network controllers, 
which are mostly used in identification and adaptation control 

problems [12]. In back propagation control scheme, learning is 

divided into general and specialized learning. In general learning 

makes the input space of the plant with training samples so that 

the network can interpolate for intermediate points [13]. The 

specialized learning learns directly evaluating the accuracy of the 
network which is given by the error between the actual and 

desired outputs of the plant. The error evaluation updates the 

corrective weights in the network. In this sense, the controller 

learns continuously and hence it can control plants with time-

varying characteristics. 

In this paper, a variable speed windmill driven induction 

generator is excited by ANN based SVC in order to control the 

terminal voltage under different loading conditions. 

2. SYSTEM MODELLING 

2.1 Steady State Analysis of Self-Excited 

Induction Generators  
Fig. 1 shows the per-phase equivalent circuit commonly used for 

SEIG supplying an isolated static load. A three-phase induction 

machine can be operated as a SEIG if its rotor is externally 

driven at a suitable speed and a three-phase capacitor bank of a 
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sufficient value is connected across its stator terminals. When the 
induction machine is driven at the required speed, the residual 

magnetic flux in the rotor will induce a small e.m.f. in the stator 

winding. The appropriate capacitor bank causes this induced 

voltage to continue to increase until an equilibrium state is 

attained due to magnetic saturation of the machine. 

When a SEIG is loaded, both the magnitude and frequency of the 

induced e.m.f are affected by: the prime mover speed, the 

capacitance of the capacitor bank and the load impedance.  

The steady-state per-phase equivalent circuit of a SEIG, 

supplying a balanced resistive load, is shown in Fig. 1. From Fig. 

1, the total current at node a may be given by: 

                                                                                                (1) 

 

Therefore, under steady-state self-excitation, the total admittance 

must be zero, since              so 
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Fig. 1 Per-phase equivalent circuit of a SEIG. 

Equations 3 and 4 are nonlinear equations for the four unknowns 

F, XM, XV and v. Two of these unknowns should be specified. 

The other two unknowns can be found by solving the two non 

linear equations. Different values of rotational speed v and the 

controlled value of the capacitance Xv are determined to control 

the output voltage then the frequency and XM are calculated. 

Based on the analysis introduced in [14, 15], a fifth order 

polynomial independent of XM is extracted to calculate the 

frequency, then the values of XM are calculated at different 

loading conditions. 

2.2 SVC Modeling 
FC-TCR is modeled in the form of a variable reactance XLSVC, 
which consists of two shunt elements as shown in Fig. 2. 

The first element is a fixed capacitor of capacitive impedance 

denoted by XCSVC . The second element is part TCR whose 
reactive impedance is XLFSVC with a bi-directional thyristor 

valves. Full conduction is obtained with a firing angle of 90˚ , 

with a maximum possible firing angle of 180˚.As firing angles 

ranges from 90˚, to 180˚ ,the modes of operation of FC-TCR 

varies from inductive to capacitive modes as the firing angles 

increase,[6].   

 

 

The controllable reactance of the TCR part is XLSVC ,[16],which 

is defined by : 

                           

                                                                                                (5) 

 

The effective reactance XV the FC-TCR is given by: 

                                                                               (6)     

 

 

2.3 Neural network controller for FC-TCR 

Artificial Neural Networks are considered as a relatively new 

information processing technique. They can be defined as “a 

computing system made up of a number of simple, highly 
interconnected processing elements, which process information 

by its dynamic state response”. A neural network consists of a 

number of very simple and highly interconnected processors 

called neurons, which are the analogy of the neurons in the brain 

[17]. The neurons are connected by a large number of weighted 

links, over which signals can pass. In the present application, 
three layers neural network (having an input layer, a hidden layer 

and an output layer) have been used, together with a 

tansigmoidal activation function and supervised training via a 

back-propagation technique, as shown in Fig. 3. The well known 

enhancement of introducing a momentum term in the weight 

updating formula has also been successfully applied to reduce 

training times and to help in avoiding premature convergence.  

The weights of neural network are adapted effected by error 

signal comes from the difference between desired and actual 

firing angles. To optimize the network, its error function is 

          Fig.2 Schematic diagram of FC-TCR 
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formulated in such a way that is quadratic in terms of the 

parameters to be estimated. 

The error function E is calculated as 

 

                                                                                              (7) 

 

 

Where αr is the actual firing angle and αL is the desired target at 

any time k, during each time interval from m-1 to m, the 
backpropagation algorithm is used to update the connective 

weights w according to the relation 

 

 

              (8)                   

 

 

A three-layer (input, hidden, and output) network is used for the 

neural controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Schematic diagram of the construction of the adopted 
neural network model 

 

3. SIMULATION RESULTS 
As the excitation capacitance increases, the support of the 
terminal voltage is occurred, so terminal voltage increases to 

higher levels with the load variation as depicted in Fig.4. 

 

The terminal voltage is also changed by the variation of the 

speed at different excitation capacitances as shown in Fig.5. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Variation of terminal voltage with load    variation at 

different speeds . 

 
Fig.5 Variation of terminal voltage with speed variation at 

different excitation capacitances. 

 

Fig.6, indicates the variation of terminal voltage with excitation 

capacitances at different speeds. As the speed increases the 
terminal voltage is increased till reach the saturation at higher 

values of excitation capacitance, then the terminal voltage is 

nearly constant.  

 

Fig.6 Variation of terminal voltage with excitation 

capacitances at different speeds. 

 

The capacitance required Xv at each loading conditions in order 

to maintain the output voltage at 1.1 p.u is obtained, then the 

corresponding values of the firing angles required for control the 

excitation capacitance at each loading condition. 

To train the neural network, 42 operating conditions are 

calculated by changing the per unit rotor speed and per unit load 

impedance. The excitation capacitance value for each operating 

point is calculated to keep the terminal voltage constant at 1.1 

p.u. The rotor speed is changed in steps of 0.1 from 0.6 p.u., to 

1.2 p.u. The load impedance is increased gradually from 0.8 to 5 
p.u. The calculated values of excitation capacitance and the 

corresponding firing angles are used as an output target of the 

proposed neural network. The results of the training are depicted 

in Fig.7.  

To test the generalization capabilities of the neural network, 40 

operating conditions (rather than the training points) are used. 
The results of the test are depicted in Fig. 8, that shows that the 

proposed scheme able to predict the value of the firing angle for 

new operating conditions. 
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4. CONCLUSIONS 
This paper introduces a novel technique, back-propagation based 

ANN controller, to control FC-TCR to control the output voltage 

of wind turbine SEIG. The new controller allows FC-TCR to 

excite the SEIG to maintain the output voltage at 1.1 p.u, at 
different loading conditions. The ANN used apply on line 

excitation of SEIG with the voltage control. 

The use of an adaptive excitation capacitance value is motivated 

by the fact that the wind turbine generator operates over a wide 

range of operating conditions, and hence no single capacitance 
value is sufficient for regulating the terminal voltage. Simulation 

results are presented to investigate the variation of terminal 

voltage when the rotor speed and load are changed 

simultaneously, then the controller adjusts the terminal voltage at 

1 p.u. 

 

           Fig.7, The predicted firing angles at different operating 

points used for training. 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

Fig.8, The predicted firing angles at different operating points 

obtained from the ANN . 

Appendix A 

The SEIG chosen for this study is a 3-phase, 4-pole, 50 Hz, 2 

kW, 380V, 5.4 A,Y-connected squirrel cage induction machine 

whose per phase equivalent circuit parameters in pu are: 
 

Rs=0.0982, Xs=0.112, Rr= 0.0621 and Xr = 0.952 base on [1]. 
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