
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

26

An Effective Approach to Job Scheduling in

Decentralized Grid Environment

 G.K.Kamalam

Senior Lecturer/CSE
Kongu Engineering College

Perundurai, Erode

 V.Murali Bhaskaran
Principal

Paavai College of Engineering
Pachal, Namakkal

ABSTRACT

Scheduling of jobs and resource management are the

important challenging work in a grid environment. Processing

time minimization of the jobs arriving at any computer site in

a grid system is one of the major objectives in the research

area of computing. In this paper, we propose a decentralized

grid system model as a collection of clusters. We then

introduce a decentralized job scheduling algorithms which

performs intra cluster and inter cluster (grid) job scheduling.

In this paper, we apply Divisible Load Theory (DLT) and

Least Cost Method (LCM) to model the grid scheduling

problem involving multiple resources within an intra cluster

and inter cluster grid environment. The decentralized job

scheduling algorithm is proposed for both reducing processing

time and processing cost. The proposed decentralized hybrid

job scheduling algorithm employs the DLT and LCM

technique and decentralized divisible job scheduling

algorithm employs DLT technique and produces reduced

processing time and reduced processing cost. The result

shows that the gap between the decentralized job scheduling

algorithm and centralized job scheduling algorithm is

widening as the number of jobs is increased.

Keywords

 Job Scheduling, Heuristic Algorithm, Load Balancing,

Cluster, Coordinator Node, Worker Node.

1. INTRODUCTION
A computational grid is emerging as a wide-scale distributed

computing infrastructure where user jobs can be executed on

either intra cluster or inter cluster computer systems [7,9].

Computational grids have the ability for solving large-scale

scientific problems using heterogeneous and geographically

distributed resources dynamically at run time depending on

their availability, capability, performance, cost and quality of

service requirements [6,8]. Resource management and job

scheduling in grid environment based on clusters is one of the

challenging task [5]. Scheduling is an important problem in

computational grid [14]. The grid environment is dynamic in

nature, in other words, the number of resources and jobs to be

scheduled are usually variable. This kind of feature of grid

makes the scheduling problem a complex optimization

problem [15]. The effective utilization of grid is the efficient

scheduling of jobs to the available resources.

Many heuristic algorithms have been designed to solve the job

scheduling problems. Based on the time at which the

scheduling decisions are made, these algorithms are divided

into static and dynamic scheduling [10]. In the static mode, a

firm estimate of the completion time is made in advance of

the actual execution. The advantage of the static model is that

it is easier to program from the scheduler‟s point of view. The

allocation of job to resource is fixed a priori, and estimating

the cost of job is also easy. The disadvantage is that the cost

estimate based on the static information is not accurate

because in some situations, the resource selected for executing

a job fails due to network failure, or is so heavily loaded with

jobs that its response time is more than expected. Dynamic

scheduling is applied when the jobs are arrived dynamically.

It is used when it is difficult to estimate the computation time

of a job [13].

The primary importance is to design an efficient

scheduling algorithm for minimizing the total processing time

of the jobs. This is achieved by distributing the jobs among

the resources available in the grid system. The aim is to

minimize the overall processing time and the overall

processing cost using specified decentralized job scheduling

algorithm. This scheduling technique is used to effectively

schedule jobs to the available resources to reduce the

processing time and processing cost of the jobs. This research

is concerned with scheduling of jobs in distributed systems

with divisible jobs.

The aim of this paper is to present a decentralized hybrid

job scheduling algorithm and decentralized divisible job

scheduling algorithm adapted to heterogeneous grid

computing environment. In this paper, we compare two

classes of scheduling algorithms centralized and decentralized

job scheduling algorithms. We model the grid as a group of

clusters. Group of users submit jobs to the various clusters. In

centralized scheduling, the scheduler of each cluster is

responsible for scheduling of submitted jobs. In decentralized

scheduling, jobs though submitted locally can be migrated to

another cluster in order to reduce the processing time of the

jobs.

The rest of the paper is organized as follows: Section 2

summarizes the related work. Section 3 discusses the

decentralized grid architecture model. Section 4 describes the

design of decentralized job scheduling algorithm. Section 5

compares the decentralized and centralized job scheduling

algorithms. Section 6 concludes the paper.

2. RELATED WORK
Divisible load theory is designed to solve the challenging

problem of allocating the independent jobs to the available

resources on a grid [2, 3, 12]. A divisible job is one that can

be arbitrarily divided into independent sub jobs. These sub

jobs can be executed in any order on platforms ranging from

one single cluster to large distributed grid systems [11]. The

processing time of each sub job is small compared to the time

to process the whole job.

In LCM method, the jobs are allocated to the resource with

the least allocation cost [1].

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

27

In [1] introduced a decentralized load balancing algorithm,

that considers load index as a decision parameter for

scheduling of jobs within intra cluster and inter cluster grid

environment.

3. DECENTRALIZED GRID

ARCHITECTURE MODEL
 We have proposed a decentralized grid scheduling

architecture model for scheduling jobs in grid consists of a

collection of clusters where cluster server are treated as

Coordinator Nodes (CN). Each cluster consists of more

number of Worker Nodes (WN). Each worker node has

different processing powers. The worker nodes within the

cluster are interconnected through a high speed local area

network. The clusters are connected through a wide area

network.

 The jobs generated by the users are submitted to the

coordinator nodes. A scheduler then partitions the jobs into

sub jobs and schedules. Dispatcher then dispatches the

partitioned sub jobs to the appropriate resources in the intra

cluster or inter cluster grid environment. Grid Information

Centre (GIC) maintains the memory and CPU utilization

value along with the registration information of CN.

4. DECENTRALIZED JOB

SCHEDULING ALGORITHMS (DJSA)

4.1 Decentralized Makespan Local Job

Scheduling Algorithm (DMLJSA)
The grid system consists of a cluster with a Coordinator Node

denote CN, connected to a set of n Worker Node denoted as

WN1 ,WN2,…,WNn. Each user is assigned to a particular

cluster. The jobs submitted by the user will be executed in the

originating cluster or it will be migrated to any of the clusters.

Let k be the number of jobs and n be the number of worker

nodes in each cluster. Let l represent the number of users and

m represents the number of clusters in a grid system. More

formally,

Set of jobs,

 Set of clusters,

 Set of users ,

Set of workernodes,

where

WNnm is the mth worker node of nth cluster.

Jk is the kth job of the set of jobs submitted to the

grid system.

PCnm is the processing cost of mth worker node of

nth cluster.

CTij is the completion time of jth worker node of ith

cluster.

When the job enters cluster, the scheduler receives the

information from GIC and finds the worker node from the

entire cluster whose completion time is minimum and assigns

the job to that particular worker node.

Decentralized makespan local job scheduling algorithm is as

follows:

Step1: The completion time information of each WN of each

cluster is updated at GIC or CN of a cluster periodically.

Step2: If the job set J is empty then go to step6.

Step3: If a new job arrives at CN of a cluster Ci, the scheduler

receives the completion time information of a worker node of

each cluster from GIC and assigns the job to the worker node

with minimum processing time. The processing time is

calculated as follows:

Step4: Repeat step 4 until all jobs is scheduled.

Step5: The processing cost is calculated as:

Step6: END.

4.2 Decentralized Cost Local Job

Scheduling Algorithm (DCLJSA)
When the job enters cluster, the scheduler receives the

information from GIC and finds the worker node from the

entire cluster whose completion time and processing cost is

minimum and assigns the job to that particular worker node.

Decentralized cost local job scheduling algorithm is as

follows:

Step1: The completion time information of each WN of each

cluster is updated at GIC or CN of a cluster periodically.

Step2: If the job set J is empty then go to step6.

Step3: If a new job arrives at CN of a cluster Ci, the scheduler

receives the completion time information of a worker node of

each cluster from GIC and assigns the job to the worker node

with minimum processing time and minimum processing cost.

The processing time is calculated as follows:

Step4: Repeat step 4 until all jobs is scheduled.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

28

Step5: The processing cost is calculated as:

Step6: END.

4.3 Decentralized Divisible Job Scheduling

Algorithm (DDJSA)
A divisible job Ji is divided into jobs of equal size.

Let k be the number of jobs and q is the number of partitions

of a job.

 where J is a set of k jobs and k>=1

Each job is split into q sub jobs

 where q>=1

Decentralized Divisible job scheduling algorithm is:

Step1: The completion time of WN of every cluster is

maintained at GIC or CN of cluster periodically.

Step2: If J is empty, go to step 8.

Step3: If a job arrives, divide the job into sub jobs to the

maximum of five partitions.

Step4: Find the worker node with minimum processing time

from all the clusters as follows:

Step5: Repeat step 4 until all the „q‟ sub jobs are processed.

Step6: Repeat step 3 to 4 until all the jobs are scheduled.

Step7: Calculate the processing cost.

Step 8: END.

4.4 Decentralized Hybrid Job Scheduling

Algorithm (DHJSA)
In static scheduling the scheduler needs to know the execution

time of every job in advance. If this information is not

accurate the scheduling decisions may be inefficient. In real

time systems, the estimation of job execution time is a hard

problem. To overcome this inefficiency, we propose the

decentralized hybrid job scheduling algorithm. First, the users

are assigned to the various clusters. Jobs that are mutually

independent are submitted to the different CN of various

clusters. The scheduler than partitions the job into sub jobs to

the maximum of five partitions and are placed in a global job

set J. The CN receives the completion time information of

each worker node in each cluster and communicates this

information to the GIC periodically, which is later on used for

the allocation of sub jobs to the worker node among clusters.

Upon receiving this information from GIC, the scheduler then

schedules the sub jobs to the worker node of any cluster

whose processing time * processing cost is minimum.

Decentralized hybrid job scheduling algorithm is described as:

Step1: If there is any completion time information from CN or

WN then update the information at GIC or CN.

Step2: If J is empty then go to step 10.

Step 3: If a job Ji completes the execution of all its sub jobs

and was migrated to another cluster then dispatch this job

along with results to the generated cluster and remove the job

from the job set J.

Step 4: If a new job arrives at CN of any cluster Ci then

partition the job into maximum of 5 equal partitions and then

add it to the job set.

Step 5: Among all the clusters find the worker node with

minimum processing time and allocation cost. The processing

time is

Step6: CN at cluster Ci then dispatches the sub job to the

worker node WNmin

Step7: Repeat step 5 to 6 until all sub jobs is scheduled.

Step8: Repeat step 4 to 6 until the job set is empty.

Step9: Calculate the processing cost.

Step10: END.

5. COMPUTATIONAL RESULTS
In this section, the performance of decentralized job

scheduling algorithm is studied based on the simulation

parameters of [4] and are shown in Table 1.

Table 1. Simulation Parameters

Parameters Value

No. of Clusters 10

No. of worker nodes per cluster 10

Processing power of worker

node

500– 5000 MIPS

Job length 2,50,000-

6,50,000 MI
Cost 1-5 G$ unit

No. of users 5

No. of Jobs 50 - 500

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

29

The DJSA performance measurement is measured based on

the three parameters: Total processing time, Total cost and

Number of jobs. The result of DJSA and without DJSA

(WDJSA) shows that the DJSA is more efficient. The total

processing time of completing the jobs of DDJSA algorithm is

minimum compared to that of the WDJSA algorithm is shown

in Table 2 and Table 3 respectively. The total processing cost

of completing the jobs of DHJSA algorithm is minimum

compared to that of the WDJSA algorithm is shown in Table

4 and Table 5 respectively. Figure 2 and Figure 3 shows the

impact of DJSA and WDJSA on the total processing time and

the total cost of completing the jobs.

Table 2. Total Processing Time of WDJSA Algorithm

No. of

Jobs

WDCLJSA WDMLJSA WDHJSA WDDJSA

50 907 502 486 313

100 2811 1508 2333 1102

150 4644 1829 2816 1116

200 5863 2546 3037 1324

250 6300 3340 3973 2114

300 7362 3432 3651 1710

350 10695 4581 7173 3083

400 16615 6168 10272 3844

450 5665 4519 3578 2866

500 15177 5618 10179 3803

Table 3. Total Processing Time of DJSA Algorithm

No. of

Jobs

DCLJSA DMLJSA DHJSA DDJSA

50 222 140 174 120

100 532 262 352 209

150 473 290 307 232

200 827 356 451 232

250 793 431 524 298

300 899 433 540 255

350 1328 564 973 424

400 2028 754 1354 518

450 679 546 462 390

500 1336 677 939 475

Table 4. Total Processing Cost of W DJSA Algorithm

No. of

Jobs

WDMLJSA WDCLJSA WDDJSA WDHJS

A
50 10732 7676 5534 4036

100 30390 28942 23745 22855

150 49015 46261 29796 28363

200 70534 55112 35635 27608

250 91251 58829 59209 38084

300 89777 69827 44456 34643

350 125437 104897 83984 70545

400 186485 163821 114402 99863

450 124744 111332 77631 68897

500 177196 148306 117963 99139

Table 4. Total Processing Cost of DJSA Algorithm

No. of

Jobs

DMLJSA DCLJSA DDJSA DHJSA

50 7686 4506 3735 2324

100 25648 21594 20625 17903

150 42896 39250 25703 22725

200 62824 40799 30950 20627

250 75214 41866 49006 27097

300 83453 60441 40668 26358

350 118321 96057 80953 65301

400 179621 153078 109910 92300

450 120180 104815 74257 65101

500 149507 103360 100485 69278

 Fig 1: Impact of DJSA and WDJSA on Processing Time

 Fig 2: Impact of DJSA and WDJSA on Total Cost

6. CONCLUSION
In this paper, we present an effective decentralized job

scheduling algorithm for grid environment. The result shows

that this algorithm reduces the total processing time and the

total cost and finally, the resource utilization is more and the

load is balanced across the grid environment. As to future

work, is to implement our DJSA algorithm in an actual grid

environment.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

30

7. REFERENCES
[1] Syed Nasir Mehmood Shah, Ahmad Kamil Bin Mahmood,

and Alan Oxley 2010, “Hybrid Resource Allocation for

Grid Computing”, in Proceedings of the IEEE Second

International Conference on Computer Research and

Development, 426 – 431.

[2] D.Yu, T.G.Robertazzi 2003, “Divisible Load Scheduling

for Grid Computing”, in Proceedings of the International

Conference on Parallel and Distributed Computing

Systems.

[3] Murugesan, and C.Chellappan 2009, “An Economical

Model for Optimal Distribution of Loads for Grid

Applications”, in Internal Joural of Computer and

Network Security, Vol.1, No.1.

[4] P.K.Suri, and Manpreet Singh 2010, “An Efficient

Decentralized Load Balancing Algorithm for Grid”, in

Proceeding ofStar the IEEE Second International

Advance Computing Conference,10 – 13.

[5] M.Balajee, B.Suresh, M.Suneetha, V.Vasudha Rani, and

G.Veerraju 2010,”Preemptive Job Scheduling with

Priorities and Starvation cum Congestion Avoidance in

Clusters ”, in Proceedings of the IEEE Second

International Conference on Machine Learning and

Computing , 225 - 229.

 [6] N.Malarvizhi, and Dr.V.Rhymend Uthaiaraj 2009, “A

Minimum Time to Release Job Scheduling Algorithm in

Computational Grid Environment”, in Proceedings of the

5th IEEE Joint International Conference on INC, IMS,

and IDC, 13 - 18.

[7] I.Foster, and C.Kesselman 1999,”The Grid: Blueprint for

a Future Computing Infrastructure”, Morgan Kaufmann

Publishers,USA.

[8] M.Baker, R.Buyya, and D.Lafornza 2002,”Grids and Grid

Technologies for Wide-area Distributed Computing”,

Software-Practice and Experience, Vol.32, No.15, 1437

– 1466.

[9] I.Foster, C.Kesselman, and S.Tuecke 2001,”The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations”, International Journal on High

Performance Computing Applications, Vol.15, No.3,

200 – 222.

[10] G.Manimaran, and C.Siva Ram Murthy 1998,”An

Efficient Dynamic Scheduling Algorithm for

Multiprocessor Real-time Systems”, IEEE Transactions

on Parallel and Distributed Systems, Vol.9, No.3, 312 -

319.

[11] N.Amano, J.O.Gama, and F.Silva 2003, “Exploiting

Parallelism in Decision Tree Induction‟, in Proceedings

from the ECML/PKDD Workshop on Parallel and

Distributed Computing for Machine Learning, 13 – 22.

[12] V.Bharadwaj, D.Ghose, and T.G.Robertazzi

2008,”Divisible Load Theory: A New Paradigm for Load

Scheduling in Distributed Systems”, Cluster Computing,

Vol.6, No.1, 7 – 17.

[13] M.Chetper, F.Claeys, B.Dhoedt, F.De Turck,

P.Vanrollegham, and P.Demeester 2006,”Dynamic

Scheduling of Computationally Intensive Applications

on Unreliable Infrastructures”, in Proceedings of the

Second European Modeling and Simulation Symp.

[14] C.Grimme, J.Lepping, A.Papaspyrou, P.Wieder,

R.Yahyapour, A.Oleksiak, O.Waldrich, and W.Ziegler

2007, “Towards a Standards-based Grid Scheduling

Architecture”, CoreGRID Technical Report TR-0123,

Institute on Resource Management and Scheduling.

[15] K.Kurowski, J.Nabrzski, A.Oleksiak, and J.Weglarz

2006, “Scheduling Jobs on the Grid-Multicriteria

Approach”, Computational Methods in Science and

Technology, Vol.12, No.2, 123 – 138.

