
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

30

Design and Development of a Procedure for new

Object-Oriented Design Metrics

K.P. Srinivasan
Assistant Professor of Computer Science

C. B. M. College
 Kovaipudur, Coimbatore-641042, India

Dr T. Devi
Reader and Head

Department of Computer Applications
Bharathiar University Coimbatore -641046, India

ABSTRACT
This paper introduces a procedure that has been developed for

evaluating an object-oriented design of a system that involves

many classes. This approach involves two new metrics called

Total Class Metric (TCM) and Total System Metric (TSM) that

assess the design of a class and system as a whole respectively

during object-oriented development process. In the increasing

use of object-orientation in software development, there is a

growing need to measure efficiency and effectiveness of the

design process. In response to this need, a number of researchers

have developed various metrics for object-oriented systems. A

procedure has been introduced for evaluating the effectiveness

of the object-oriented design of a system for the improvement of

the software process instead of using individual design metrics.
The total class metric is defined based on a set of seven metrics

which have been formulated using main attributes and

significant characteristics of an object-oriented design of the

system. This research paper discusses in detail about the new

approach, total class metric and total system metric to represent

the single quality value for the entire system design to judge the

effectiveness of the design. These metrics will be useful in

measuring object-oriented design and feedback system of

software measurement thus yielding an effective object-oriented

design.

General Terms
Software Measurement, Single Overall Metric, Technical

Metrics, Procedural Approach

Keywords

Software Metrics, Object-Oriented Metrics, Class Metrics,

System Metrics.

1. INTRODUCTION
Object-oriented metrics is a still-evolving field and to improve

the Object-Oriented Design (OOD), software measure and

metrics are needed. Software metrics may be broadly classified

as either product metrics or process metrics. Product metrics are

the measures of the software product at any stage of its

development. Process metrics on the other hand are measures of

the Software development process [1, 5, 6, 7, 15, 22]. For

object-oriented software, there are different sets of design

metrics are suggested by different groups for different attribute

measures [1, 6, 15]. In this research, a procedure has been

designed and developed to test the effectiveness of design based

on seven metrics and it incorporates most of the significant,

important features of object-orientated system. The metric set is

defined through the thorough study of object-oriented design

metrics available in the literature. This paper newly introduces

two overall metrics – a single overall metric for representing the

quality of the class called Total Class Metric and another single

overall metric to represent the quality of the overall system

design called Total System Metric. In this procedural approach

will add the confident on the application of software metrics in

easy manner and solve the difficulties referred in literature on

usefulness, application methodology, easy understanding and

result oriented [2, 9, 17, 19]. A set of object-oriented metrics is

explained in next section. In section III procedural approach for

object-oriented design metrics is discussed in detail. In section

IV, case study and illustrative examples are presented and

conclusion includes future directions of the research.

2. A SET OF OBJECT-ORIENTED DESIGN

METRICS
In the development of software metrics research, during the first

decade of the 21th century are really encouraging [3, 13, 14, 17,

19, 20, 22]. The recently proposed software metrics are being

applied more widely, with good results in many cases. A set of

seven object-oriented metrics have been formulated drawing

upon the most significant characteristics of object-orientation.

These metrics will get the values in an easy way, when apply it

in object-oriented design. This metric set will be more

comprehensive, complete and quickly measure the

characteristics of object- oriented design. A set of seven metrics

are defined and explained below with comparison of three main

groups in this research field, namely, Chidamber and Kemerer

[5-8, 12, 21] Brito e Abreu [1,11,16,23] and Lorenz and

Kidd[15, 24].

Metric 1: Methods-Per-Class Factor (MPCF)

maxM

MPC
MPCF

Method Per Class (MPC) is the number of methods excluding

inherited methods defined in the class and Mmax is the maximum

number of methods that may be allowed in a class. Since

influence of the inherited methods is taken into account later in

the MIF metric (Metric 4), they are not included in the count for

MPCF. This stand is similar to that of Chidamber and Kemerer

[5-7, 12, 21], but different from the stand taken by Lorenz and

Kidd [15, 16, 22]. MPC value of 20 is recommended by Lorenz

through experience [15].

Metric 2: Attributes-Per-Class Factor (APCF)

maxA

APC
APCF

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

31

Attributes Per Class (APC) is the number of attributes excluding

inherited attributes defined in the class and Amax is the maximum

number of attributes that may be allowed in a class. Since

influence of the inherited attributes is taken into account later in

the AIF metric (Metric 5), they are not included in the count for

APCF. According to Lorenz and Kidd [15, 16, 24], class size is

determined by the total number of attributes and methods in a

class. To measure the class size, attributes are also considered

equally like MPC [3]. APC value of 6 is recommended by

Lorenz through experience [15].

Metric 3: Depth-of-Inheritance-Level Factor (DILF)

maxD

DIL
DILF

Depth of Inheritance Level (DIL) of a class is the maximum

length from that class to the root of the class hierarchy. Dmax is

the maximum number of inheritance levels allowable in class

hierarchy. Lorenz recommended DIL value of 6 through

experience [15]. Depth of Inheritance Level is similar to that of

Chidamber and Kemerer metrics [6, 21]. DILF is selected due to

it has greater complexity associated with it and key feature of

object-oriented design [13, 17].

Metric 4: Method Inheritance Factor (MIF)

NIMNDM

NIM
MIF

The Method Inheritance Factor (MIF) is defined as the ratio of

the Number of Inherited Methods (NIM) to the Number of

Defined Methods(NDM) and inherited methods in the class.

MIF is similar to that of Brito e Abreu metrics called as Metrics

for Object-Oriented Design (MOOD) [1, 11, 23].

Metric 5: Attribute Inheritance Factor (AIF)

NIANDA

NIA
AIF

The Attribute Inheritance Factor (AIF) is defined as the ratio of

the Number of Inherited Attributes (NIA) to the Number of

Defined Attributes(NDA) and inherited attributes in the class.

AIF is similar to that of MOOD metrics [1, 11, 23].

Metric 6: Coupling Factor (CF)

NPC

NAC
CF

NAC is the Number of Actual Couplings with other classes and

NPC is the Number of Possible Couplings of this class with

other classes of the system. Clearly, the number of possible

couplings of a class with other classes of the system equals

(Number of classes – 1).

Coupling Factor (CF) for a class is defined as Number of other

classes to which coupled / (Number of classes – 1). Since

inheritance is already considered in DILF (Metric 3), MIF

(Metric 4) and AIF (Metric 5) metrics, inheritance is excluded in

determining the couplings [17, 21, 22].

Metric 7: Lack-of-Cohesion Factor (LCF)

NPM

NDM
LCF

NDM is the Number of Dissimilar Method pairs in the class and

NPM is the Number of Possible Method pairs in the class. If two

methods access one or more common attributes, then these two

methods are similar. And if two methods have no commonly

accessed attribute then these two methods are dissimilar. When

there are many similar method pairs in a class, then there is good

cohesion in the class. Lack of cohesion defined as if m is the

number of methods in the class, then the number of possible

method pair is m (m-1)/2. The definition of LCF given above is

different from the definition of Lack of Cohesion in Methods

metric of Chidamber and Kemerer [6, 7, 19]. The set of seven

metrics are validated using Weyuker’s properties of measures.

Next section explains the procedural approach for object-

oriented design metrics.

3. A TOTAL CLASS AND SYSTEM

METRICS FOR OBJECT-ORIENTED

DESIGNS
Metrics are appreciated only when they are clearly needed and

easy to collect and clearly understood. Most metrics defined and

used are stand alone metrics for measurement. In order to

improve the quality and productivity of software, organizations

integrated the measurement and process activity. Current

techniques in industrial environment adopt measurement based

process improvement [13, 19, 22]. The design experts of a

particular domain can design a formal object-oriented design for

the software development in order to produce high quality

software [8, 19]. To find the effectiveness of the object-oriented

design, a procedural approach has been suggested here and

execution of each and every step is detailed. This procedure

yields a single metric value of the called Total Class Metric and

yields single metric value for a system called Total System

Metric for the entire system.

Fig. 1 shows the procedural approach for object-oriented design

metrics. This approach will overcome the problems in

application of metrics and obtains the values from metrics. The

execution and methodology of each step are detailed below. In

step 1, selection of a metrics or metric set to measure the

attributes of object-oriented design is based on the designer or

user to select the attributes to measure based their current needs

or usage of metrics in their project development process or

product. In step 2, metrics or metric set may be formed using

any one of the following methodology: (i) develop a new

metrics set (ii) use an already available metrics set (iii) develop

an modified metric set from currently available metric suite for

a procedure approach. Here, a metric set has been formulated

drawing upon the most significant characteristics of object-

oriented development model of the domain usage. In step 3,

calculate the values of the defined metrics set as detailed in

section II. In step 4, calculate the values of the defined metrics

set and tabulate the values for all classes of the system.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

32

Fig. 1 New Procedural Approach for Object-Oriented Design Metrics

In step 5, calculate the Total Class Metric value using the

defined metrics formula for TCM as shown in step 5 and

tabulate the values for the all classes of the system in the table

used in step 4. In step 6, obtain the Total System Metric value

using the defined metrics formula for TSM as shown in step 6

and find the values for the system. In step 7, closely examine the

TCM values of class and TSM values of the system. Normally, a

good system design will result in a low value for the total metric

value of system. If a system has a high value for TSM then the

design needs to be revised and improved. This step is used for

evaluating the effectiveness of design based on the threshold

values which are defined by the design experts using domain

environments and applications. Normally, below the average

value of TSM is acceptably good. In Step 8, newly introduces

the Accepted Metric Domain Value (AMDV) manager. If TCM

and TSM values are very high due to more number of classes for

that domain or environment, then, apply and check the Accepted

Metric Domain Value (AMDV) manager: if TSM <= AMDV

then design will consider for project or if TSM > AMDV then

design will consider for Definite Reject for a particular domain

of a project. In step 9, check with an Attribute Metrics Manager

of the feedback system in software measurement as shown in the

Fig. 2. This step gives to the designer of a system required more

accuracy of a metrics value or check with other metrics of a

particular attributes. Step 10, the feedback system compares the

result of the steps from step 7 to step 9 of a procedure and

finally produces the TCM and TSM values from obtained

metrics values. In order to choose the efficient design from

among competing designers that is, the system designed by a

few design experts in large projects, the method described above

is also used. In order to find the efficient design among many

designs, TSM values corresponding to different designs are

calculated first and the lowest value among the TSM values of

different designs is chosen. The design corresponding to the

lowest TSM value is an efficient design among many designs.

4. ILLUSTRATIVE EXAMPLES
This proposed approach for object-oriented design metrics is

also used in feedback system of software measurement field.

This section illustrates the use of a set of object-oriented design

metrics and the total class and system metrics in procedural

approach. An illustrative example called the Trader system is

given here [5]. This class system is shown in Fig. 3.

Step 1: Select a metrics or metric set to measure the attributes of

object-oriented design.

Step 2: Form a metric set for a procedure to measure the

effectiveness of an object-oriented design of a particular domain.

Step 3: Calculate and obtain the attribute values of the metric set.

Step 4: Obtained metrics values are tabulate for all classes of the

system for easy usage and manipulation of metric data.

Step 5: Calculate the Total Class Metric value using the defined

metrics formula for TCM as shown below and tabulate their values

for the all classes in the table used in step 4.

Let denote the ith metric and ‘ ’ the total number of metrics in

the metric suite. Total Class Metric formula can be defined as:

 whereiTCM ii 1

Step 6: Obtain the Total System Metric value using the defined

metrics formula for TSM as shown below and find the values for

the system. TSM value is useful to have a single quantity

representing the quality of design of the entire system.

Let TCMj is the Total Class Metric of class j and c is the total

number of classes in the system and Total System Metric formula

can be defined as:

 cwherej
c

TCM
TSM

j

c

j 1

Step 7: Closely examine the TCM values of class and TSM values

of the system. If class have a highest value that is TCM > 1 and

TSM > 1 then modify the classes and apply the step 3 to step 7 until

TCM < 1 and TSM < 1 in order to improve the effectiveness of

design.

Step 8: If TCM and TSM values are very high due to more number

of classes for that domain or environment, then, apply and check the

Accepted Metric Domain Value (AMDV). (Here, AMDV=1). If

TSM AMDV then design will consider for project. If TSM >

AMDV then design will consider for Definite Reject for a particular

domain of a project.

Step 9: If the designer requires more accuracy of a metrics value or

check with other metrics of a particular attributes = YES ,then,

execute to Attribute Metric Manager for corresponding metrics

defined by others and it give values of attributes defined by other

metrics approach. (As per software metrics rules, any attributes of

design can measure in different dimensions, methods, approach in

software measurement field and different metrics are allowed for

particular attributes.)

Step 10: If TCM and TSM values are good with step 7 to step 9

then that project design is effective design of a particular domain. If

TCM and TSM values are not correlated with AMDV values then

that design will reject for project.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

33

Fig. 2 Feedback Systems in Software Measurement

TABLE 1 TOTAL CLASS METRIC OF THE TRADER SYSTEM

The attributes and methods of various classes are given as

pseudo code in Appendix 1.For illustration of the application of

object-oriented design metrics, consider the class, International

Trade. For this class the number of methods defined in the class

is 2 and inherited methods are 5. Taking Mmax = 20, MPCF =

2/20=0.1. And, MIF = 5/2+5 = 5/7 = 0.71. Attributes defined in

the class are 2, and inherited attributes are 8. Taking Amax=6,

APCF = 2/ 6 =0.33. And, AIF = 8/2+8=8/10=0.8.

In Fig. 3 it is seen that International Trade class is two levels

below the root class. Taking DILmax=6, DILF = 2/6=0.33. This

class is calling the calculate-exchange-rates() function of the

class FX Trade. There is no other interaction with any other

class. The number of classes in this system is 8. Hence CF =

1/8-1=1/7=0.14. There are two methods and two attributes

defined in the class. No attribute is accessed by the both the

methods. Hence dissimilar pair is 1. Hence LCF = 1/(2(2-1)/2) =

1/(2x1/2) = 1/1=1. For this class Total Class Metric is

[0.1+0.33+0.33+0.71+0.8+0.14+1]/7 = 3.41/7=0.49. Metrics for

other classes are calculated in a similar manner and given in

Table 1.

The sum of the total class metric of all the 8 classes is 2.58.

Hence the total system metric for the Trader system is 2.58/8 =

0.32. Perusal of the total class metrics of individual classes

shows that they are low enough and hence their designs may be

accepted as good. The value of total system metric is low

enough and hence the design of the system is judged as

acceptably good. The total class metric and total system metric

may be used in guiding the design of individual classes and used

in feedback system in software measurement. Good design of a

class should result in a low value for the total class metric. If any

Class Name MPCF APCF DILF MIF AIF CF LCF TCM

TRADE 0.15 0.5 0 0 0 0.14 0.67 1.46 0.21

BOND 0.05 0.17 0.17 0.75 0.75 0 0 1.89 0.27

FX 0.05 0.17 0.17 0.75 0.75 0 0 1.89 0.27

EQUITY 0.1 0.83 0.17 0.6 0.38 0.28 0 2.36 0.34

MUNICIPAL 0.05 0.33 0.33 0.8 0.66 0.14 0 2.31 0.33

CORPORATE 0.05 0.33 0.33 0.8 0.66 0.14 0 2.31 0.33

INTERNATIONAL 0.1 0.33 0.33 0.71 0.8 0.14 1 3.41 0.49

DOMESTIC 0 0.17 0.33 1.0 0.88 0 0 2.38 0.34

THE SUM OF TCM METRICS 2.58

DESIGN/

REDESIGN

TOTAL CLASS

METRIC

ACCEPTED METRICS VALUE

MANAGER

EFFECTIVE

/ REJECTED

DESIGN

TOTAL SYSTEM

METRIC

ATTRIBUTES METRIC

 MANAGER

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

34

Fig. 3 Class Hierarchy for the Trader System

class design gives rise to a large value then that class needs to be

more closely examined and redesigned better . Similarly, a good

system design will result in a low value for the total system

metric. If a system has a high value for TSM then the design

needs to be revised and improved. Threshold values for TCM

and TSM are considered good may be selected by the design

team based on previous experience in objected-oriented design

of the systems.

5. CONCLUSIONS
This paper introduces a procedural approach for single overall

metric called total class metric and total system metric for a

system consisting of many classes for evaluating the object-

oriented design of a system. In this research paper, also

introduces the usage of metrics as a feedback system in software

measurement field to measure the software design. A set of

seven metrics also proposed for the important features of object-

orientation. This procedural approach gives the values of the

total metric value of system for judging the quality of object-

oriented design of entire system. The same approach is also

useful for selection of efficient design among many designs.

Application of the seven metrics and the total class and system

metrics has been illustrated through an illustrative example.

These metrics will be useful in guiding the design of object-

oriented systems. This feedback system, total class metric and

total system metric of software measurement work can be

further extended to measure the software Process Efficiency and

Product Effectiveness (PEPE) for the development of software.

6. REFERENCES
[1] Abreu, F.B., Melo, .W. 1996. Evaluating the impact of OO

Design on Software Quality. Proceeding of Third

International Software metrics Symposium, Berlin,

German.

[2] Amjan Shaik., Reddy, C.R.K., Manda,B., Prakashini, C.,

Deepthi, K. 2010. Metrics for Object Oriented Design

Software Systems: A Survey. Journal of Emerging Trends

in Engineering and Applied Sciences. 1(2): 189-197.

[3] Bandi, R.K, Vaishnavi, V.K., Daniel, E Turk. 2003.

Predicting Maintenance Performance Using Object -

Oriented Design Complexity Metrics”, IEEE Transactions

on software Engineering. vol. 29. no. 1. 77-89.

[4] Basili, V.R., Briand, L.C., Melo, W.L. 1996. A Validation

of Object–Oriented Design Metrics as Quality Indicators.

IEEE Trans. on soft. Eng. vol. 22, no.10. 751-761.

[5] Chidamber, S.R., Darcy, D.P., Kemerer, C.F. 1998.

Managerial use Of Metrics for Object- Oriented

Software: An Exploratory Analysis. IEEE Transactions on

Software Engineering. vol.24, no. 8. 629-639.

[6] Chidamber, S.R., Kemerer, C.F. 1994. A Metrics Suite for

Object-Oriented Design. IEEE Transactions on Software

Engineering. vol. 20.no. 6. 476-493.

[7] Churcher, N.I., Sheppard, J. 1995. Comments on ‘A Metrics

Suite for Object– Oriented designs. IEEE Transactions

on software Engineering. vol. 21. no. 3. .263-265.

[8] Devi, T., Srinivasan, K.P. 2010. Statistical Techniques in

Software Quality Measurement and Metrics. Proceeding of

UGC Funded National Conference on Recent Advances in

Statistics and Computer Applications, Bharathiar

University, Coimbatore.

[9] Gurdev Singh, Dilbag Singh, Vikram Singh, P.M. 2011. A

Study of Software Metrics. International Journal of

Computational Engineering and Management. vol. 11.

2230-7893.

[10] Emam, K E., Benlarbi, S., Goel, N., Rai, S N . 2001. The

Confounding Effect of Class Size on the Validity of

Object Oriented Metrics. IEEE Transactions on

Software Engineering. vol. 27.no.7..630-650.

[11] Harrison, R., Counsell, S.J., Nithi, R.V. 1998. An

Evaluation of the MOOD Set of Object- Oriented

Software Metrics. IEEE Transactions of Software

Engineering. vol. 24. no.6. 491-496.

[12] Hitz, M., Montazeri, B., C.K. Metrics Suite: A

Measurement Theory Perspective. IEEE Transactions on

software Engineering. vol. 22, no. 4.267- 271.

[13] Kumar Rajnish, A.K., Choudhary., Agawal, A.M. 2010.

Inheritance Metrics For Object-Oriented Design.

International Journal of Computer Science and Information

Technology. vol.2. no.6. 13-25.

[14] Linda Badri, M, Badri., F, Toure. 2011. An Empirical

Analysis of Lack of Cohesion Metrics for Predicting

Testability of Classes. International Journal of. Software

Engineering and Its Applications Vol. 5 No. 2. 69-85.

[15] Mark Lorenz. 1993. Object-Oriented Software

Development: A Practical guide. 1993. Prentice hall,

Englewood Cliffs, New Jersey.

[16] Pressman R.S. 2005. Software Engineering A Practitioner

Approach. 6thEd, McGraw-Hill.

[17] Rakesh Kumar., Gurvinder Kaur. 2011. Comparing

Complexity in Accordance with Object Oriented Metrics.

International Journal of Computer Applications. . Volume

15– No.8.42-45 .

TRADE

BOND FX EQUITY

MUNICIPAL CORPORATE INTERNATIONAL DOMESTIC

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

35

[18] Sarkar, S., KaK, A., C,Rama, G.M. 2008. Metrics for

measuring the quality of modularization of Large -Scale

Object-Oriented Software. IEEE Transactions on Software

Engineering. vol. 34. no. 5.700-720.

[19] Shanthi, P.M., Duraiswamy, K. 2011. An Emprical

Validation of Software Quality Metrics Suites on Open

Source Software for Fault-Proneness Prediction in Object

Oriented Systems. European Journal of Science and

Research.vol.51.no.2. 168-181.

[20] Srinivasan, K.P., Devi, T. 2009. Procedure for Selection of

an Efficient Object-Oriented Design. Proceeding of UGC

Funded National Conference on Recent trends in Software

Engineering, Sullamussalam Science College, Mallapuram,

Kerala.25-27. [Best Paper of the Conference].

[21] Srinivasan, K.P., Devi, T., Thiagarasu, V. 2009. Analysis

of Chidamber-Kemerer Metrics for Object-Oriented

Design. Proceeding of National Conference on Emerging

trends in Computer Science, Avinasilingam University for

Women, Coimbatore.

 [22] Srinivasan K.P., Devi, T. 2009. Design and Development

of a Procedure to Test the Effectiveness of the Object-

Oriented Design. International Journal of Engineering

Research and Industrial Applications. ISSN 0974-1518,

vol. 2. no.VI. 15-25. [http:// www. Ascent - journals

.com/ IJERIA/Vol2.No6/ Paper2.pdf]

[23] Srinivasan, K.P., Devi, T. 2009. A Case Study Approach

for Application of MOOD Metrics in Object-Oriented

Design. Proceedings of the International Conference on

Global Computing and Communications. Hindustan

Institute of Technology and Sciences .Padur. Chennai. 77-

82. [ISBN: 978-81-8424-543-1]

[24] Stephen H Kan. 2006. Metrics and Models in Software

Quality Engineering. Second Edition. Pearson Education.

APPENDIX 1

PSEUDOCODE FOR CLASSES IN TRADER SYSTEM

This appendix gives the details of the object-oriented design of a

system called the Trader System, giving the pseudocode of all

the classes of the system.

// Class trade

Attributes // a.k.a. instance variables

trade id, counter party, trade value // details of trade

operations // a.k.a. methods

evaluate-counterparty () // determines validity of the counter

party from data base file.

get-trade-id () // obtain trade id details from the user

position-update ()

call position – manager :: report trade() // send message to

position – manager class furnishing trade value and trade id.

- - - - - - - - - - - - - - - -

/ class bond trade

Attributes // a.k.a. instance variables

bond – details // bond rating details

operations // a.k.a. methods

get-bond – infor () // access bond date base for current market

price information.

- - - - - - - - - - - - - - - - - -

// class fx trade

Attributes // a.k.a. instance variables

forex-details // foreign market information

operation // a.k.a. methods

calculate-exchange-rates () // access currency market monitor

for later rates

- - - - - - - - - - - - - - - --

// class equity trade

Attributes // a.k.a. instance variables

company, stock market, PE ratio, earnings, 52-week-hi&lo

operation // a.k.a. methods

estimate-beta () // determine risk compared to rest of the

market.

get-stock-quotes () // consult external stock Quotation data base.

call Quotron :: Quotes () for trade id // get the latest

Quote for the trade.

- - - - - - - - - - - - -- - -

// class municipal bond trade

Attributes // a.k.a. instance variables

state-or-federal, over-the-counter

operations // a.k.a. method

calculate-coupon-rate () // determine the inter-rate for the bond

call-Tbill-server :: rates () // get the current rate from

the another source

- - - - - - - - - - - - - - -

// class corporate bond trade

Attributes // a.k.a. instance variables

adr, SP-rating

operations // a.k.a. methods

call-rating (SP-rating) // get the standard // poor rating

if adr = = TRUE then call fx trade ::

calculate_exchange_rates () // get the exchange rate information

if this is a foreign bond issue.

- - - - - - -- - - - - - - - -

// class international equity

Attributes // a.k.a. instance variables

Exchange-rate, quotation

operation // a.k.a. methods

perform_analysis_roa (fx trade::calculate_exchange_rates ()) //

analyze the stock using the foreign exchange rate.

get_quotron (quotation) // determine the current price of stock

 - - - - - - - - - - - - - - - -

// class domestic equity

Attributes // a.k.a. instance variables

attribute 1

operation // a.k.a. methods

none defined yet.

