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ABSTRACT 
The traditional algorithm for sorting gives a bound of 

 expected time without randomization and  with 

randomization. Recent researches have optimized lower bound 

for deterministic algorithms for integer sorting [1-3]. Andersson 

has given the idea of Exponential tree which can be used for 

sorting [4]. Andersson, Hagerup, Nilson and Raman have given 

an algorithm which sorts n integers in  expected 

time but uses  space [4, 5]. Andersson has given improved 

algorithm which sort  integers in  expected 

time and linear space but uses randomization [2, 4]. Yijie Han 

has improved further to sort  integers in  

expected time and linear space but passes integers in a batch i.e. 

all integers at a time [6]. These algorithms are very complex to 

implement. In this paper we discussed a way to implement the 

exponential tree sorting and later compare results with 

traditional sorting technique. 
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1. INTRODUCTION 

Sorting is a classical problem which has been studied by many 

researchers. In modern computer world most of the problem is 

being solved by sorting. The traditional algorithms for sorting 

give a clear picture for complexity and these are best 

implemented and used widely. Although the complexity for 

comparison sorting is now well understood, the picture for 

integer sorting is still not clear. The only known lower bound for 

integer sorting is the trivial  bound. Many continuous 

research efforts have been made by many researchers on integer 

sorting [2-16]. Recent advances in the design of algorithms for 

integers sorting have resulted in fast algorithms [2-3, 6, 9-13, 

15-16]. However, many of these ideas use randomization or 

super-linear space. These algorithms still to be implemented. 

For sorting integers in [0, m – 1] range  space is used in 

many algorithms. When m is large, the space used is excessive 

which makes implementation a tough task. Thus integer sorting 

using linear space is more important and therefore extensively 

studied by researchers. 

Fredman and Willard showed that n integers can be sorted in 

 time in linear space [12]. Raman 

showed that sorting can be done in  

time in linear space [15]. Later Andersson improved the time 

bound to  [8]. Then Thorup improved the time 

bound to [16]. Later Yijei Han showed 

 time for deterministic linear 

space integer sorting [9]. Yijei Han again showed improved 

result with  time and linear space [6]. In these 

ideas expected time is achieved by using Andersson’s 

exponential tree [8]. The height of such a tree is . 

Also the balancing of the tree will take only  time. 

Balancing does not take much time. The major time is taken by 

the insertion of integers as proved by the Andresson [8]. These 

algorithms require work on implementation to make them 

effective. The implementation must provide expected run time 

bound with linear space. 

Andersson has shown that if we pass down integers in 

exponential tree one by one than the insertion takes 

 for each integer i.e. total complexity will 

be  [8]. This is improvement over the result of 

Raman which takes  expected time 

[15]. And this idea seems to be easy to implement as it is best 

way to handle one integer at a time. 

Yijie Han has given an idea which reduces the complexity to 

 expected time in linear space [6]. The technique 

used by him is coordinated pass down of integers on the 

Andersson’s exponential search tree [8] and the linear time 

multi-dividing of the bits of integers. Instead of inserting integer 

one at a time into the exponential search tree, he passed down all 

integers one level of the exponential search tree at a time. Such 

coordinated passing down provides the chance of performing 

multi-dividing in linear time and therefore speeding up the 

algorithm. This idea may provide speed up, but in practical 

implementation it is very difficult to handle integers in batches. 

This paper will present a way to implement the exponential tree 

sorting. We will be using modified concept of exponential tree 

to implement the sorting as it is very difficult to handle the 

pointers in actual Andersson’s exponential tree [8]. We will pass 

down integers one at a time. The use of Binary search will 

enhance the performance. 
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2. PRELIMINARY 

First we need to understand the implementation of exponential 

tree. As discussed above we will use modified concept of 

exponential tree. The exponential tree was first introduced by 

Andersson in his research for fast deterministic algorithms for 

integer sorting [8]. In such a tree the number of children 

increases exponentially. An exponential tree is almost identical 

to a binary search tree, with the exception that the dimension of 

the tree is not the same at all levels. In a normal binary search 

tree, each node has a dimension (d) of 1, and has  children. In 

an exponential tree, the dimension equals the depth of the node, 

with the root node having a   . So the second level can hold 

two nodes, the third can hold eight nodes, the fourth 64 nodes, 

and so on. This shows that number of children at each level 

increased by a multiplicative factor of 2 i.e. exponential 

increases in number of children at each level. 

The modified concept says that a tree with properties of binary 

search tree will be the exponential tree if it has following 

properties: 

1. Each node at level  will hold  number of keys (or 

integers in our case) i.e. at depth k the number of key 

in any node will be  keeping root at level 1. 

2. Each node at level  will be having  children i.e. 

at depth  the number of children will be . 

3. All the keys in any node must be sorted. 

4. An integer in child  must be greater than key  

and less than or equal to key . 

Table-1: Total Number of Integers up to levels 

Level 1 2 3 4 5 6 7 8 9 

No of 

Integers 
1 5 23 119 719 5039 40319 362879 3628799 

 

 

Figure-1: Plot of Growth of Exponential Tree 

Thus it is clear that the new concept focus on the number of 

integers held by each level of exponential tree. The height of the 

tree will be . 

The total number of integers hold by the tree up to level k will 

be given by the following formula: 

 

where  is total number of integers up to level .  as 

root is at level 1 and holds only 1 integer. 

  is  level and  denotes factorial of  . 

The figure-1 which is the growth plot of the tree clearly shows 

that the tree has an exponential growth. 

3. SORTING ALGORITHM 
This section will provide the sorting algorithm with 

implementation. In order to do that, first we must create 

exponential node. Here is a skeleton for exponential node: 

struct Node{ 

 int level; 

 int count; 

 Node **child; 

 int data[]; 

} 

Here level will holds the level number of the node. 

count will holds the number of integer currently 

present in the node. 

child is an array of pointers to level+1 children of the 

node. 

data is an array of integers to hold the integers present 

in that node. 

Now before inserting any integer in the exponential tree, first we 

must know the exact node in which it is to inserted and position 

in that node. Hence we require searching method. 

As we know that all integers presented in a node of exponential 

tree must be sorted thus we can exploit this property to enhance 

the performance. The modified binary search is as under. 

BinarySearch(Node *ptr,int element) 

Step1: If element > ptr->data[count-1] then return ptr->count. 

Step2: Set start=0, end=ptr->count-1, mid= (start + end)/2. 

Step3: Repeat step 4 & 5 while start < end. 

Step4: If element > ptr->data[mid] then start=mid+1 

else end=mid 

Step5: Set mid= (start + end)/2. 

Step6: return mid. 

Now we only require the insertion method in which we will call 

the binary search. The insertion method is as follows: 

Insert(Node *root,int element) 

Step1: Set *ptr=root, *parent=NULL, i=0. 

Step2: Repeat step 3 to 6 while ptr <> NULL. 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.3, June 2011 

36 

Step3: Set level=ptr->level, count=ptr->count. 

Step4: Call i=BinarySearch(ptr, element). 

Step5: If count<level then Repeat For j=count to i-1 by -1 

ptr->data[j]=ptr->data[j-1] 

           Set ptr->data[i]=element 

           Set ptr->count=count+1 

           return 

Step6: Set parent=ptr, ptr=ptr->child[i]. 

Step7: Create a new Exponential Node at ith child of parent and

 insert element in that. 

Step8: Return. 

The above discussed function insert() gives a complexity 

of . When all the integers will be 

inserted in the tree, we will call in-order trace of the tree which 

will give us the sorted sequence. The in-order trace will be: 

In-Order-Tace(Node *r) 

Step1: Set count=r->count 

Step2: Repeat For i=0 to count by 1 

Step3: If r->child[i] <> NULL call In-Order-Trace(r->child[i]). 

Step4: Print r->data[i]. 

Step5: If r->child[count] <> NULL then  

call In-Order-Trace(r->child[count]). 

Step6: Return. 

 The overall combined complexity of above algorithms will 

be . 

4. PERFORMANCE ANALYSIS 
In this section we will compare the performance of the 

exponential tree sorting with binary tree sorting and quick sort. 

It is obvious to think here that we must compare the exponential 

sorting with Quick sort only; but as we know that quick sort 

mainly used for integers stored at consecutive memory location, 

here the exponential tree sorting is implemented on non-

consecutive memory location. The comparison includes CPU 

running time and Memory requirement. The input integers are 

generated by using random function and stored in a file. 

The implementation of algorithms is done in VC++ on Visual 

Studio 2008 using Object Oriented Approach. The platform used 

is Intel 64-bit with Core 2 Duo processor having a frequency of 

2.0 GHz with Windows 7 64-bit Enterprises Edition running on 

it. The system had a RAM of 4GB. While measuring the 

performance i.e. collecting the details all other extra processes 

were terminated. 

4.1 Runtime Comparison 

The running time of algorithm is measured as CPU cycles and 

later converted to seconds. This is done using clock() function 

from clock_t in time.h and then divided by 

CLOCKS_PER_SECOND. Same process is followed for both 

other algorithms. The running time includes the reading inputs 

from input file, creating tree and writing output to output file. 

The best out of three runs is noted. 

Table-2: CPU Running Time 

N Log N Exp Tree Binary Tree Quick Sort 

1024 10 0 0 0 

2048 11 0.007 0.008 0.007 

4096 12 0.016 0.016 0.016 

8192 13 0.031 0.047 0.047 

16384 14 0.046 0.078 0.141 

32768 15 0.141 0.172 0.234 

65536 16 0.202 0.343 0.359 

131072 17 0.328 0.686 0.796 

262144 18 0.687 1.341 1.326 

524288 19 1.31 2.449 2.246 

1048576 20 2.496 4.446 4.508 

2097152 21 5.803 9.937 7.691 

4194304 22 23.603 62.26 14.945 

8388608 23 59.077 261.816 38.392 

16777216 24 156.531 855.022 109.574 

 

The figure-2 shows the CPU running time for the Exponential 

tree sorting, which clearly depicts that the slope of graph is 

linear. 

 

Figure-2: CPU Running Time Plot for Exponential Tree 

Sorting 

 

The figure-3 shows the comparison between CPU running times 

for the exponential tree sorting and binary tree sorting which 

depicts that the exponential tree sorting takes less CPU time for 
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same number of integers. As the number of integers increases 

the CPU time for exponential tree sorting increase with very 

smaller factor than binary tree sorting. The run time of 

Exponential tree sorting is also comparable to Quick Sort. 

 

Figure-3: CPU Running Time Comparison 

4.2 Memory Requirement 

The memory used by the algorithm is measured by the Windows 

Task Manager. The algorithm is executed and the memory used 

is monitored and the maximum memory used by the algorithm 

during entire run is taken. Three runs are given and the 

maximum memory used is noted. The memory requirements are 

measured in KB (Kilo Bytes). 

Table-3: Memory Requirement 

N Log N Binary Tree Exp Tree 

1024 10 492 500 

2048 11 568 572 

4096 12 712 736 

8192 13 996 1032 

16384 14 1572 1668 

32768 15 2724 2852 

65536 16 5036 5008 

131072 17 9656 8528 

262144 18 18892 12860 

524288 19 37368 20404 

1048576 20 74312 34320 

2097152 21 148208 59268 

4194304 22 296012 102956 

8388608 23 591596 176260 

16777216 24 1182784 302908 

 

The figure-4 shows the memory requirement plot for the 

exponential tree which depicts that the graph has a linear slope. 

The memory requirement increases directly proportionally to 

number of integers to be sorted. 

 

Figure-4: Memory Requirement Plot for Exponential Tree 

Sorting. 

The figure-5 shows the comparison of memory requirements for 

exponential tree sorting and binary tree sorting which depicts 

that the exponential tree uses very less memory as compared to 

binary tree. The reason for less memory used by exponential tree 

is that binary tree uses two pointers with each node or each 

integer as there is always on integer present in binary tree node, 

whereas exponential tree uses m+1 pointers with m integers as 

there is m integers are presented in exponential tree node. 

 

Figure-5: Memory Requirement Comparison 

5. CONCLUSION  
 

In this paper, we have given the implementation of the 

exponential tree with expected time bound of 

 in linear space. The way of 
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implementation of exponential tree sorting discussed in this 

paper is one out of many different ways. The comparison of 

exponential tree sorting with binary tree sorting shows that the 

exponential tree sorting is far better than binary tree sorting. The 

performance is very competitive to quick sort. Thus, this must 

give better performance for CPU running time as well as 

memory requirements if implemented on set of integers stored in 

continuous memory location as array. 
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