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ABSTRACT 
In recent decades, with a large increase in power demand, fuel 

cost, and limited fuel supply it has become very essential to run 

the power systems with minimum cost so that the committed 

units serve the expected load demand. The basic objective of 

Economic Load Dispatch (ELD) is to distribute the total 
generation among the generation units in operation, in order to 

meet the load demand at minimum operating cost while 

satisfying the system equality and inequality constraints. Nature 

inspired computing techniques like Artificial Neural Networks 

(ANN) are preferred for solving ELD problems because they do 

not impose any restrictions on the shape of the fuel cost curve 
and are capable of providing good solution quality, and higher 

precision solutions very close to the global optimum. In this 

paper, the application of Fuzzy c-means based Radial Basis 

Function Network (RBFN) to ELD is proposed in order to 

minimize the error function through a self adaptive process until 

the error is less than a given tolerance leading to a best solution. 

The applicability and viability for practical applications has 

been tested on two different power systems, viz., a IEEE 30 bus 

6 unit test system and a 20 unit test system and the experiments 

were carried out on MATLAB R2008b software. Comparison 

of the results with the conventional Lambda Iteration method 
demonstrates the effectiveness of RBFN in solving ELD 

problems based on fuel cost, power loss, total generated power, 

algorithmic efficiency, and computational time.  
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1. INTRODUCTION 
Economic Load Dispatch (ELD) is one of the most significant 

optimization problems in modern computer aided power system 
design. With increasing fuel cost and power demands, 

optimization of economic dispatch brings a lot of revenue to the 

network operator. So, it has become important to allocate the 

total load between the available generating units in such a way 

that the total cost of operation is kept at a minimum [(Lakshmi 

Devi A. 2008)]. In traditional methods like lambda iteration 
(LI) method [(C.L. 2000)], and gradient-based method, [(J. B. 

Park 1993)], the solution to ELD is obtained by approximately 

representing the cost function for individual generators in terms 

of single quadratic function. These techniques require 

incremental fuel cost curves which are piecewise linear and 

monotonically increasing to find the global optimal solution 
[(Rayapudi 2011)]. For generators with non-monotonically 

incremental cost curves, conventional methods ignores or 

flattens out portions of incremental cost curve that are not 

continuous or monotonically increasing. Thus these methods 

require approximation of characteristics to meet the 

requirements, which in turn leads to an increase in the revenue 

over time. [(H. T. Yang 1996)], [(T. Jayabarathi 1999)]. Other 

classical methods like Newton-based techniques are not capable 

of performing for ELD problems with highly non-linear 

characteristics and a large number of constraints. Though 

dynamic programming is capable of solving non-linear and 

discontinuous problems, it suffers from the problem of curse of 

dimensionality. [(Glover 1992)].  

Among these conventional methods, the LI method has been 

applied to find near optimal solutions to ELD problems for a 
very long time. The initial choice of lambda is an important 

factor which decides the convergence of the iterations. This 

method solves the ELD with two types of iterations – first, the 

value of lambda is changed iteratively from its initial assumed 

value to the final optimal value; second, for every value of 

lambda chosen by trial, the power generated by the generating 

units have to be acquired using sub-iterations. Hence the sub-

iterations have to be run several times leading to a time 

consuming job [(Aravindhababu P. 2001)]. Over the years 

several efforts have been made to find optimized solutions to 

the ELD problem based on Artificial Intelligence such as 

Artificial Neural Networks, Fuzzy Logic, and Evolutionary 
Algorithms. Some of the most popular ANNs are Hopfield, 

Multilayer Perceptron, Learning vector quantization, Radial 

basis function, Adaptive resonance theory, and Back 

propagation networks. Several neural networks like Hopfield 

network, back propagation network and Perceptron network 

have been proposed for solving the ELD problem 

[(Djukanovic.M. 1996), (Singh. G. 1995), (Matuda.S. 1989)]. In 

back propagation networks, the training is based on non-linear 

optimization technique and hence the solution to ELD problem 

is obtained at a very slow rate. In addition, there is no standard 

rule to fix the number of hidden neurons and hence the network 

may not be able to provide a general optimal modeling for the 

given ELD system. Hopfield networks converge slowly and 

normally take more than thousand iterations to dispatch the 

power optimally. The above mentioned drawbacks of back 

propagation and Hopfield network are overcome by the Radial 

Basis Function Network (RBFN), due to its Gaussian activation 
function.  

This paper focuses on solving ELD using Fuzzy c-means 

(FCM) clustering and Radial Basis Function Network (RBFN), 

with the objective to obtain minimum fuel cost, and an 

optimized load dispatch with less computational time. The 

choice of hidden layer neurons for the RBFN is a very 

important factor that is capable of approximating any given 

function with arbitrary precision. Hence Fuzzy c-means 

clustering was adopted as a pre-processing algorithm to the 

RBFN in order to dimensionally reduce the data allowing a 

simpler RBF model for ELD problems. RBFN were first 
introduced by Powell to solve the real multivariate interpolation 
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problem [(Powell.M.J.D 1977)]. In contrast to ANN, the 

advantages of RBF network are its compact topology and the 

algorithm requires less training time for learning patterns. The 

learning strategy is based on random selection of input data sets 

as RBF centers in the hidden layer [(Chao-Ming Huang 2007)]. 

The weights between hidden and output layer can then be 

estimated by using the Gaussian activation function.  Moreover, 

this network is mathematically simple with relatively low 

computational effort. 

2. LITERATURE SURVEY 

Several conventional techniques are available in literature for 

solving the ELD problem. They include the conventional 

Lambda Iteration method [(C.L. 2000)], dynamic programming 

[(Lowery 1983)], mixed integer programming [(Wilson 1968)], 

branch and bound [(Yoshimura 1983)], and Newton’s method 

[(Wood J. 1984)]. Heuristic methods like Tabu search [(W.-M. 
Lin 2002 )], Simulated Annealing [(Wong 1994)] etc., were 

also applied for ELD problems. Ching-Tzong Su et. al [(Ching-

Tzong Su 2000)] presented a new Hopfield model based 

approach for the economic dispatch problem, by including the 

computational procedures with a series weighting factor 

adjustments associated with the transmission line losses, 
updating the unit generations and power losses inorder to 

minimize the value of the energy function. Aravindhababu et. 

al. presented an on-line approach for solving the ELD using 

RBFN which directly produced the optimal lambda value. This 

value was applied further to compute the economic generations 

iteratively [(Aravindhababu P. 2001)].  In [(Chao-Ming Huang 

2007)] Chao-Ming Huang et al., proposed a novel technique 

that combines orthogonal least-squares (OLS) and enhanced 

particle swarm optimization (EPSO) algorithms to construct the 

radial basis function (RBF) network for real-time power 

dispatch.  
 

 

3. PROBLEM DEFINITION 
The principal objective of the economic load dispatch problem 

is to find a set of active power delivered by the committed 

generators to satisfy the required demand subject to the unit 

technical limits at the lowest production cost. The optimization 

of the ELD problem is formulated in terms of the fuel cost 

expressed as,  
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Where TF is the fuel cost of the system, iF  = fuel cost of the 

ith generating unit of the system, GiP = power generated in the   

ith generating unit, n   = number of generators, iii cba ,, = cost 

coefficients of the ith generator.   

Subject to the equality constraint,  
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where GiP  represents the generated power,
 DP is the total 

active power demand and LP represents the transmission 

losses.  

Subject to the inequality constraint,  

maxmin GiGiGi PPP ≤≤               [3] 

where, minGiP is the minimum value of the real power, 

maxGiP is the maximum value of the real power and P indicates 

the generated real output power.      

Taking these constraints into consideration, the biologically 

inspired artificial neural network, FCM based RBFN is 

proposed to obtain well-distributed dispatch solutions for ELD. 

The effectiveness of the techniques is investigated on two test 

systems consisting of six and twenty generating units, yielding 

higher quality solution including fast convergence, diversity 

maintenance, robustness and scalability. The results obtained 

are compared with the conventional Lambda Iteration Method. 

 

4. IMPLEMENTATION OF PROPOSED 

METHODOLOGY 

The proposed methodology of implementing the RBF network 

to solve the ELD problem is shown in Figure 1. The training 

data based on the selected test systems for different power 

demands with varying weights are set by the Lambda Iteration 

(LI) method. The values generated should be capable of 

satisfying all load profiles.  
 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of proposed methodology 

 

4.1 RBF Network 
A typical RBF network model (Figure 2) consists of three 

layers, the input, hidden and the output layers [(Sivanandam S. 

N. 2006)]. The nodes within each layer are fully connected to 

the previous layer. The input nodes pass the incoming input 

vector directly to the hidden nodes without weights. The 
connections between the input nodes and the hidden nodes are 

called the first layer connections. The Gaussian functions are 

chosen as the activation function in the hidden units. The 

connections between the hidden nodes and the output nodes are 

weighted and are called second layer connections. The Gaussian 

activation function )(Xjφ  for RBF networks is given by Equ. 

4. 
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where, X = input feature vector, L = number of hidden units, 

jµ  = mean vector of the 
thj Gaussian function, and 

∑
=

−
L

j
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)( µ = covariance matrix of the 
thj Gaussian function. 
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Figure 2. Architecture of RBF network 

  

The output layer implements a weighted sum of hidden-unit 

outputs as given by Equ. 5: 

∑
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where, M = number of output units, jkλ = output weights, 

)(Xjφ = Gaussian activation function, j = 1,2,…L, whwre L 

is the number of hidden units and k = number of output units. 

The centers for the radial basis functions are chosen from the 

set of input training data. A sufficient number of centers have to 
be selected in order to ensure adequate sampling of the input 

vector space. The output of mi unit )( ii xv in the hidden layer 

is calculated from the equation 
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where, jix = center of the RBF unit for input variables, iσ = 

width of the 
thi RBF unit and jix

)
= 

thj variable of input 

pattern. The output of the neural network is computed by using 

the equation 
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where, nety  = output value of mth node in output layer for the 

nth incoming pattern, H = number of hidden layer nodes, imw = 

weight between ith RBF unit and mth  output node and 0w = 

biasing term at nth output node. The error rate E is calculated as 

the difference between the achieved and desired outputs for all 

output patterns and nodes using  
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where, n = number of input patterns, k = sum of the values for 

each output node, )( n

k xy is the achieved output for the given 

input 
nx and 

n

kt are the desired output for the given input n. 

The iterations are continued until the stopping condition is 

reached, which may be the weight change in the hidden layer or 

number of epochs. 

4.2 Fuzzy c-means clustering 
The choice of selecting the number of hidden units in a neural 

network is one of the most challenging tasks, requiring more 

experimentation. Application of clustering methods requires the 
number of known clusters in advance. There are two options for 

clustering – validity measures and compatible clustering. The 

data samples are clustered several times, each time with a 

different number of clusters ],2[ nk∈  validity measures, while 

in compatible clustering, the algorithms starts with a large 

number of clusters then proceeding by gradually merging 

similar clusters to obtain fewer clusters. [(Ke Meng 2010)].  

Inorder to validate the non-linearity of the system, the value of 

k should be large enough.  

 In this paper, a fuzzy c-means clustering approach is 

adopted to specify the range of hidden layer neurons in the RBF 

network. Consider ℜ∈ix be the data patterns in the feature 

space. Let the initial cluster number be 2/nk = , and test 

whether a new center should be added based on the 

performance of the network. The new cluster center 1+kc is 

added from the remaining samples ],,,[ 21 kccc K . The fuzzy 

membership matrix is then updated with new centers and the 

process is repeated until the condition nk < is reached. The 

clustering algorithm is performed by solving 
2
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The algorithm of the FCM is as follows 

Step 1: For the given data set, initialise ],2/[ nnk ∈ , 

tolerance 0>ε , initial cluster center 0c , fuzzification 

constant m , such that ∞<< m1 . If 1→m , the membership 

degrees of the data pattern tend to be either 0 or 1 thus 

approaching the hard means clustering, and if ∞→m , the 

membership degrees of the data pattern tend to k/1 , leading to 

a high level of fuzziness. Based on several experiments, the 

most common optimal choice of m is 2.  

Step 2: Calculate )]([)( tutu ji= , where )(tu ji is the 

membership value of vector ix  to the cluster center jc ; with 

Euclidean distance 
2

jiji cxd −= between ix and jc ,  
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Step 3: Compute the center )(tc , given 

],,,[ 21 kcccc K= is the array of clusters for j∀ , 
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Step 4: Test for stopping condition else go to step 2. The 

stopping condition may be maximum number of iterations or 

until the condition ε<−− )1()( tctc  is met.  

 

4.3 Parameters 
From equations 5 and 6 the major governing parameters for 

implementing the mapping of the RBF network are  

- Number of centers in the hidden layer 
- Position of the RBF centers 

Hidden layer 

Input layer Output layer 
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- Width of the RBF centers 

- Weights applied to the RBF function outputs as they 

are passed to the summation layer 
The number of hidden neurons or equivalently radial basis 

centers needs to be much larger than the number of clusters in 

the data. The choice of number of hidden neurons is determined 

through the FCM algorithm. The output of the hidden neuron is 

significant only if the Euclidean distance from the cluster center 

is within a radius of iσ2  around the cluster center. The width 

of the RBF centers are set once the clustering procedure is 

complete satisfying the condition that the basis functions should 

overlap to some extent in order to give a relatively smooth 

representation of the data. Typically, the width for a given 

cluster center is set to the average Euclidean distance 

between the center and the training vectors which belong to that 

cluster.  

 

4.4 Algorithm  
The application of RBF network consists of two phases, 

training and testing. The accuracy of RBF network model 

depends on the proper selection of training data. The inputs of 

the training network are power demand, weights w1 and w2, 
while the outputs constitute the power generated by the 

generating units. The step-by-step procedure involved in the 

implementation of ELD using FCM based RBF network is 

elaborated below: 

Step 1: The data set is divided into training, and testing sets to 

evaluate the proposed network performance.  

Step 2: Initialize suitable values for the range of cluster, initial 

cluster center, tolerance value for FCM, and number of 

maximum iterations.  

Step 3: Compute the membership matrix and update iteratively 

based on, 
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Similarly, the clusters center matrix (Eqn 11) is computed and 

updated. If the maximum number of iterations or the tolerance 

level has reached then the clustering process stops.  
Step 4: Compute the cluster radius and weights between the 

hidden layer and output layer. The feasible results based on the 

training and testing data are saved and the performance metric 

Average Percentage Absolute Error (APAE) is computed, 

100
1

%
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×
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      [13] 
where m is the number of generating units.

 

Step 5: Based on the current membership matrix, new cluster 

centers 1+kc are determined using  

∑
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−
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Go to Step 3.  

Step 6: The center model that produces minimum error is 

selected and the output results are computed based on the 

testing data.  
 

Figure 3 shows the steps involved in solving ELD 

problem using RBF network. The parameters such as cost 

coefficients ii ba , and ic , minimum and maximum power 

generated in the 
thi unit, minGiP and maxGiP , are given as 

input to the input nodes. Along with the input parameters, the 
test data of the inputs are also provided. While propagating 

along the hidden layers, the weights are updated and the centers 

are chosen using random selection method. The network is 

trained through the training algorithm and the error values are 

computed. The difference between the target and the trained 

data are computed. If the difference is below the tolerance 

value, the algorithm is stopped and the results are displayed, 

otherwise the process is repeated until the error converges. The 

accuracy of the RBF network also depends upon the proper 

selection of the training data. The more uniform the training 

data are distributed, the faster the network converges thus 

providing the optimal solution. 
 

 
Figure 3. Flow chart of ELD using RBF network 

 

5. EXPERIMENTAL RESULTS 
Experimental results show the applicability and effectiveness of 

a real time project. The main objective of the economic dispatch 

is to minimize fuel costs while satisfying constraints such as 

power balance equation and generating power limit for each 

unit. The pertinence and practicality of the FCM based RBF 

network for solving Economic Load Dispatch (ELD) problem 
has been tested on two different power generating units – the 

IEEE 30 bus 6 units and the 20 units system including the 

transmission losses. The solution to ELD is obtained through LI 

method and further through the CM based RBFN. The 

algorithms are implemented in MATLAB R2008b platform on 

i3, 2.53 GHz, 4 GB RAM personal computer. 
 

5.1 CASE I: IEEE 30 Bus system 
The IEEE 30 bus six unit test system has been adopted from 

[(Sailaja Kumari M. 2009)], in which the fuel cost coefficients, 

and power limits are known. The specifications of the system 

for six generator test system are detailed in Table 1. The system 

is found to have minimum and maximum generation capacity of 
117 MW and 435 MW, respectively. 
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Table 1. Fuel cost coefficients and power limits for six unit 

test system 
Unit no. ai 

($/hr) 
bi 

($/MW hr) 
ci 

($/MW
2 
hr) 

PGimax 

(MW) 
PGimin 

(MW) 

1 .00375 2 0 50 200 

2 .01750 1.75 0 20 80 

3 .06250 1 0 15 50 

4 .00834 3.25 0 10 35 

5 .02500 3 0 10 30 

6 .02500 3 0 12 40 

 

The transmission loss coefficient denoted as Bij is given 
according to Equ. 15 as, 
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                         [15] 

In the LI Method, the program does not impose any restriction 

on the range of the lambda in order to obtain optimal 

distribution of power among the power generating units. For 

experimental analysis, the power demand for the IEEE 30 bus 

system was varied between 117 MW to 400 MW with random 
intervals and generated power in each unit, the total cost, total 

losses and computational time were evaluated. The lambda 

value is chosen based on the derivative of the cost function in 

order to achieve better convergence. The rate of change of 

lambda ∆λ is chosen as 0.00005 in this study. Table 2 shows the 

computed results for the 6-unit test system using LIM Method.  
The accuracy of RBF network model depends on the 

proper selection of training data. The inputs of the training 

network are power demand, weights w1 and w2, while the 

outputs constitute the power generated by the 6 generating 

units. Table 3 shows the various parameters and their values 

used in RBFN based ELD.  
The learning rate (α) controls the rate at which the weights 

are modified due to previous weight updates. It acts as a 

smoothing parameter that reduces oscillation and helps attain 

convergence. This must be a real value between 0.0 and 1.0. In 

this experiment, convergence was attained for α = 0.997. The 
step size controls the weights during the training process, larger 

the learning rate, larger the rate of change of weights. Hence to 

maintain stability in the updation of weights, the value of 

0.0002 was chosen. 

 

Table 3 Parameters of ANN used to implement ELD for six 

unit system 
Parameters Notations used Values 

Initial cluster number k 3 

Fuzzification constant m 2 

Input Nodes Input node 3 

Output Nodes Output node 6 

No. of patterns n 171 

No. of RBF centers Centers 55 

Momentum factor m 0.0002 

Learning rate α 0.997 

Step size/tolerance 
 

0.002 

No. of iterations Iter 500 

 

The training data are generated using lambda iteration 

method, by changing the total power demand in from minimum 

to maximum generation capacity taking into account the 

generator power limits and transmission power losses. A total 

of 171 training samples were created in this case and the 5.2% 

of the training data was chosen as testing data in a trial and 

error basis. 

 
Figure 4. Error Rate Vs No. of Iterations 

 

Figure 4 shows the typical relationship between the 
number of iterations and the error rate for the 6 unit generator 

system. While increasing the number of iterations the error rate 

decreases and becomes constant after a set of iterations. The 

optimized results were obtained when the RBFN converged 

towards the best value at the end of 500 iterations. Table 4 

shows the computational results of the RBFN for 6 unit 
generator system for different values of power demand.  

In order to verify the effectiveness of RBF in solving 

Economic Load Dispatch problems, the results obtained in the 

above sections are compared with those obtained through 

literature in terms of cost, total power, loss, algorithmic 

efficiency and computational time for a power demand of 283.4 
MW (Table 5). It is clear that the proposed Fuzzy c-means 

based RBFN is superior to the other techniques for the IEEE 30 

bus system.  
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Table 2 Results using LIM for six generator test system 

Power demand (MW) 117 150 200 250 283.4 300 350 400 

P1 (MW) 50 68.25161 107.6139 147.4569 174.3403 187.782987 200 200 

P2 (MW) 20 30.40913 40.0768 50.05122 56.89421 60.351453 75.66692 80 

P3 (MW) 15.90416 21.0729 24.16534 27.40669 29.66026 30.808059 35.73562 43.01804 

P4 (MW) 10 10 10 10 10 10 26.8413 35 

P5 (MW) 10 10 10 10 10 10 12.48831 29.5571 

P6 (MW) 12 12 12 12 12 12 12 25.75381 

Fuel Cost ($/hr) 288.5221 377.6314 522.9947 687.6676 808.9491 872.718503 1072.37 1288.999 

Total Power (MW) 117.9042 151.7336 203.856 256.9148 292.8948 310.942499 362.7322 413.329 

Power loss (MW) 0.90345 1.731668 3.853857 6.908351 9.48889 10.937331 12.72418 13.32627 

CPU time (s) 15.8281 22.25 23.9219 24.2969 25.9063 30.0156 33.6406 34.9063 

Lambda 2.0062 2.34235 2.5464 2.7617 2.91225 2.9892 3.30145 3.7501 

 

Table 4 Results using ANN for six generator test system 

Power demand 117 150 200 250 283.4 300 350 400 435 

w1 0.5 0.15 0.6 0.7 0.35 0.85 0.45 0.45 0.95 

w2 0.5 0.85 0.4 0.3 0.65 0.15 0.55 0.55 0.05 

P1 49.974 77.788 116.846 152.132 184.177 195.126 201.834 198.632 195.810 

P2 21.0196 27.791 37.0151 43.3293 50.9106 55.4441 75.6078 76.7924 84.6246 

P3 15.8205 17.6391 15.4882 17.758 22.0863 23.0039 19.7934 33.9414 50.1861 

P4 9.4746 10.5882 8.3501 10.9038 9.9015 9.9048 12.0989 14.6543 31.7837 

P5 10.665 10.816 9.7967 10.4438 12.7022 12.629 23.509 18.1916 30.2631 

P6 12.5306 12.6609 12.8123 12.3629 10.6345 13.317 23.0391 24.5869 43.1272 

FUEL COST 293.188 390.212 506.175 648.601 792.451 859.199 1040.34 1089.89 1417.71 

Total Power 119.4838 157.2832 200.3086 246.93 290.4117 309.4253 355.8818 366.799 435.795 

Power loss 0.3116 0.5056 0.7704 1.1355 1.5455 1.7628 2.5199 2.6669 4.0361 

CPU time 0.886 0.783 0.924 1.092 0.985 0.889 0.9864 1.027 1.031 

APAE -1.44332 -5.83526 2.61625 -0.49836 -3.67958 -4.19765 -1.55165 9.728697 -0.59397 

 

Table 5 Comparative Analysis 
Parameters LIM Hybrid 

GA 
[(Mary 
2004)] 

EP [(J. 
Yuryevich 
1999)] 

Simple GA 
[(Sailaja 
Kumari M. 
2009)] 

Fast GA 
[(Sailaja 
Kumari M. 
2009)] 

PS [(Y. LABBI 
2010)] 

GA- PS [(Y. 
LABBI 2010)] 

Proposed 
RBFN 

PG1 (MW) 174.3403 176.2358 176.1522 189.5200 189.6130 175.727 175.6627 184.1766 

PG2 (MW) 56.89421 49.0093 48.8391 47.7240 47.7450 48.6812 48.6413 50.9106 

PG3 (MW) 29.66026 21.5023 21.5144 19.5719 19.5761 21.4282 21.4222 22.0863 

PG4 (MW) 10.0000 21.8115 22.1299 13.8642 13.8752 22.8313 22.6219 9.9015 

PG5 (MW) 10.0000 12.3387 12.2435 10.0000 10.0000 12.0667 12.3806 12.7022 

PG6 (MW) 12.0000 12.0129 12.0000 12.0000 12.0000 12.0000 12.0000 10.6345 

Fuel cost 
($/hr) 

808.9491 802.465 802.404 799.3840 799.8230 802.0150 802.0138 792.4514 

Total power 
PG (MW) 

292.8948 292.9105 292.8791 292.6801 292.8093 292.7344 292.7287 290.4117 

Power loss 
(MW) 

9.48889 9.5105 9.4791 9.6825 9.6897 9.3349 9.3286 1.5455 

CPU time (s) 25.9063 NA NA 0.483 0.125 NA NA 0.985 

*NA – Data Not Available 

 

5.2 CASE II: 20 UNIT TEST SYSTEM 
In order to demonstrate the effectiveness of the algorithms, 

several tests have been performed on a benchmark consisting of 

twenty generator units [(Ching-Tzong Su 2000)]. The details of 
fuel cost coefficients and generating limits for each unit are 

given in Table 6. The maximum and minimum power 

generating limits of the system are 3865 MW and 1010 MW, 

respectively. The experiments were conducted using the 

conventional Lambda Iteration Technique and the RBF network 

by varying the power demand within the range [1010, 3865]. 

 

The Transmission Loss Coefficient Matrix for calculating 

power loss of 20 Unit test system can be obtained from [(Ching-

Tzong Su 2000)]. Table 7 illustrates results of lambda iteration 

method for the twenty unit system such as the generated power 
of each unit, the fuel cost, power loss and CPU time for various 

values of power demand. 

 

 

The structural design of the RBFN is modified for 20 unit test 

system with three input nodes, four hidden nodes and twenty 
output nodes. The twenty output nodes correspond to optimal 

power generated for each generating units and three input nodes 

represents weights w1 and w2, and power demand. The RBF 

network was trained with 133 patterns generated through LIM 

method for 500 iterations with network parameters initialized as 

shown in Table 8. In this experiment, 56 centers were selected 
in random with a learning rate of 0.997 and step size of 0.002 

through the Fuzzy c-means algorithm. The momentum factor 

controls the number of weights changed during the updation 

process and also acts as a smoothing parameter that reduces 

oscillation and helps attain convergence. This must be a real 

value between 0.0 and 1.0, and was set to 0.0002. Step size is 

the tolerance value in the range [0.0, 1.0], which decides the 

acceptable difference between the desired output value and the 
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actual output value. Since this is the deciding parameter, it was 

set to a very low value 0.002 in this study. 

 

Table 6 Fuel cost coefficients and power limits for twenty 

unit test system 
Unit  
no. 

ai 
($/hr) 

bi 
($/MW hr) 

ci 
($/MW

2 
hr) 

PGimax 
(MW) 

PGimin 

(MW) 

1 0.00068 18.19 1000 600 150 

2 0.00071 19.26 970 200 50 

3 0.00650 19.80 600 200 50 

4 0.00500 19.10 700 200 50 

5 0.00738 18.10 420 160 50 

6 0.00612 19.26 360 100 20 

7 0.0079 17.14 490 125 25 

8 0.00813 18.92 660 150 50 

9 0.00522 18.27 765 200 50 

10 0.00573 18.92 770 150 30 

11 0.00480 16.69 800 300 100 

12 0.00310 16.76 970 500 150 

13 0.00850 17.36 900 160 40 

14 0.00511 18.70 700 130 20 

15 0.00398 18.70 450 185 25 

16 0.00712 14.26 370 80 20 

17 0.0089 19.14 480 85 30 

18 0.00713 18.92 680 120 30 

19 0.00622 18.47 700 120 40 

20 0.00773 19.79 850 100 30 

 

From Figure 5, it is shown that error rate decreases with 

increase in number of iterations and finally attains a constant 

value at zero. Results using ANN for twenty unit test system 

such as the power generated in each unit, power loss, and CPU 

time for various values of power demand are shown in Table 9.  
Computational results of both Lambda iteration method 

and the Radial basis function method are compared in terms of 

generated power per unit, fuel cost, total power generated, 

power loss and computational time with LI method, and results 

obtained through other algorithms in literature. The results are 

illustrated in Table 10 for a power demand of 2500 MW. 

5.3 Summary of discussions 
The results obtained for the 6 unit and the 20 unit systems 

have proved that the Fuzzy c-means based RBF is more 

efficient in producing the optimal dispatch when compared with 

LI Method. The consequences of the output based on the 

solution quality, and computational efficiency are summarized 

in this section.  

Solution quality: From the results obtained through the 6 unit 

test system in Table 5, for a power demand of 283.4 MW, it is 

noticed that the optimized fuel cost obtained by RBFN is 

0.848%, less than LIM. Likewise, for the 20 unit system from 

Table 10, the minimum cost obtained by LIM is 0.0323% 

higher than the cost obtained through RBF for a power demand 
of 2500 MW.  

Computational efficiency: Apart from yielding the optimal 

solution, it may also be noted that RBFN yields the minimum 

cost (Table 5 and Table 10) at a comparatively lesser time of 

execution. Computational efficiency of FCM based RBFN is 

96.19% higher than LIM in case of a power demand of 283.4 

MW for 6 unit test system. Similarly, for twenty unit test 

system, RBFN has higher computational efficiency by the 

factor of 97.09%, for power demand of 2500 MW. Thus, the 

FCM based RBF approach is more efficient than Lambda 

iteration method in terms of computational time. 

 

Table 8 Parameters of ANN used to implement ELD for 

twenty unit system 
Parameters Notations used Values 

Initial cluster number K 3 

Fuzzification constant M 2 

Input Nodes I 3 

Hidden Nodes H 4 

Output Nodes O 20 

No. of patterns N 133 

No. of RBF centers Centers 56 

Learning rate α 0.997 

Momentum factor M 0.0002 

Step size 
 

0.002 

No. of iterations Iter 500 

 

 
Figure 5 Error Rate Vs No. of Iterations 

 

 

6. CONCLUSION 

Economic load dispatch (ELD) in electric power system is the 

task of allocating generation among the committed units thus 

minimizing the total cost of production subject to the system 

equality and inequality constraints. For the considered ELD 

systems including transmission losses, FCM based RBF found 

solutions better than the conventional lambda iteration method 

in terms of fuel cost, computational time, and power loss. It was 

observed that in all the conducted experiments, the average 

performance of RBF was exceptional and the required time 

proved that FCM based RBF is most suitable for online solving 

of ELD problems. In future, efforts will be taken to impose 

more realistic constraints on the problem structure and large 

size real-time problems would be attempted by the proposed 

methodology. It would be of considerable interest to incorporate 

several practical constraints such as security, emission, and fuel 

reserve to the ELD problems and addition of these constraints 
while solving the ELD problem will be the subject of future 

works in this area. 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 25– No.4, July 2011 

57 

Table 7 Results using LIM for twenty generator test system 

Power demand (MW) 1010 1500 2000 2500 3000 3500 

Lambda (λ) 15.02 19.45585 19.97445 20.3892 20.8129 21.9647 

Fuel cost 
($/MW hr) 

34411.52 41800.38 51919.58 63295.81 72977.61 84881.91 

PG1 (MW) 150 233.4626 350.5274 470.6366 577.9241 600 

PG2 (MW) 50 50 50 50 126.3088 200 

PG3 (MW) 50 50 81.51073 151.1845 200 200 

PG4 (MW) 50 50 53.72806 97.11856 145.7151 200 

PG5 (MW) 50 50 71.58732 97.77008 123.4743 160 

PG6 (MW) 20 20 32.87442 55.68459 80.24465 100 

PG7 (MW) 25 115.1665 125 125 125 125 

PG8 (MW) 50 53.46564 115.3661 150 150 150 

PG9 (MW) 50 50 50 68.82129 101.04 200 

PG10 (MW) 30 37.78153 118.283 150 150 150 

PG11 (MW) 100 152.9464 187.0447 194.5108 195.673 236.1011 

PG12 (MW) 150 292.7372 317.9294 337.2191 357.3664 453.7171 

PG13 (MW) 40 108.5256 135.8477 151.1625 160 160 

PG14 (MW) 20 20 20 20 20 59.1824 

PG15 (MW) 25 51.82681 78.91401 103.9979 134.5984 185 

PG16 (MW) 36.0695 80 80 80 80 80 

PG17 (MW) 30 30 30 51.67328 85 85 

PG18 (MW) 30 30 72.24207 98.43284 120 120 

PG19 (MW) 40 40 68.32917 98.48716 120 120 

PG20 (MW) 30 30 30 42.17147 74.26862 100 

Total PG (MW) 1026.069 1545.912 2069.184 2593.871 3126.614 3684.001 

Power loss 
(MW) 

16.06525 45.90553 69.13084 93.83006 126.5954 183.9935 

CPU time (s) 1023.8 1251.9 1340.1 1232.1 1231.9 1291.7 

  

Table 9 Results using ANN for twenty generator test system 

Power demand (MW) 1010 1500 2000 2500 3000 3500 3865 

w1 0.25 0.3 0.9 0.55 0.55 0.65 0.1 

w2 0.75 0.7 0.1 0.45 0.45 0.35 0.9 

Fuel cost 
($/MW hr) 

34058.68 41570 49993.4 62436.46 72941.23 84123.39 87405.29 

PG1 (MW) 147.1636 290.4817 406.9764 472.7972 578.4828 595.7565 598.2086 

PG2 (MW) 53.8524 56.9833 89.0204 164.8213 205.4831 213.2504 202.5966 

PG3 (MW) 53.0988 52.6563 67.3398 111.0902 158.9411 202.1239 198.7915 

PG4 (MW) 47.1719 40.9439 42.7814 72.2386 115.8517 185.9402 186.3426 

PG5 (MW) 52.5952 66.3248 85.3925 120.02 142.5125 148.9922 182.1915 

PG6 (MW) 26.829 25.4111 36.6882 75.8967 92.8074 102.6464 100.2029 

PG7 (MW) 29.9063 81.4288 102.3298 118.6989 121.3111 138.4964 128.027 

PG8 (MW) 53.0762 50.0647 73.4457 112.5673 135.2231 151.8175 128.7755 

PG9 (MW) 49.6017 49.6433 75.1298 87.6202 119.9089 160.1948 190.9665 

PG10 (MW) 33.1905 51.0884 90.0773 118.7859 138.5096 145.5974 150.5402 

PG11 (MW) 102.8683 138.7033 142.853 161.9814 184.8945 253.5285 307.1777 

PG12 (MW) 153.2964 226.4354 260.8681 270.073 327.8716 389.6394 488.7123 

PG13 (MW) 48.9157 75.9085 86.268 87.7971 109.9513 164.2233 145.4075 

PG14 (MW) 31.6477 29.7433 34.0271 52.0309 59.6217 102.6602 127.2653 

PG15 (MW) 34.4998 40.1871 74.2373 99.4377 130.3887 188.2335 171.8812 

PG16 (MW) 27.428 79.6814 85.4802 89.0737 77.6386 76.8944 88.1829 

PG17 (MW) 33.257 28.1896 36.5791 73.3581 77.5748 82.7333 85.046 

PG18 (MW) 35.9433 42.3985 59.4482 93.9469 111.8516 129.4469 118.6177 

PG19 (MW) 55.8547 68.2277 93.7277 145.414 150.2787 146.5659 157.8982 

PG20 (MW) 40.2033 35.9105 29.9237 76.194 95.952 116.3288 110.0647 

Total power PG 

(MW) 
1110.4 1530.4 1972.6 2603.8 3135.1 3695.1 3866.9 

Power loss 
(MW) 

18.0642 40.3534 63.0818 92.3204 129.7901 181.5548 215.0577 

APAE % -0.26045 -1.26773 6.861934 -1.53346 0.105998 -1.83827 -1.2176 

CPU time (s) 0.12 0.678 0.799 0.982 1.145 1.923 1.989 
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Table 10 Comparative Analysis 
Parameters LIM Hopfield [(Ching-Tzong 

Su 2000)] 
BBO [(Aniruddha 
Bhattacharya 

2010)] 

RBFN 

PG1 (MW) 512.7805 512.7804 513.09 472.7972 

PG2 (MW) 169.1033 169.1035 173.35 164.8213 

PG3 (MW) 126.8898 126.8897 126.92 111.0902 

PG4 (MW) 102.8657 102.8656 103.33 72.2386 

PG5 (MW) 113.6836 113.6836 113.77 120.02 

PG6 (MW) 73.5710 73.5709 73.07 75.8967 

PG7 (MW) 115.2878 115.2876 114.98 118.6989 

PG8 (MW) 116.3994 116.3994 116.42 112.5673 

PG9 (MW) 100.4062 100.4067 100.69 87.6202 

PG10 (MW) 106.0267 106.0267 100 118.7859 

PG11 (MW) 150.2394 150.2395 148.98 161.9814 

PG12 (MW) 292.7648 292.7647 294.02 270.073 

PG13 (MW) 119.1154 119.1155 119.58 87.7971 

PG14 (MW) 30.8340 30.8342 30.55 52.0309 

PG15 (MW) 115.8057 115.8056 116.45 99.4377 

PG16 (MW) 36.2545 36.2545 36.23 89.0737 

PG17 (MW) 66.8590 66.8590 66.86 73.3581 

PG18 (MW) 87.9720 87.9720 88.55 93.9469 

PG19 (MW) 100.8033 100.8033 100.98 145.414 

PG20 (MW) 54.3050 54.3050 54.27 76.194 

Fuel cost ($/ hr) 62456.6391 62456.6341 62456.79 62436.46 

Total power PG (MW) 2537.662 2591.967 2592.11 2603.8 

Power loss (MW) 91.9670 91.967 92.11 92.3204 

CPU time (s) 33.757 6.355 6.93 0.982 
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