
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

34

Implementation and Performance Analysis of
Exponential Tree Sorting

Ajit Singh
Department of computer Science

and Engineering,

Thapar University, Patiala,
Punjab, India

 Dr. Deepak Garg
Assistance Professor,

Department of computer Science
and Engineering,

Thapar University, Patiala,
Punjab, India

ABSTRACT
The traditional algorithm for sorting gives a bound of

 expected time without randomization and with

randomization. Recent researches have optimized lower bound

for deterministic algorithms for integer sorting [1-3]. Andersson

has given the idea of Exponential tree which can be used for

sorting [4]. Andersson, Hagerup, Nilson and Raman have given

an algorithm which sorts n integers in expected

time but uses space [4, 5]. Andersson has given improved

algorithm which sort integers in expected

time and linear space but uses randomization [2, 4]. Yijie Han

has improved further to sort integers in

expected time and linear space but passes integers in a batch i.e.

all integers at a time [6]. These algorithms are very complex to

implement. In this paper we discussed a way to implement the

exponential tree sorting and later compare results with

traditional sorting technique.

General Terms
Algorithms, Data Structure.

Keywords
Deterministic Algorithms; Sorting; Integer Sorting; Complexity;

Space Requirement, Exponential Tree.

1. INTRODUCTION

Sorting is a classical problem which has been studied by many

researchers. In modern computer world most of the problem is

being solved by sorting. The traditional algorithms for sorting

give a clear picture for complexity and these are best

implemented and used widely. Although the complexity for

comparison sorting is now well understood, the picture for

integer sorting is still not clear. The only known lower bound for

integer sorting is the trivial bound. Many continuous

research efforts have been made by many researchers on integer

sorting [2-16]. Recent advances in the design of algorithms for

integers sorting have resulted in fast algorithms [2-3, 6, 9-13,

15-16]. However, many of these ideas use randomization or

super-linear space. These algorithms still to be implemented.

For sorting integers in [0, m – 1] range space is used in

many algorithms. When m is large, the space used is excessive

which makes implementation a tough task. Thus integer sorting

using linear space is more important and therefore extensively

studied by researchers.

Fredman and Willard showed that n integers can be sorted in

 time in linear space [12]. Raman

showed that sorting can be done in

time in linear space [15]. Later Andersson improved the time

bound to [8]. Then Thorup improved the time

bound to [16]. Later Yijei Han showed

 time for deterministic linear

space integer sorting [9]. Yijei Han again showed improved

result with time and linear space [6]. In these

ideas expected time is achieved by using Andersson’s

exponential tree [8]. The height of such a tree is .

Also the balancing of the tree will take only time.

Balancing does not take much time. The major time is taken by

the insertion of integers as proved by the Andresson [8]. These

algorithms require work on implementation to make them

effective. The implementation must provide expected run time

bound with linear space.

Andersson has shown that if we pass down integers in

exponential tree one by one than the insertion takes

 for each integer i.e. total complexity will

be [8]. This is improvement over the result of

Raman which takes expected time

[15]. And this idea seems to be easy to implement as it is best

way to handle one integer at a time.

Yijie Han has given an idea which reduces the complexity to

 expected time in linear space [6]. The technique

used by him is coordinated pass down of integers on the

Andersson’s exponential search tree [8] and the linear time

multi-dividing of the bits of integers. Instead of inserting integer

one at a time into the exponential search tree, he passed down all

integers one level of the exponential search tree at a time. Such

coordinated passing down provides the chance of performing

multi-dividing in linear time and therefore speeding up the

algorithm. This idea may provide speed up, but in practical

implementation it is very difficult to handle integers in batches.

This paper will present a way to implement the exponential tree

sorting. We will be using modified concept of exponential tree

to implement the sorting as it is very difficult to handle the

pointers in actual Andersson’s exponential tree [8]. We will pass

down integers one at a time. The use of Binary search will

enhance the performance.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

35

2. PRELIMINARY

First we need to understand the implementation of exponential

tree. As discussed above we will use modified concept of

exponential tree. The exponential tree was first introduced by

Andersson in his research for fast deterministic algorithms for

integer sorting [8]. In such a tree the number of children

increases exponentially. An exponential tree is almost identical

to a binary search tree, with the exception that the dimension of

the tree is not the same at all levels. In a normal binary search

tree, each node has a dimension (d) of 1, and has children. In

an exponential tree, the dimension equals the depth of the node,

with the root node having a . So the second level can hold

two nodes, the third can hold eight nodes, the fourth 64 nodes,

and so on. This shows that number of children at each level

increased by a multiplicative factor of 2 i.e. exponential

increases in number of children at each level.

The modified concept says that a tree with properties of binary

search tree will be the exponential tree if it has following

properties:

1. Each node at level will hold number of keys (or

integers in our case) i.e. at depth k the number of key

in any node will be keeping root at level 1.

2. Each node at level will be having children i.e.

at depth the number of children will be .

3. All the keys in any node must be sorted.

4. An integer in child must be greater than key

and less than or equal to key .

Table-1: Total Number of Integers up to levels

Level 1 2 3 4 5 6 7 8 9

No of

Integers
1 5 23 119 719 5039 40319 362879 3628799

Figure-1: Plot of Growth of Exponential Tree

Thus it is clear that the new concept focus on the number of

integers held by each level of exponential tree. The height of the

tree will be .

The total number of integers hold by the tree up to level k will

be given by the following formula:

where is total number of integers up to level . as

root is at level 1 and holds only 1 integer.

 is level and denotes factorial of .

The figure-1 which is the growth plot of the tree clearly shows

that the tree has an exponential growth.

3. SORTING ALGORITHM
This section will provide the sorting algorithm with

implementation. In order to do that, first we must create

exponential node. Here is a skeleton for exponential node:

struct Node{

 int level;

 int count;

 Node **child;

 int data[];

}

Here level will holds the level number of the node.

count will holds the number of integer currently

present in the node.

child is an array of pointers to level+1 children of the

node.

data is an array of integers to hold the integers present

in that node.

Now before inserting any integer in the exponential tree, first we

must know the exact node in which it is to inserted and position

in that node. Hence we require searching method.

As we know that all integers presented in a node of exponential

tree must be sorted thus we can exploit this property to enhance

the performance. The modified binary search is as under.

BinarySearch(Node *ptr,int element)

Step1: If element > ptr->data[count-1] then return ptr->count.

Step2: Set start=0, end=ptr->count-1, mid= (start + end)/2.

Step3: Repeat step 4 & 5 while start < end.

Step4: If element > ptr->data[mid] then start=mid+1

else end=mid

Step5: Set mid= (start + end)/2.

Step6: return mid.

Now we only require the insertion method in which we will call

the binary search. The insertion method is as follows:

Insert(Node *root,int element)

Step1: Set *ptr=root, *parent=NULL, i=0.

Step2: Repeat step 3 to 6 while ptr <> NULL.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

36

Step3: Set level=ptr->level, count=ptr->count.

Step4: Call i=BinarySearch(ptr, element).

Step5: If count<level then Repeat For j=count to i-1 by -1

ptr->data[j]=ptr->data[j-1]

 Set ptr->data[i]=element

 Set ptr->count=count+1

 return

Step6: Set parent=ptr, ptr=ptr->child[i].

Step7: Create a new Exponential Node at ith child of parent and

 insert element in that.

Step8: Return.

The above discussed function insert() gives a complexity

of . When all the integers will be

inserted in the tree, we will call in-order trace of the tree which

will give us the sorted sequence. The in-order trace will be:

In-Order-Tace(Node *r)

Step1: Set count=r->count

Step2: Repeat For i=0 to count by 1

Step3: If r->child[i] <> NULL call In-Order-Trace(r->child[i]).

Step4: Print r->data[i].

Step5: If r->child[count] <> NULL then

call In-Order-Trace(r->child[count]).

Step6: Return.

 The overall combined complexity of above algorithms will

be .

4. PERFORMANCE ANALYSIS
In this section we will compare the performance of the

exponential tree sorting with binary tree sorting and quick sort.

It is obvious to think here that we must compare the exponential

sorting with Quick sort only; but as we know that quick sort

mainly used for integers stored at consecutive memory location,

here the exponential tree sorting is implemented on non-

consecutive memory location. The comparison includes CPU

running time and Memory requirement. The input integers are

generated by using random function and stored in a file.

The implementation of algorithms is done in VC++ on Visual

Studio 2008 using Object Oriented Approach. The platform used

is Intel 64-bit with Core 2 Duo processor having a frequency of

2.0 GHz with Windows 7 64-bit Enterprises Edition running on

it. The system had a RAM of 4GB. While measuring the

performance i.e. collecting the details all other extra processes

were terminated.

4.1 Runtime Comparison

The running time of algorithm is measured as CPU cycles and

later converted to seconds. This is done using clock() function

from clock_t in time.h and then divided by

CLOCKS_PER_SECOND. Same process is followed for both

other algorithms. The running time includes the reading inputs

from input file, creating tree and writing output to output file.

The best out of three runs is noted.

Table-2: CPU Running Time

N Log N Exp Tree Binary Tree Quick Sort

1024 10 0 0 0

2048 11 0.007 0.008 0.007

4096 12 0.016 0.016 0.016

8192 13 0.031 0.047 0.047

16384 14 0.046 0.078 0.141

32768 15 0.141 0.172 0.234

65536 16 0.202 0.343 0.359

131072 17 0.328 0.686 0.796

262144 18 0.687 1.341 1.326

524288 19 1.31 2.449 2.246

1048576 20 2.496 4.446 4.508

2097152 21 5.803 9.937 7.691

4194304 22 23.603 62.26 14.945

8388608 23 59.077 261.816 38.392

16777216 24 156.531 855.022 109.574

The figure-2 shows the CPU running time for the Exponential

tree sorting, which clearly depicts that the slope of graph is

linear.

Figure-2: CPU Running Time Plot for Exponential Tree

Sorting

The figure-3 shows the comparison between CPU running times

for the exponential tree sorting and binary tree sorting which

depicts that the exponential tree sorting takes less CPU time for

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

37

same number of integers. As the number of integers increases

the CPU time for exponential tree sorting increase with very

smaller factor than binary tree sorting. The run time of

Exponential tree sorting is also comparable to Quick Sort.

Figure-3: CPU Running Time Comparison

4.2 Memory Requirement

The memory used by the algorithm is measured by the Windows

Task Manager. The algorithm is executed and the memory used

is monitored and the maximum memory used by the algorithm

during entire run is taken. Three runs are given and the

maximum memory used is noted. The memory requirements are

measured in KB (Kilo Bytes).

Table-3: Memory Requirement

N Log N Binary Tree Exp Tree

1024 10 492 500

2048 11 568 572

4096 12 712 736

8192 13 996 1032

16384 14 1572 1668

32768 15 2724 2852

65536 16 5036 5008

131072 17 9656 8528

262144 18 18892 12860

524288 19 37368 20404

1048576 20 74312 34320

2097152 21 148208 59268

4194304 22 296012 102956

8388608 23 591596 176260

16777216 24 1182784 302908

The figure-4 shows the memory requirement plot for the

exponential tree which depicts that the graph has a linear slope.

The memory requirement increases directly proportionally to

number of integers to be sorted.

Figure-4: Memory Requirement Plot for Exponential Tree

Sorting.

The figure-5 shows the comparison of memory requirements for

exponential tree sorting and binary tree sorting which depicts

that the exponential tree uses very less memory as compared to

binary tree. The reason for less memory used by exponential tree

is that binary tree uses two pointers with each node or each

integer as there is always on integer present in binary tree node,

whereas exponential tree uses m+1 pointers with m integers as

there is m integers are presented in exponential tree node.

Figure-5: Memory Requirement Comparison

5. CONCLUSION

In this paper, we have given the implementation of the

exponential tree with expected time bound of

 in linear space. The way of

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

38

implementation of exponential tree sorting discussed in this

paper is one out of many different ways. The comparison of

exponential tree sorting with binary tree sorting shows that the

exponential tree sorting is far better than binary tree sorting. The

performance is very competitive to quick sort. Thus, this must

give better performance for CPU running time as well as

memory requirements if implemented on set of integers stored in

continuous memory location as array.

6. REFERENCES
[1] M. Dietzfelbinger, T. Hagerup, J. Katajainen, M.

Penttonen, A reliable randomized algorithm for the closest-

pair problem, J. Algorithms 25, 1997.

[2] M. Thorup, Randomized sorting in O(n log log n) time and

linear space using addition, shift, and bit-wise boolean

operations, in: Proc. 8th ACM–SIAM Symposium on

Discrete Algorithms (SODA’97), 1997.

[3] Y. Han, M. Thorup, Sorting integers in

expected time and linear space, IEEE Symposium on

Foundations of Computer Science (FOCS’02), 2002.

[4] A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting

in linear time?, Symposium on Theory of Computing,

1995.

[5] Y. Han, X. Shen, Conservative algorithms for parallel and

sequential integer sorting, International Computing and

Combinatorics Conference, 1995.

[6] Y. Han, Deterministic sorting in O(n log log n) time and

linear space, 34th STOC, 2002.

[7] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and

implementation of an efficient priority queue, Math. Syst.

Theory 10, 1977.

[8] A. Andersson, Fast deterministic sorting and searching in

linear space, IEEE Symposium on Foundations of

Computer Science, 1996.

[9] Y. Han, Improved fast integer sorting in linear space,

Inform. and Comput., 2001.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein:

Introduction to Algorithms, Second Edition,The MIT Press

and McGraw-Hill Book Company, 2001.

[11] S. Albers, T. Hagerup, Improved parallel integer sorting

without concurrent writing, Inform. and Comput., 1997.

[12] M.L. Fredman, D.E. Willard, Surpassing the information

theoretic bound with fusion trees, J. Comput. System Sci.,

1994.

[13] T. Hagerup, H. Shen, Improved nonconservative sequential

and parallel integer sorting, Inform. Process. Lett., 1990.

[14] D. Kirkpatrick, S. Reisch, Upper bounds for sorting

integers on random access machines, Theoret. Comput.

Sci., 1984.

[15] R. Raman, Priority queues: small, monotone and trans-

dichotomous, European Symp. on Algorithms, 1996.

[16] M. Thorup, Fast deterministic sorting and priority queues in

linear space, ACM–SIAM Symp. on Discrete Algorithms

(SODA’98), 1998.

