
International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

7 

Parallel Implementation of Devanagari Text Line and 

Word Segmentation Approach on GPU 

 

Brijmohan Singh 
Department of CSE, 

College of Engineering Roorkee, 
Roorkee-247667, Uttarakhand, 

India 
 

Nitin Gupta, Rashi 
Tyagi, Ankush Mittal 

Department of CSE, 
College of Engineering 

Roorkee, Roorkee-247667, 
Uttarakhand, India 

 

Debashish Ghosh 
Department of E&C,  

IIT Roorkee, 
Roorkee-247667, Uttarakhand, India  

ABSTRACT 
Fast and accurate algorithms are necessary for Optical Character 

Recognition (OCR) systems to perform operations on document 

images such as pre-processing, segmentation, feature extraction, 

training and testing of classifiers and post processing. Text line 

and word segmentation are two important steps in any OCR 

system. Wrong segmentation may affect the accuracy rate of 

OCR systems. The segmentation is very challenging in cases of 

availability of different types of noises, degradations, and 

variation in writing and script characteristics. However, existing 

algorithms suffer from a flawed tradeoff between accuracy and 

speed. In this research work, Devanagri text line and word 

segmentation are carried out using modified standard profiling 

based segmentation approach and parallelized it on Graphics 

Processing Unit (GPU). The main goal of this research work is 

to make segmentation faster for processing a large number of 

document images using parallel implementation of algorithms 

on GPU. GPUs are emerging as powerful parallel systems at a 

cheaper cost. Our work employs extensive usage of highly 

multithreaded architecture and shared memory of multi-cored 

GPU. An efficient use of shared memory is required to optimize 

parallel reduction in Compute Unified Device Architecture 

(CUDA). Experimental results show that our method can 

achieve a speedup of about 20x-30x over the serial 

implementation when running on a GPU named GeForce 9500 

GT having 32 cores.  

General Terms 

Document Analysis and Recognition, Pattern Recognition, 

Parallel Computing.  

Keywords 
OCR; Segmentation; Profiling; Parallelization; GPU; CUDA 

1. INTRODUCTION 
Research on Devanagari [1] character [2-10] and word [11-13] 

recognition is very difficult due to its challenging properties. 

This area of research is still open for further research due to the 

extent of variation among writing styles, speed, thickness of 

character and direction of different writers. Real-world 

handwriting is a mixture of cursive and non-cursive parts, which 

makes the problem of recognition and synthesis more difficult. 

Similar looking characters may give ambiguity, characters 

segment may touch where they should not or vice versa, 

variations and noises may get introduced during scanning and 

continuously increasing demand for accuracy, fast recognition, 

cheap and more practical approach to implement recognition 

system.  

A well-defined dataset plus well problem oriented distinct 

algorithms of OCR help to provide a feasible solution to the 

accuracy and speedup problem. Text line and word 

segmentation are two important steps of OCR system.  

Wrong segmentation can affect the accuracy rate of any script 

OCR system. The segmentation is very challenging in the cases 

of availability of different types of noises, degradations, writing 

and script characteristics. In handwritten document processing, 

half of the errors are due to segmentation. Segmentation of 

Devanagari document image is challenging due to touching 

components, wide variety of handwriting styles, location of line 

and word boundaries, overlapping of characters, identification of 

physical gaps between words and characters. The segmentation 

of Devanagari is difficult due to following problems: There are 

about 350 basic, modified (matra) and compound character 

shapes in the script, the characters in a word are topologically 

connected, shirorekha makes all characters connected in a word , 

matra comes along with the consonants, occurrence of bindu, 

conjoined words (yuktashera) and lack of robust handwritten 

recognition algorithm. The applications [14-16] of OCR systems 

are automatic form processing, automatic mail sorting, bank 

checks processing, and office automation for text entry. 

Some elaborate studies on text line, word and character 

segmentation are in [17-22].  The profiling techniques 

(horizontal profiling, for text line segmentation and vertical 

profiling for the word segmentation) were proposed by [23-24]. 

Other techniques such as classifier based segmentation: 

Character segmentation-by-recognition using log-gabor filters 

[25] and Recognition of Devanagari characters using a 

hierarchical binary decision tree classifier [26], Gap clustering 

techniques [27], Graph based segmentation [28] were also be 

adopted. Kompalli et al. [29] was designed and compared 

segmentation driven and recognition driven Devanagari OCR. 

In this work, we modified the traditional profiling based 

segmentation method to extract text lines and words from 

Devanagari script document images and parallelized it to make 

faster using CUDA. 

In the following sections, we present a detailed description of 

the proposed methodology as well as experimental results that 

demonstrate the efficiency of the proposed methodology. 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

8 

2.  INTRODCTION TO nVIDIA CUDA 

ARCHITECTURE 

nVIDIA® CUDA™ is a general purpose parallel computing 

architecture introduced by nVIDIA. It includes the CUDA 

Instruction Set Architecture (ISA) and the parallel compute 

engine in the GPU. C language is used to program to the CUDA 

architecture. One of the most widely used high-level 

programming languages, which can then be run with great 

performance on a CUDA enabled processor [30]. CUDA-

enabled GPUs have hundreds of cores that can collectively run 

thousands of computing threads. Each core has shared resources, 

including registers and memory. The on-chip shared memory 

allows parallel tasks running on these cores to share data without 

sending it over the system memory bus [31]. 

A fundamental building block of CUDA programs is the CUDA 

kernel function. When launching a CUDA kernel function, a 

developer specifies how many copies of it to run. We call each 

of these copies a task. Because of the hardware support of the 

GPU, each of these tasks can be small, and the developer can 

queue hundreds of thousands of them for execution at once. 

These tasks are organized in a two-level hierarchy, block and 

grid. Small sets of tightly coupled tasks are grouped into blocks. 

In a given execution of a CUDA kernel function, all blocks 

contain the same number of tasks. The tasks in a block run 

concurrently and can easily communicate with each other, which 

enables useful optimizations such as those of the section 

“Shared Memory”. GPU’s hardware keeps multiple blocks in 

flight at once, with no guarantees about their relative execution 

order. As a result, synchronization between blocks is difficult. 

The set of all blocks run during the execution of a CUDA kernel 

function is called a grid. 

The three key abstractions of CUDA are the thread hierarchy, 

shared memories and barrier synchronization, which render it as 

only an extension of C. All the GPU threads run the same code 

and, are very light weight and have a low creation overhead. A 

kernel can be executed by a one dimensional or two dimensional 

grids of multiple equally-shaped thread blocks. A thread block is 

a 3, 2 or 1-dimensional group of threads as shown in Figure 1. 

Threads within a block can cooperate among themselves by 

sharing data through some shared memory and synchronizing 

their execution to coordinate memory accesses. Threads in 

different blocks cannot cooperate and each block can execute in 

any order relative to other blocks. The number of threads per 

block is therefore restricted by the limited memory resources of 

a processor core. In current GPUs, a thread block may contain 

up to 512 threads. The multiprocessor SIMT (Single Instruction 

Multiple Threads) unit creates, manages, schedules, and 

executes threads in groups of 32 parallel threads called warps. 

 

Fig. 1: Thread Hierarchy in CUDA 

 

3. PROPOSED METHODOLOGY 

Segmentation process consists of two distinct stages. In the first 

stage, a preliminary segmentation is performed that executes 

text line segmentation. This process leads to the isolation of sub-

images corresponding to each text line of the complete text. 

These sub-images contain more than one word. In the second 

stage, we perform word segmentation which results into the sub-

images which consists of each word as a separate image. Now 

these separate images of words can be further used for 

recognition in OCR systems. 

3.1 Line Segmentation  

Segmentation is very important part of the character recognition 

process which extracts text lines and words out of the document 

images. The text document as a whole is of no use due to the 

limitation of feature extraction or classification phases. So we 

need to extract each word out of the document images for the 

use of feature extraction phase. In our approach we are using 

profiling based method which uses the vertical and horizontal 

density of black pixels along an axis. A vertical plot of pixel 

density is shown in figure 2 

 

Fig. 2: Vertical plot of pixel density 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

9 

The minima’s are now identified into the plot with the condition 

that they are just after or before a maxima, now we use these 

minima’s to crop the document image to get separate text lines.   

3.2 Word Segmentation 

In the similar way as in text line segmentation, in word 

segmentation we find the horizontal plot of density of pixels 

seeking for minima’s as inter word space. We crop the image 

using these minima’s and the final output is an isolated words. 

The horizontal plot of pixel density is shown in figure 3. 

 

Fig. 3: Horizontal plot of pixel density 

4. IMPLEMENTATION 

In this research work, the implementation of proposed approach 

is based on the two set of experiments. In the first set of 

experiment, proposed algorithm is implemented in C language 

and in second set; proposed algorithm is parallelized using 

CUDA. The following sections 4.1 and 4.2 dictate the detailed 

description of the sequential and parallel implementation of 

proposed algorithm. 

4.1 Sequential Implementation 

The following pseudo codes (algorithm 1) outline the structure 

of proposed algorithm for text line segmentation written in C 

language: 

Algorithm 1: Proposed approach for text line segmentation 

Input-   2 Dimensional Image 

Output- Segmented Text Lines 

Subroutine main() 

          Calculate Threshold value 

          For each row within all row of 

matrix 

              Calculate the density(image)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

          End For 

           For each row within all row of 

matrix  

            If (Density[j] ==0 && 

(Density[j - 1] > 0  ||  Density[j + 

1] > 0)) 

                Then minima[i]=j; 

 Check_Minima(minima) 

      While(minimaLength !=null) 

            Calculate height between two adjacent 

minima and create a new image of required 

width. 

Save the image. 

          End While 

 End For 

 End Subroutine 

Function Density() 

   If Intensity is less than 

threshold  

       Then increment the density 

for each row 

End Function 

Function Check_Minima() 

     Calculate difference b/w two 

minima 

     Then apply Modify() 

End Function 

Function Modify() 

      Calculate average of all the vertical intensities and 

divide the whole part of this image in to two half. And 

compare upper part with upper image intensity and 

lower part with lower image intensity. 

   If both parts of image match 

       Then embed it into their respective parts 

   If one parts of image match 

        Then embed matched part with respective part and 

divide the unmatched part further and repeat above steps 

till all rows are not checked 

End Function 

 

The following pseudo codes (algorithm 2) outline the structure 

of proposed algorithm for word separation from the text line. 

Algorithm 2: Proposed approach for word Segmentation 

Input – Segmented Text Lines (sub-images) 

Output  –  Segmented Words 

Subroutine main() 

 Calculate Threshold value 

         For each column within all column of 

matrix 

      Calculate the density(image)  

  End For 

 For each column within all column of 

matrix  

            If (Density[j] ==0 && 

(Density[j - 1] > 0  ||  Density[j + 1] > 

0)) 

             Then minima[i]=j; 

         Check_Minima(minima) 

              While(minimaLength !=null) 

            Calculate height between two 

adjacent minima and create a new 

image of required width. 

Save the image. 

          End While 

   End For 

End Subroutine 

Function Density() 

If Intensity is less than threshold  

       Then increment the density for 

each row 

End Function 

Function Check_Minima() 

  Calculate difference b/w two minima 

   Then apply Modify() 

End Function 

Function Modify() 

     Calculate average of all the horizontal intensities and 

divide the whole part of this image in to two half. And 

compare upper part with upper image intensity and lower 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

10 

part with lower image intensity. 

     If both parts of image match 

         Then embed it into their respective parts 

      If one parts of image match 

          Then embed matched part with respective part and 

divide the unmatched part further and repeat above steps 

till all columns are not checked 

End Function 

 

4.2 Parallel Implementation 

In CUDA, it is assumed that both host and device maintain their 

own DRAM. Host memory is allocated using malloc and device 

memory is allocated using cudaMalloc. CUDA threads are 

assigned a unique thread ID that identifies its location within the 

thread, block and grid. This provides a natural way to invoke 

computation across the image, by using the thread IDs for 

addressing. The parallel implementation of proposed algorithm of 

text line segmentation is shown in the pseudo code (algorithm 3) 

shown below. 

Algorithm 3: Parallel Implementation of proposed algorithm for 

text line segmentation 

Input– 2  Dimensional Image 

Output  –  Segmented Text Lines 

 Subroutine main() 

        Define a block and grid 

        For each row in all rows 

           Call Density_Kernel(Image) 

        End For 

        For each horizontal row (j)  

   If (Density[j] ==0 && (Density[j - 1] > 0  || 

Density[j + 1] > 0)) 

              Then minima[i]=j; 

       Modify_Kernel() 

 While(minimaLength !=null) 

    Calculate height between two rows 

 Call Output_ Kernels(image) 

       End While 

 End For 

 End Subroutine 

Density_kernel(image ) 

      If  Intensity is less than threshold  

  Then increment the density for each row 

End Kernel 

Output_kenel(image) 

    Use to create an image 

End Kernel 

Modify_kernel() 

Calculate average of all the vertical intensities and divide 

the whole part of this image in to two half. And compare 

upper part with upper image intensity and lower part with 

lower image intensity. 

     If both parts of image match 

         Then embed it into their respective parts 

      If one parts of image match 

          Then embed matched part with respective part and 

divide the unmatched part further and repeat above steps 

till all rows are not checked 

End Kernel 

The following pseudo codes (algorithm 4) outline the structure of 

proposed parallel algorithm for word extraction from text line. 

Algorithm 4: Parallel Implementation of proposed algorithm for 

text line segmentation 

Input– Segmented Text Line (2 Dimensional Sub-image) 

Output  –  Segmented words 

Subroutine main() 

     Define a block and grid 

      For each column in all columns 

           Call Density_Kernel(Image) 

       End For    

         For each horizontal row (j)  

        If (Density[j] ==0 && 

(Density[j - 1] > 0  || Density[j + 1] 

> 0)) 

              Then minima[i]=j; 

  While(minimaLength !=null) 

       Calculate height between two 

rows 

      Call Output_ Kernels(image) 

     End While 

End For 

End Subroutine 

Density_kernel(image ) 

           If  Intensity is less than threshold  

       Then increment the density for 

each row 

End Kernel 

Output_kenel(image) 

 Use to create an image 

End Kernel 

Modify_kernel() 

 Calculate average of all the horizontal intensities and 

divide the whole part of this image in to two half. And 

compare upper part with upper image intensity and lower 

part with lower image intensity. 

     If both parts of image match 

         Then embed it into their respective parts 

      If one parts of image match 

          Then embed matched part with respective part and 

divide the unmatched part further and repeat above steps 

till all columns are not checked 

End Kernel 

 

5. HARDWARE SPECIFICATIONS 

All the experiments are carried out using the hardware 

specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of 

Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35 

GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of 

cores available =2, No of thread=1, No of  thread/core=1, 

Physical Memory =2 GB, DDR2 

6. RESULTS AND DISCUSSION 
For testing of proposed approach of text line and word 

segmentation, we collected a data set of handwritten as well as 

printed Devanagari documents from newspapers, old books and 

from different writers. The collected Devanagari documents are 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

11 

scanned using a scanner at 300 dpi and tested on the computer 

specifications shown in content 5. The results of proposed 

approach for text line segmentation and comparison with 

standard profiling based method are shown in fig. 5 that 

demonstrates the efficiency of our proposed approach. Fig. 6 

shows an example of the word segmentation of extracted from 

segmented text line. The standard profiling based approach fails 

in the appearance of bindu (dot) at upper side of word, example 

is shown in fig.5 image number 1 but on the other hand the 

proposed method takes bindu as a part of word and done correct 

segmentation. On the basis of visual observation, proposed 

method of segmentation works better than standard profiling 

based method. The traditional profiling and proposed method do 

not work well in the case of overlapping text; both fails in 

calculating minima and maxima. However, both methods work 

well in case of straight line segmentation but proposed method is 

faster than standard profiling method.  To make faster the 

proposed method, we parallelized it on CUDA and achieved a 

speedup of 20x-30x over the serial implementation when 

running on a GPU. The speedup is between the 20x to 30x but 

not more than 30x because this GPU have 30 cores. Table 1 and 

figure 4 shows the comparison of execution time of proposed 

algorithm on CPU over GPU. The speedup results heavily 

depend on the document image size also. Hence presented 

method proved that it works better than standard profiling based 

method and run faster on GPU. 

 

Fig 4: Execution time of all sample images 

 

 

 

 

 

 

Table 1: Comparison of execution time of text line 

segmentation on CPU over GPU  

Image 

Execution 

Time on 

CPU (Sec) 

Execution 

Time on 

GPU(Sec) 

Average (Sec) 

Speedup 

CPU GPU 

1. 

1.24 .0412 

1.24 .0413 

 

30x 

 

1.24 .0413 

1.23 .0413 

2. 

.61 .0277 

.61 .0277 22x .62 .0279 

.61 .0278 

3. 

1.12 .0412 

1.12 .0412 28x 1.13 .0412 

1.12 .0413 

 

4. 

1.91 .0706 

1.91 .0707 27x 1.93 .0709 

1.91 .0705 

5. 

.81 .0289 

.81 .0288 28x .82 .0288 

.81 .0289 

 

6. 

.71 .0269 

.72 .0266 27x .72 .0266 

.72 .0267 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

12 

S.N. Input Image Profiling Method Proposed Method 

1. 

   

2. 

   

3. 

   

4. 

   



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

13 

 

 

 

 

 

5. 

   

 

Fig 5: The text line segmentation of document images 

 

Method Task Traditional Profiling Method Proposed Method 

Line Segmentation 

 

 

 

 

Word 

Segmentation 

        

           

               

           

  

                                                         Fig 6: A sample of line and word segmentation 

7. CONCLUSION 

Text Line and word segmentation are two of the important steps 

of any OCR system. In this research work, a modified profiling 

based fast segmentation algorithm has been presented and 

analyzed with traditional profiling based approach. The 

implementation of proposed algorithm on the graphics device is 

promising, with large two dimensional images (on a relatively 

low performance GPU) than sequential algorithms. The method 

of using profiling to segment images and how to accelerate this 

process using GPUs has been discussed in great detail. This 

algorithm serves as an excellent framework to solve a diverse 

array of segmentation problems. The experiments show that 

proposed segmentation method even works better on other 

scripts such as Latin scripts documents. 

CUDA itself has been shown to be an excellent framework to 

accelerate computational problems in engineering, and is 

gaining more features and fewer limitations every few months. 

The principal disadvantages of CUDA are that it is only 

effective for very data parallel problems, and that it is not an 

industry standard. Recently, to counter the latter, it is very likely 

that it will in fact be replaced by OpenCL (Open Computing 

Language). The syntax and architecture between CUDA and 

OpenCL will be very similar, allowing this code to be easily 

ported to OpenCL. Nonetheless the impressive speedups 

attained using such low end hardware demonstrate the power of 

this parallel segmentation algorithm. 

8. REFERENCES 
[1] Sethi, I. K and Chatterjee, B. 1977. Machine recognition of 

constrained hand-printed Devanagari. Pattern Recognition 

9 (1977) 69-75. 

[2] Pal, U. and Chaudhuri, B.B. 2004. Indian script character 

recognition: a survey. Pattern   Recognition 37, 1887 – 

1899. 

[3] Sharma, N. Pal, Kimura, U. F. and Pal, S. 2005. 

Recognition of offline handwritten Devanagari characters 

using quadratic classifier. In Proceeding of ICVGP 

conference, Springer, LNCS 4338, 805-816. 

[4] Kumar, S. and Singh, C. 2005. A study of zernike moments 

and its use in Devnagari handwritten character recognition. 

In Proceeding of International Conference on Cognition 

and Recognition, 514-520. 

[5] Hanmandlu,M. Ramana Murthy, O.V. and Madasu, V.K. 

2007. Fuzzy model based recognition of handwritten Hindi 

characters. Digital Image Computing Techniques and 



International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.9, June 2011 

14 

Applications, 9th Biennial Conference of the Australian 

Pattern Recognition Society, 454-461. 

[6] Pal, U. Sharma, N. Wakabayashi, T. and Kimura, F. 2007. 

Off- line handwritten character recognition of Devanagari 

script. In Proceeding of 9th International Conference of 

Document Analysis and Recognition, 496-500. 

[7] Arora, S. Bhattacharjee, D., Nasipuri, Basu M. D.K., and 

Kundu, M. 2008. Combining multiple feature extraction 

techniques for handwritten Devnagari character 

recognition. IEEE Region 10 Colloquium and the Third 

ICIIS, Kharagpur, INDIA, 1-6. 

[8] Pal, U. Chanda, Wakabayashi , S. T. and Kimura, F. 2008. 

Accuracy improvement of Devanagari character 

recognition combining SVM and MQDF. In Proceeding of 

11th International Conference of Frontier of Handwriting 

Recognition, 367-372. 

[9] Pal, U., Wakabayashi T. and, Kimura, F. 2009. 

Comparative study of Devanagari handwritten character 

recognition using different feature and classifiers. In 

Proceeding of 10th International Conference on Document 

Analysis and Recognition, 1111- 1115. 

[10] Plessis, B. Siscu, Menu, A. E. and Moreau, J.W.V.  1992. 

Isolated handwritten word recognition for contextual 

address reading. In Proceeding of USPS 51h Advanced 

Technology Conference, France, 749-750. 

[11] Parui, S. K. and Shaw, B. 2007. Offline handwritten 

Devanagari word recognition: An HMM based approach. In 

Proceeding of International conference on PReMI 2007, 

Springer, LNCS 4815, 528–535. 

[12] Shaw, B. Parui, S. K. and Shridhar, M. 2008. A 

segmentation based approach to offline handwritten 

Devanagari word recognition. In Proceeding of 

International Conference on Information Technology, 

IEEE, 256-257. 

[13] Marinai, S. 2008. Introduction to document analysis and 

recognition. Studies in Computational Intelligence (SCI) 90 

(2008) 1–20. 

[14] Tang, Y.Y., Suen, C.Y., Yan, C.D. and Cheriet, M. 1991. 

Document analysis and understanding: a brief survey. In 

Proceeding of First International Conference on Document 

Analysis and Recognition, Saint-Malo France, 17-31. 

[15] Plamondon, R. and Srihari, S. N. 2000. On-line and off-line 

handwritten recognition: a comprehensive survey. IEEE 

Trans on PAMI 22 (2000) 62-84. 

[16] Lecolinet, E. and Crettez, J. 1991. A grapheme based 

segmentation technique for cursive script recognition. In 

Proceeding of First International Conference of Document 

Analysis and Recognition, 740-748. 

[17] Yanikoglu, B. and Sandon, P.A. 1998. Segmentation of off-

Line cursive handwriting using linear programming. 

Pattern Recognition 31, No. 12, (Dec. 1998), 1038-1041. 

 

 

 

[18] Pal, U. and Choudhary, B.B. 2001. Machine printed and 

handwritten text lines identification. Pattern Recognition 

Letters 22 (2001) 431-441. 

[19] Leroux, M., Salome, J.C. and Badard, J. 1991. Recognition 

of cursive script words in a small lexicon. In Proceeding of 

First International Conference of Document Analysis and 

Recognition, 774-782. 

[20] LU, Y.I. and Shridhar, M. 1996. Character segmentation in 

handwritten words. Pattern Recognition 29 (1996) 77- 96. 

[21] Casey, R.G. and Lecolinet, E. 1996. A survey of methods 

and strategies in character segmentation. 199. IEEE Trans. 

on PAMI 18 (July1996) 156-161. 

[22] Garg, N.K. Kaur, L. and Jindal, M.K. 2010. A new method 

for line segmentation of handwritten Hindi text. In 

Proceeding of Seventh International Conference on 

Information Technology: New Generations (ITNG), IEEE, 

392 – 397. 

[23] Garg, N.K.  Kaur, L. and Jindal, M.K. 2010. Segmentation 

of handwritten Hindi text. International Journal of 

Computer Applications 1 (2010) 0975 – 8887. 

[24] Thillou, C. M. and Gosselin, B. 2006. Character 

segmentation by recognition using log-gabor filters. In 

Proceeding of 18th International Conference on Pattern 

Recognition, Pattern Recognition, 901- 904. 

[25] Casey, R. G. and Nagy, G. 1982. Recursive segmentation 

and classification of composite character patterns. In 

Proceeding of 6th International Conference Pattern 

Recognition, Munich, Germany, (1982), 1023–1026. 

[26] Kim, S. H., Jeong, S., Lee, G. S. and Suen, C. Y. 2001. 

Word segmentation in handwritten Korean text lines based 

on gap clustering techniques. In Proceeding of 6th 

International Conference of Document Analysis and 

Recognition, IEEE, 189-193. 

[27] Elgammal, A. M., and Ismail, M. A. 2001. A graph-based 

segmentation and feature extraction framework for Arabic 

text recognition. In Proceeding of 6th International 

Conference of Document Analysis and Recognition, IEEE, 

622-626. 

[28] Kompalli, S., Setlur, S. and Govindaraju, V. 2006. Design 

and comparison of segmentation driven and recognition 

driven Devanagari OCR. In Proceeding of Second 

International conference of Document Image Analysis for 

libraries, IEEE, 7-102. 

[29] NVIDIA CUDA Programming Guide Version 2.0, 

available at www.nvidia.com/object/cuda_develop.html. 

[30] NVIDIA Corporation: NVIDIA CUDA programming 

guide. Jan 2007, available at 

http://developer.download.nvidia.com/compute/cuda/2_0/d

ocs/NVIDIA_CUDA_Programming_Guide_2.0.pdf 


