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ABSTRACT 
Randomized Algorithms are now gaining the attention of 

researchers. The reason is that some of the randomized 

algorithms have been successfully implemented in important 

applications reducing the time complexity and other 

computing resources. This paper reviews the different 
methods and techniques available in randomized algorithms. 

Paper also gives the gaps in the existing research and the 

future scope of research in this area.  
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1. INTRODUCTION 
Everybody in the theory of computing community is well 

acquainted with the concept of randomization. It is not an 

exaggeration to say that randomization is currently one of the 
major approaches to algorithm design.  

A randomized algorithm is an algorithm which typically uses 

the random input in the hope of achieving good performance 

in the "average case". Formally, the algorithm's performance 

will be a random variable determined by the random inputs, 
with good expected value. The "worst case" is typically so 

unlikely to occur that it can be ignored. Consider the 

problem of finding a P in an array of n elements, given that 

half are P’s and the other half are Q’s. The obvious approach 

is to look at each element of the array, but this would take 
very long (n/2 operations) if the array were ordered as P first 

followed by Q. There is a similar drawback with checking in 

the reverse order, or checking every second element. In fact, 

with any strategy at all in which the order in which the 

elements will be checked is fixed, i.e. a deterministic 
algorithm, we cannot guarantee that the algorithm will 

complete quickly for all possible inputs. On the other hand, 

if we were to check array elements at random, then we will 

quickly find P with high probability, whatever is the input. In 

the example above, the randomized algorithm always outputs 
the correct answer, it is just that there is a small probability 

of taking long to execute. Sometimes we want an algorithm 

which always complete quickly, but allow a small 

probability of error. Monte Carlo methods are methods of 

approximation of the solution to problems of computational 
mathematics, by using random processes for each such 

problem, with the parameters of the process equal to the 

solution of the problem. The method can guarantee that the 

error of Monte Carlo approximation is smaller than a given 

value with a certain probability. So, Monte Carlo methods 
always produce an approximation of the solution, but one 

can control the accuracy of this solution in terms of the 

probability error. The Las Vegas method is a randomized 

method which also uses random variable or random 

processes, but it always produces the correct result (not an 
approximation). The only variant is that it’s running time 

might change between executions. A typical example is the 

well-known Quick sort method. Usually Monte Carlo 

methods reduce problems to the approximate calculation of 
mathematical expectations. Observe that any Las Vegas 

Algorithm can be converted into a Monte Carlo Algorithm, 

by having it output an arbitrary, possibly incorrect answer if 

it fails to complete within a specified time [1].  

A randomized algorithm is one that receives, in addition to 
its input data, a stream of random bits that it can use for the 

purpose of making random choices. Even for a 

predetermined input, diverse runs of a randomized algorithm 

may give altered results; as a consequence it is inevitable 

that a description of the properties of a randomized algorithm 
will engage probabilistic statements. For example, even 

when the input is preset, the execution time of a randomized 

algorithm is a random variable. Behavior of randomized 

algorithm varies from one execution to another even with a 

fixed input.  

Random variable is a function. For case in point, we can talk 

formally about these dice is to define the random variable Y1 

representing the result of the first die, Y2 representing the 

result of the second die, and Y = Y1 + Y2 representing the 

sum of the two. We could then ask: what is the probability 
that Y = 7?  

One property of a random variable we often care about is its 

expectation.  

Randomized algorithms are tool in computational number 
theory; have by now found widespread application. Growth 

has been fuelled by the two major benefits of randomization 

one is its simplicity another one is speed. Numerous 

applications found that randomized algorithm is the fastest 

algorithm available, or the simplest in most of cases it is 
both. In the analysis of a randomized algorithm which 

establish bounds on the expected value of a performance 

measure (e.g., the running time of the algorithm) that are 

valid for every input; the distribution of the performance 

measure is on the random choices made by the algorithm 
based on the random bits provided to it [2].  

1.1 Complexity Analysis  
If one would like to consider Exp-TimeA as a function of the 
input size, then one uses the worst case approach, i.e., the 

expected time complexity of A is 

Exp-TimeA(n)= max { Exp-TimeA(x) | x is an input of size 

n} for every n Є N 

It is often not easy to analyze Exp-TimeA(n) for a given 
randomized algorithm A. To overcome this difficulty one 

also uses the worst case approach from the beginning. This 

means:  

TimeA(x) = max {Time(C) | C is a run of A on x}. 
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Then, the (worst case) time complexity of A is 

TimeA(n)= max { TimeA(x) | x is an input of size n }. 

This definition may be misleading in some cases. This is 

because randomized algorithms may allow infinite runs 

provided that they occur with a reasonably small probability 

on any given input. 

Randomized algorithms are better than deterministic one’s 
simple example is Quick Sort.  

Randomized Quick sort (RQS) 

Input: S = {a1.  . . an} 

Step 1:  Choose an i Є {1 . . . n} uniformly at random 

Step 2:  if n = 1 output(S) 

S<:= {b Є S|b < ai} 

          else 

S=:= {b Є S|b = ai} 

S>:= {b Є S|b > ai} 

Step 3:  Recursively sort S< and S> 

Output:  RQS(S<), S=, RQS(S>) 

 
In simple algorithm the worst case complexity is O (n2) 

where in Randomized Algorithm its  

O (n log n) [3]. 

 

2. DESIGN PARADIGMS OF 

RANDOMIZED ALGORITHMS 

2.1 Abundance of Witnesses 
Time and again a computational problem required a witness 

or a certificate that capably authenticate a hypothesis. Say, a 

number x has certain property i.e. x is prime; to justify this 
property it need proof (witness) but for many problems, the 

witness lies in a search space that is too large to be searched 

exhaustively. However, if the search space were to contain a 

relatively large number of witnesses, a randomly chosen 

element is likely to be a witness. Further, autonomous 
repetitions of the sampling reduce the probability that a 

witness is not found on any of the repetitions. The most 

prominent examples of this phenomenon occur in number 

theory. Indeed, the problem of testing a given integer for 

primality has no known deterministic polynomial-time 
algorithm. There are, however, several randomized 

polynomial-time algorithms [4] that will, on any input, 

correctly perform this test with high probability.  

2.2 Fingerprinting and Hashing  
A fingerprint is the image of an element mapping into 

another Fingerprints obtained via random mappings have 

many useful properties. For example, in pattern-matching 

applications [5] it can be shown that two strings are likely to 
be identical if their fingerprints are identical; comparing the 

short fingerprints is considerably faster than comparing the 

strings themselves. Another example is hashing [6], where 

the elements of a set S are stored in a table of size linear in 

uSu with the guarantee that the expected number of elements 
in S mapped to a given location in the table is O(1). This 

leads to efficient schemes for deciding membership in S. 

Random fingerprints have found a variety of applications in 

generating pseudorandom numbers and complexity theory 

(for instance, the verification of algebraic identities [7]). 

 

2.3 Foiling an Adversary  
In the classical worst-case analysis of deterministic 

algorithms, a lower bound is  established on the running time 

of algorithms by postulating an “adversary” that constructs 

an input on which the algorithm fares poorly. The input thus 
constructed may be different for each deterministic 

algorithm. With a game-theoretic interpretation of the 

relationship between an algorithm and an adversary, we can 

view a randomized algorithm as a probability distribution on 

a set of deterministic algorithms. (This observation underlies 
Yao`s [8] adaptation of von Neumann`s Mini-Max Theorem 

in game theory into a technique for establishing limits on the 

performance improvements possible via the use of a 

randomized algorithm.) Although the adversary may be able 

to construct an input that foils one (or a small fraction) of the 
deterministic algorithms in the set, it may be impossible to 

devise a s ingle input that is likely to defeat a randomly 

chosen algorithm. For example, consider a uniform binary 

AND-OR tree with n leaves. Any deterministic algorithm 

that evaluates such a tree can be forced to read the Boolean 
values at every  one of the n leaves. However, there is a 

simple randomized algorithm [9] for which the expected 

number of leaves read on any input is O (n0.794).  

2.4 Random Sampling  
A pervasive theme in randomized algorithms is the idea that 

a small random sample from a population is representative of 

the population as a whole. Because computations involving 

small samples are inexpensive, their properties can be used 
to guide the computations of an algorithm attempting to 

determine some feature of the entire population. For 

instance, a simple randomized algorithm [10] based on 

sampling finds the kth  largest of n elements in 1.5n + O(n) 

comparison steps, with high probability. In contrast, it is 
known that any deterministic algorithm must make at least 

2n comparisons in the worst case.  

2.5 Rapidly Mixing Markov Chains  
Markov chains are probability models for trials of random 

experiments of great variety, and their defining characteristic 

is that they allow us to consider situations where the future 

evolution of the process of interest depends on where it is at 

present, but not on how it got there. This contrasts with the 
independent trials models we have measured in the law of 

large numbers and the central limit theorem. For independent 

trial processes the possible outcomes of each trial of the 

experiment are the same and occur with the same 

probability. Furthermore, what happens on any trial is not 
affected by what happens on any other trial. With Markov 

chain models we can generalize this to the extent that we 

allow the future to depend on the present [11].  

In counting problems, the goal is to determine the number of 

combinatorial objects with a specified property. When the 
space of objects is large, an appealing solution is the use of 

the Monte Carlo approach of determining the number of 

desired objects in a random sample of the entire space. In a 

number of cases, it can be shown that picking a uniform 

random sample is as difficult as the counting problem itself. 
A particularly successful technique for dealing with such 

problems is to generate near uniform random samples by 

defining a Markov chain on the elements of the population, 

and showing that a short random walk using this Markov 

chain is likely to sample the population uniformly.           
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This method is at the core of a number of algorithms used in 

statistical physics. Examples include algorithms for 

estimating the number of perfect matching’s in a graph [12, 
13]. 

3. RANDOMIZED DEPENDENT LP-

ROUNDING ALGORITHM  
The application and new properties of dependent rounding 

technique in the domain of facility location which uses 

methods for uncapacitated facility location. LP-rounding 
approximation algorithms for facility location problems are 

based on partitioning facilities into disjoint clusters and 

opening at least one facility in each cluster. They extend this 

approach which provides a quite tight analysis resulting in 

the improved approximation ratio. They construct a laminar 
family of clusters, which then guides the rounding 

procedure. It allows exploiting properties of dependent 

rounding, and provides a quite tight analysis resulting in the 

improved approximation ratio [14]. They gave a new 

randomized LP-rounding 1.725- approximation algorithm for 
the metric Fault-Tolerant uncapacitated Facility Location 

Problem. This improves on the previously best known 2.076 

approximation algorithm of Swamy & Shmoys. 

 

 
 

Fig 1. Distances to facilities serving clients 

4. RANDOMIZED: ALL PAIR 

SHORTEST PATH 
Let G (V,E) be an undirected, connected graph with 

V={1…..n} and  |E|=m. The adjacency matrix A is n x n 0-1 

matrix with Ai j = A ji = 1 if and only if the edge (i,j) is present 
in E.  Given A, we define the distance matrix D and n x n 

matrix with non-negative integer entries such that D ij equals 

the length of a shortest path from vertex i to vertex j. The 

diagonal entries in both A and D are zeroes. Since G is 

connected, all entries in D are finite; this is not  a restrictive 
assumption since a graph can be decomposed easily into 

connected components in linear time. The all-pair shortest 

path problem is to compute a representation of the shortest 

paths between all pairs of vertices, i.e., the paths that 

determine the entries in the distance matrix.  

 

The all-pair shortest paths problem can be solved in O (nm) 

time, as follows: from each vertex i , compute the 

breadth-first search tree Ti rooted at i. Each such tree can be 

computed in O (m) time and in any tree Ti the (unique) path 

from i to any vertex j is the shortest path between them. 

Given the collection of breadth-first search trees the distance 

matrix can be computed in O (n2) time by assigning level 
numbers to the vertices in each tree. The class of algorithms 

of Dijkstra, Floyd- Warshall and Johnson solve all-pair 

shortest paths in O (n3), where as in randomized its O (MM 

(n) log2n). [15]. 

 

5. CONCLUSION AND FUTURE 

SCOPE 
There are many problems whose deterministic algorithm is 

available but still there is scope to find the randomized 

algorithm. In case of many randomized algorithm available 

the lower bound has been proved but algorithm of that 
complexity are not available still there is scope to improve 

the gap. There are some problems whose Monte Carlo 

algorithm is available the Las Vegas algorithm is not 

available and vice-versa.  There is still scope to formulate an 

algorithm for the all-pairs shortest paths problem that does 

not use matrix multiplication and runs in time O (n
3-ε

) for a 

positive constant ε. Devising an algorithm for computing the 
diameter of an un-weighted graph that does not use matrix 

multiplication and runs in time O(n
3-ε

) for a positive constant 

ε. Work can be done in devising a simple randomized MST 
verification algorithm with expected running time O(n+m).  
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