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ABSTRACT 
The demands of secured electronic transactions are increasing 

rapidly. Prime Field Elliptic curve cryptosystems (PFECC) are 

becoming most popular because of the reduced number of key 

bits required in comparison to other cryptosystems. PFECC is 

emerging as an attractive alternative to traditional public-key 

cryptosystems. PFECC offers equivalent security with smaller 

key sizes resulting in faster computations, lower power 

consumption, as well as memory and bandwidth savings. While 

these characteristics make PFECC especially appealing for small 

devices, they can also alleviate the computational burden on 

secure web servers.  

Keywords -Prime Field Elliptic curve cryptosystems, public 

key cryptosystems, RSA, Modular Arithmetic, Key Distribution 

center. 

1. INTRODUCTION 
Secure transaction is an intrinsic requirement of today‘s world 

of on-line transactions. Whether exchanging financial, business 

or personal information, people want to know with whom they 

are communicating (authentication) and they wish to ensure that 

the information is neither modified (data integrity) nor disclosed 

(confidentiality) in transit. The Secure Sockets Layer (SSL) 

protocol [1] is the most popular choice for achieving these goals.  

Elliptic curves were first proposed as a basis for public key 

cryptography in the mid 1980s independently by Koblitz [2] and 

Miller [3]. Elliptic curves provide a public key cryptosystem 

based on the difficulty of the elliptic curve discrete logarithm 

problem (defined later in this section), which is so called 

because of its similarity to the discrete logarithm problem (DLP) 

over the integers modulo a prime p. This similarity means that 

most cryptographic procedures carried out using a cryptosystem 

based on the DLP over the integers modulo can also be carried 

out in an elliptic curve cryptosystem. Another benefit of ECC is 

that they can use a much shorter key length than other public 

key cryptosystems to provide an equivalent level of security. For 

example, 160 bit elliptic curve cryptosystems (ECC) are 

believed to provide about the same level of security as 1024 bit 

RSA [7, p.51]. Also, the rate at which ECC key sizes increase in 

order to obtain increased security is much slower than the rate at 

which integer based discrete logarithm (dl) or RSA key sizes 

must be increased for the same increase in security. ECCs can 

also provide a faster implementation than RSA or dl systems, 

and use less bandwidth and power [4].  

This paper is organized as follows: the literature review related 

to the ECC in Section 2 and 3 while the existing system, 

proposed model and implementation are structured in detailed in 

Section 4, Section 5 and Section 6.  

2. PUBLIC KEY CRYPTOGRAPHY 

METHODS 

The origins of public-key cryptography stem from a paper 

published in 1968 by Wilkes [5]. It describes a new one-way 

cipher used by R. M. Needham to verify passwords on a 

computer without storing any information that could be used for 

an intruder to impersonate a legitimate user. In Needham's 

system, when the user first sets his password, or whenever he 

changes it, it is immediately subjected to the enciphering 

process, and it is the enciphered form that is stored in the 

computer. Whenever the password is typed in response to a 

demand from the supervisor for the user's identity to be 

established, it is again enciphered and the result compared with 

the stored version. It would be of no immediate use to a would-

be malefactor to obtain a copy of the list of enciphered 

passwords, since he would have to decipher them before he 

could use them. For this purpose, he would need access to a 

computer and even if full details of the enciphering algorithm 

were available, the deciphering process would take a long time. 

Purdy [6] gave the first detailed description of such a one-way 

function in 1974. In his paper, he let the original passwords and 

their enciphered forms be the integers modulo a large prime p, 

that is in Zp, and the one-way function be a map from Zp to Zp. 

The map is given by a polynomial f(x) which is easy to evaluate 

by computer but not feasible to calculate the inverse. As an 

example, Purdy used p = 264-59 and 

 

Where the coefficients ai were arbitrary 19-digit integers. 

Public-key cryptography was conceived by Diffie and Hellman 

[7] in 1976 when they described a protocol whereby two people, 

Alice and Bob, can derive and securely share private 

information over an insecure communications channel. This 

information can then be used as their key in a private-key 

cryptosystem such as DES.  

3. ECC BASICS 
Elliptic curve cryptosystems (ECC) are based on the group of 

points on an elliptic curve over a finite field. They rely on the 

difficulty of finding the value of a scalar, given a point and that 

scalar multiple of that point. This corresponds to solving the DL 

problem. However, it is more difficult to solve the elliptic curve 

DL problem than its original counterpart. Thus, elliptic curve 
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cryptosystems provide equivalent security as the existing public-

key cryptosystems, but with much smaller key lengths. 

Therefore, they have smaller bandwidth and memory 

requirements which makes them extremely desirable for 

embedded systems such as smart cards, as well as use on 

personal computers and workstations. In addition, another 

benefit is that each user may select a different curve E even 

though the underlying field K remains the same for all users. 

Thus, the hardware, which depends on the field K, remains the 

same and the curve E can be changed periodically for extra 

security.Traditionally, ECC has been developed over finite 

fields which have either prime order, or characteristic 2. Prime 

fields have the advantages of using integer operations whereas 

binary extension fields, that is, curves with characteristic 2, can 

use the exclusive or and shift operations instead of addition and 

multiplication respectively, which lead to significant 

improvements in speed. 

Elliptic curve cryptosystems are more secure for a given 

bandwidth, for the same security, they require a much smaller 

bandwidth which makes them ideal for embedded processor 

applications such as smart cards. The arithmetic processor on a 

smart card is generally restricted to an area of approximately 

20mm2. For 512-bit RSA encryption, the chip involved has about 

50,000 gates and the chip to perform the arithmetic in the field 

F2
593, which is necessary for this cryptosystem, has 

approximately 90,000 gates which is given in [8]. An elliptic 

curve cryptosystem with greater security and a bandwidth of 200 

bits would only require arithmetic in the field F2
200 which 

corresponds to about 15,000 gates [9] and would only occupy 

less than 20% of the 20mm2 assigned to the processor. In fact, 

an entire elliptic cryptosystem over F2
255 can be fabricated and 

use up less than 4% of the area for a smart card processor. 

Table 1: Analogies between Discrete Logarithm and ECC 

Setting Discrete Logarithm Elliptic Curve 

 GF(q)* Curve E over GF(q) 

Basic Operation multiplication in GF(q) addition of points 

Main Operation exponentiation scalar multiplication 

Base Element generator g base point G 

Base Element 

Order 

prime r prime r 

Private Key s (integer modulo r) s (integer modulo r) 

Public Key w (element of GF(q) w (point on E) 

 

The elliptic curve is defined by a Diophantine equation, slightly 

different and more complicated than the circle: 

y2+axy+by=x3+cx2+dx+e, where x and y are variables and a, b, 

c, d and e are constants. 

For our purpose, it is sufficient to limit ourselves to equations of 

the form: y2=x3+ax+b. However, x, y, a, and b are not 

necessarily real numbers instead they may be values from any 

fields. For cryptographic purposes we always use a finite field, 

that is x, y, a, and b are chosen from a finite set of distinct 

values. 

3.1. Elliptic Curve Groups over Finite Fields 

The finite field Fp uses the numbers from 0 to p-1 and 

computations end by taking the reminder on division by p. For 

example, in F23 the field is composed of integers from 0 to 22, 

and any operation within this field will result in an integer also 

between 0 and 22. 

An elliptic curve with the underlying field of Fp can formed by 

choosing the variables a and b within the field of Fp. The elliptic 

curve includes all points (x,y) which satisfy the elliptic curve 

equation modulo p (where x and y are numbers in Fp).  

For example: y2 mod p = x3 + ax + b mod p has an underlying 

field of Fp if a and b are in Fp). If x3 + ax + b contains no 

repeating factors (or, equivalently, if 4a3 + 27b2 mod p is not 0), 

then the elliptic curve can be used to form a group. An elliptic 

curve group over Fp consists of the points on the corresponding 

elliptic curve, together with a special point O called the point at 

infinity. There are finitely many points on such an elliptic curve. 

3.2.Modular Arithmetic 

Modulus operation returns the reminder after integer division. It 

creates equivalency classes. For example, 5 MOD 3 = 2 MOD 3; 

here the equivalency classes for 2 MOD 3: {…... -1, 2, 5, 8, 

11…}. 

Operations in modular arithmetic: 

 Addition: P+Q MOD R = (P+Q) MOD R = (P MOD R) + 

(Q MOD R) MOD R. 

 Multiplication: P×Q MOD R=(P×Q) MOD R = (P MOD R) 

× (Q MOD R) MOD R. 

 Subtraction (Addition of negation): P-Q MOD R = P+(-Q) 

MOD R. 

(Addition of negation can be calculated by: -M MOD 

N=(|M| MOD N)-N.) 

 Division (Inverse multiplication): P/Q MOD R=P×Qi MOD 

R, if Q×Qi MOD R=1. 

(Inverse can be found by using the Extended Euclidian 

Algorithm.) 

 

3.3. Prime Field ECC for Message 

Transaction 

In public key cryptography, key length is an important factor. It 

is very much desirable to keep smaller key size but achieve 

greater security. This paper proposes a better technique on 

Prime Field Elliptic Curve Cryptography (PFECC) for 

Electronic Message Transaction, which is expected to become 

the next generation public key cryptography. For two parties A 

and B, a secure message transaction technique has been 

designed and developed through the proposed elliptic curve 

cryptography based on prime field computation. The complexity 

of the process has also been calculated and found better than 

conventional ECC and RSA, widely used public key 

cryptography. The proposed PFECC holds greater flexibility in 

choosing cryptographic system. Compared to RSA, PFECC 

requires smaller key size for an equivalent amount of security 

achievement and compared to conventional PFECC, proposed 

PFECC achieves greater security for equivalent key size. Thus 

PFECC devices require less storage, less power, less memory, 

less time and sometime less bandwidth. 
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3.4. Prime Field ECC for Session Key 

Distribution 
Frequent key changes are very much desirable for secure 

electronic communications in symmetric key encryption. 

Because it is needed to limit the amount of data compromised if 

an intruder or attacker learns the communicating keys. In public 

key cryptography, there is an important factor, which is the key 

length. It is optimal to keep smaller key size but gain large 

security. For imposing the better security, each time of 

communication a temporary key, called session-key, is used for 

symmetric key cryptography. Session-key distribution is the 

process of delivery a key to two parties who wish to exchange 

data without allowing others to know the key. For two parties A 

and B, a key distribution technique using Key Distribution 

Center (KDC) has been chosen. For this a generated session key 

has been delivered among the communicating parties through 

the Improved Prime Field ECC and the complexity of the 

process has also been calculated and found better than 

conventional ECC and RSA, widely used public key 

cryptography. 

3.5. Session Key 

A session key is an ephemeral secret, i.e., one whose use is 

restricted to a short time period such as a single 

telecommunications connection or a session, after which all 

trace of it is eliminated. Motivation for use of session keys or 

ephemeral keys includes the following: 

 To limit available cipher text under a fixed key for 

cryptanalytic attack. 

 To limit exposure, with respect to both time period 

and quantity of data, in the event of session key 

compromise. 

 To avoid long term storage of a large number of 

distinct secret keys in the case where one terminal 

communicates with a large number of others, by 

creating keys only when actually required. 

 To create independence across communication 

sessions or applications. 

3.6. Role of Key Distribution Center (KDC) 

A key distribution center is responsible for distributing keys to 

pairs of users as needed. Each user must share a unique key with 

the key distribution center for purposes of key distribution. 

 

 

 

 

 

 

 

Figure 1: Key distribution 

At least two levels of keys must be used: 

 Communication between end systems is encrypted 

using a temporary key, often referred to as a session 

key. 

 Session key are transmitted in encrypted form, using a 

master key that is shared by the KDC and an end 

system or user.  

4. PROPOSED MODEL 
In our proposed model, Session key distribution through 

PFECC, concentrate with the Step 2 of the figure 3, where KDC 

distributes session key for two parties. In this point of view KDC 

acts as the sender and end users act as the receiver. 

An underlying finite prime field Fp is chosen. An elliptic curve 

E defined over Fp, and a base point P on E is chosen. The order 

of the point P is denoted by n. 

The field Fp and curve E, comprise the system parameters, and 

are public information. 

The point P is chosen by the KDC and transmits it secretly to the 

receiver for the current communication. The Encryption and 

Decryption process is formed in the Figure 2. 

 

Figure 2: Proposed System Model 

In our proposed model, during the key generation receiver will 

perform the following operations. 

 1.  Select a random integer d in the range [1, n-1]. 

 2.  Compute the point Q = dP. 

 3.  The entity‘s public key consists of the point Q. 

 4.  The entity‘s private key is the integer d. 

4.1. Algorithm: Encryption Process 
Base point P, Integer n (order of P), 

Integer k (A‘s private key), Point (x1, y1) (A‘s private key), 

Point Q (B‘s public key), Point (x2, y2) (encryption key), 

Message M, Point (m1, m2) (encoded message, m1ε Fq, m2 ε 

Fq), Point (c1, c2) (encrypted message), Data c (transmitted data 

to B). 

 1.  (m1, m2) = M. 

 2.  Read: k = [1, n-1]. 

 3.  (x1, y1) = kP. 

 4.  (x2, y2) = kQ. 

 5.  (c1, c2) = (m1, m2) × (x2, y2). 

 6.  c = ((x1, y1), (c1, c2)). 

4.2. Algorithm: Decryption Process: 
Base point P, Integer n (order of P), 

 Integer d (B‘s private key), Point Q (B‘s public key), 

Session Key 

KDC 

A B 

Master Key Master Key 
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 Data c = ((x1, y1), (c1, c2)) (transmitted data from A), 

Point (x1, y1) (A‘s public key), Point (c1, c2) (encrypted 

message), 

Point (x2, y2) (decryption key), Point (m1, m2) (decrypted 

encoded message) 

Message M (decoded). 

 

 1.  (x2, y2) = d (x1, y1). 

 2.  (m1, m2) = (c1, c2) × (x2, y2)-1. 

 3. M = (m1, m2). 

 

5. IMPLEMENTATION 

Let, we consider the following system parameters to implement 

the proposed model. 

 Fp : F28 

 E   : y2 = x3 + x + 13 

 P = (9,10) 

 n = E(F27) = 30 

 

The 34 multiples of P are all distinct, so we can represent letters 

of the Roman alphabet by distinct points on the elliptic curve to 

encode the message in terms of EC points. 

Here, A wants to send B the message ―ODD‖. It will do this one 

letter at a time. Let‘s start with ‗O‘, which is corresponds to the 

point (6, 9). After A indicates that It wants to send B a message, 

B choose his secret key sP=7 and sends A sPP = 7(9, 10) = (6, 

24). A then choose her secret key k=3 and compute kP = 3(9, 

10) = (23, 19). Using B‘s transmission of sPP = (6, 24), A 

computes ksPP=3(6, 24) = (27, 21) and uses this to encrypt ‗O‘. 

Now (ksPP) × (5, 9) = (11, 3), so A sends B a pair of 

information: kP which is (23,19) and the encrypted message (11, 

3). 

Table 2: EC points for encoding 

n Np Letter n Np Letter 

1 (10,11) A 18 (20,29) R 

2 (19,30) B 19 (6,23) S 

3 (23,20) C 20 (27,11) T 

4 (5,23) D 21 (28,22) U 

5 (26,17) E 22 (29,19) V 

6 (18,19) F 23 (23,10) W 

7 (7,25) G 24 (21,30) X 

8 (25,30) H 25 (17,24) Y 

9 (17,9) I 26 (25,3) Z 

10 (20,2) J 27 (6,7)   

11 (23,23) K 28 (17,13)   

12 (29,14) L 29 (25,15)   

13 (28,11) M 30 (4,9)   

14 (27,22) N     

15 (6,9) O     

16 (20,4) P     

17 (11,1) Q     

 

B receives (23, 19) and (11, 3) from A. Since B knows that (23, 

19)=kP, It can compute the encryption key, ksPP = sP(kP) = 

7(23, 19) = (27, 21) and hence its associated decrypted key (27-

1, 21-1) = (23, 3). Now B applies the decryption key to A‘s 

encrypted message to recover m = (23, 3) × (11, 3) = (6, 9). 

Finally B looks up (5, 9) in the table and recover the letter ‗O‘. 

When A sends the next letter to B, it should probably use a 

different value of k, or ask B to change his private key (the latter 

is somewhat more cumbersome since it involves more 

transmissions) and as well as he asks KDC to change the base 

point. This provides for greater security, since the same letter 

might have different-looking encryptions depending on where it 

occurs in any particular message. Also, the rest part of A's 

transmission (the quantity kP) will always be the same (hence 

redundant) if it uses the same value of k each time. 

5.1. Comparisons of PEECC with RSA 

Thus, PEECC devices require less storage, less power, less 

memory, and often less bandwidth than other public key 

systems. Current key-size recommended by NIST for legacy 

public schemes is 2048 bits. A vastly smaller 224-bit PEECC 

key offers the same level of security. This advantage only 

increase with security level—for example, a 3072 bit legacy key 

and a 256 bit PEECC key are equivalent. 

 Table 3 and figure 6 show the computational complexity for 

breaking the private key for elliptic curve cryptosystem, using 

the Pollard ρ method, is 3.8 1010 MIPS-years (i.e. millions of 

instructions per second times the required number of years) for 

an elliptic curve key size of only 150 bits. If the ECC key length 

is increased to 234 bits, the system will impose a computational 

complexity of 1.6 1028 MIPS-years (still with the Pollard ρ 

method) [10]. 

Table3: Comparisons between PEECC & RSA for key 

breaking complexity 

 

Table 4: Key Size Ratio 

PEECC Key 

Size(Bits) 

RSA Key 

Size(Bits) 

Key Size Ratio(Bits) 

163 1024 1:6 

256 3072 1:12 

384 7680 1:20 

512 15360 1:30 

 

1.1 PEECC 1.2 RSA 

Key 

Length 

Breaking 

Complexity 

Key 

Length 

Breaking 

Complexity 

150 bits 3.8 1010 MIPS-

years 

1024 

bits 
3 1011 MIPS-

years 

234 bits 1.6 1028 MIPS-

years 

2048 

bits 
3 1020 MIPS-

years 
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Table 5: Comparisons between conventional & proposed 

PFECC 

 

6. CONCLUSIONS 

This paper proposed an improved model for both session-key 

distribution and message transactions through Prime Field 

Elliptic Curve Cryptography. The main advantages of using this 

model over other cryptosystems include the following: 

 Small key-size of 160-260 bits as compared to 512-

1024 bits with traditional schemes such as RSA. 

 Extra security imposed by distributing the base point 

secretly through KDC. 

 High edibility and enhanced security through 

periodically changing the curve, without requiring 

extensive hardware changes. 

 Simplicity of implementation facilitates a wide range 

of applications including m-commerce (WAP), smart 

card system (EMV), e-commerce and banking 

applications (SET) and internet based applications 

(SSL). 
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Conventional ECC Proposed PFECC 

 

Security: S 

Security: t(S) 

where t = Base point security 


