
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.8, August 2011

13

 An Investigation of the Relationships between

Software Metrics and Defects

Pradeep Singh

Deptt of Computer Sc &
Engg.

National Institute of
Technology, Raipur

K. D. Chaudhary
Deptt. of Electrical Engg.

National Institute of
Technology, Raipur

Shrish Verma
Deptt. of I.T.

National Institute of
Technology, Raipur

ABSTRACT
Open source software systems are becoming more popular

today, and are playing important roles in many scientific and

business software applications. Many companies are investing in

open source projects and lots of them are also using such

software in their own work. But, because open source software

is often developed with a different management style than the

industrial ones, the quality and reliability of the code needs to be

investigated. Hence, more projects need to be measured to

obtain information about the characteristics and nature of the

source code.

In this paper we have evaluated the object-oriented metrics

given by Chidamber and Kemerer, and few other static code

metrics for two open source projects. We have carried out an

empirical study and tried to find out the nature of relationship

between these metrics and defects. In other words, it has been

investigated whether these metrics are significantly associated

with defects or not. For this we have extracted source code,

defects processed it for metrics .Two open source java projects

of emulators have been taken from source forge and used for

this purpose.

Keywords

Software metrics, Defects, Open source software, Fact

extraction

1. INTRODUCTION
Open source software systems are becoming more popular

today, and are important components of many business software

applications. Many large companies are investing in open source

projects and many of them are also using this kind of software in

their own work. As a consequence, many of these projects are

being developed rapidly and are quickly becoming very large.

But, because open source software is usually developed outside

companies—mostly by volunteers—and the development

methodology employed is quite different from the usual methods

applied in commercial software development, the quality and

reliability of the code needs to be investigated. Various kinds of

code measurements can be quite helpful in obtaining

information about the quality of the code.

In this paper, we describe how we extracted the relevant data

from source forge, and how we calculated the object-oriented

metrics suite given by Chidamber and Kemerer and some other

static code metrics for the investigation of relationship between

software metrics and defects. The main objective of analyzing

these metrics is to improve the quality of the software. The rest

of this paper is organized as follows. Section II summarizes

relevant background information and related work. Section 3

provides an overview of open source projects and extraction

process of metric and defect data. Section 4 discusses metrics

analyzed in this paper. Section 5 deals with the results and

analysis. Section 6 deals with limitations. Conclusions are given

in Section 7.

2. RELATED WORK
This section briefly describes the various studies done in the

field of the relationships between OO design metrics and defect.

Metrics played a pivotal role in the prediction of fault proneness.

El Eman et al. analyzed a large C++ telecommunication

application and found that the size (i.e. SLOC) of classes

confounded the effect of most OO design metrics on faults [4].

In their experiment, WMC, RFC, CBO, and LCOM were found

to be significant without size control but none of these metrics

was significant after controlling for the size of the system. NOC

was not investigated. To further examine El Eman et al.’s

findings, Subramanyam and Krisnan analyzed an e-commerce

application developed in C++ and Java [2]. They performed an

experiment based on 405 C++ and 301 Java classes to study the

effect of the size along with the WMC, CBO, and DIT on fault-

proneness of classes. Their results indicated, however, that even

after controlling for the size (i.e. SLOC) of classes, some of the

CK metrics were significantly associated with faults. Tang et al.

[3] analyzed CK OO metrics suite on three industrial

applications developed in C++. They found none of the metrics

examined to be significant except RFC and WMC. Olague et al.

[6] validated object oriented metrics on versions of open source

agile software. They found WMC, CBO, RFC and LCOM to be

very significant. The MOOD metrics is direct measure of size

when used over large classes.

Briand et al. carried out an industrial case study on quality

factors in OO designs [7]. They found that CBO, RFC, and

LCOM were statistically related to the fault proneness of

classes. Later, Birand et al. investigated the relationships based

on a set of size metrics and a more complete set of OO design

metrics [7]. They found that CBO, RFC, DIT, and SLOC were

significant predictors of fault-proneness, and NOC was also

significantly related to fault-proneness but in an inverse

direction. From the review of literature, we found that earlier

fault relationship analysis have only considered OO design

metric and most of the studied systems were implemented in

C++. Keeping these points in mind, a relationship analysis

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.8, August 2011

14

between defects in an emulator developed in java is proposed

using few other static metrics other than OO design attributes.

No previous work done on emulators defect data analysis.

3. MINING OBJECTIVE SOFTWARE
Our objective is to find the error prone files based on metric

data, so we need metric data and bug data. In order to do this

we have taken two projects whose target domain , size and the

languages in which they developed are similar. So we selected

following two emulator projects from sourceforge[8]

developed in java. An emulator is hardware and/or software that

duplicates (or emulates) the functions of a first computer system

in a different second computer system, so that the behavior of

the second system closely resembles the behavior of the first

system. This focus on exact reproduction of external behavior is

in contrast to some other forms of computer simulation, in

which an abstract model of a system is being simulated.

3.1 JaC64 : JaC64 are completely written in Java and can

be run from a modern web browser like Firefox, Internet

Explorer or Netscape Navigator. A Java-based Commodore 64

emulator runs most of C64 games and many demos and

emulates CPU (6510), VIC-II (on a cycle level), SID (including

filters, combined waveforms and bugs) and CIA. This emulator

is easy to add to any web-page using Java/JavaScript.

3.2 JMStella Atari 2600 Emulator for J2ME :

JMStella is a J2ME Atari 2600 VCS emulator based upon

JStella 0.95. It allows one to play Atari 2600 games on a java-

enabled mobile phone.

3.3 Metric data and bug data collection

process
We selected these projects in part because they had a source

code version archive (SVN), a bug database. Most of the

software development system uses subversion or cvs for version

control. Subversion is a free/open source version control system.

i.e. Subversion manages files and directories, and the changes

made to them, over time. This allows us to recover older

versions of your data or examine the history of how your data

changed. Subversion can operate across networks, which allows

it to be used by people on different computers. At some level,

the ability for various people to modify and manage the same set

of data from their respective locations fosters collaboration.

Some version control systems are also software configuration

management (SCM) systems. These systems are specifically

tailored to manage trees of source code and have many features

that are specific to software development—such as natively

understanding programming languages, or supplying tools for

building software. Subversion is a centralized system for sharing

information. At its core is a repository, which is a central store

of data. The repository stores information in the form of a file

system tree—a typical hierarchy of files and directories. Any

numbers of clients connect to the repository and then read or

write to these files. By writing data, a client makes the

information available to others; by reading data, the client

receives information from others.

Emulator JaC64 and JMStella source repositories were well

documented, and were of modest size. Computation of the

number of bugs by using SVN repositories of each project is

done by identification of the project with release point.

Extraction of the log data from each file (java file) in the

projects is done by using log subcommand of svn command.

Finally searching the word (bug or fixed) and counted the

frequency of appearances. For the java project we computed the

bug count per file and assigned that bug count to the public

class. To be precise we computed the number of bugs fixed and

not all other bugs. The metrics data is computed based on the

source files of one release and the bug data is computed based

on the log data. Our objective is to find the error prone files

based on metric data, so we need metric data and bug data.

Source code of both projects obtained from sourceforge.net. The

metric data needs to be computed based on the predefined

methods, so we used the metric tool family [9].These tools

compute 63 metrics and we selected the eleven metrics

including C&K object oriented metrics [1].

4. METRICS ANALYSED IN THIS STUDY
In this section, we define the eleven metrics that we extracted

from the source code of emulators and used for relationship

analysis. Six of these metrics were first presented by Chidamber

and Kemerer [1]. We also used other metrics such as Lorenz &

Kidd object-oriented metric named class variables and added

few more Base class , Class Methods and the well-known lines

of code metric Lines with Comments (CLOC) , Source Lines

of Code (SLOC) because we were also interested in comparing

object-oriented metrics with the traditional code-size metric. The

details of metrics we investigated were the following:

4.1 C.K. Metrics Model
Six metrics were first presented by Chidamber and Kemerer [1],

these metric suites offers informative insight into when

developers are following object oriented principles in their

design. CK metrics have generated a significant amount of

interest and are adopted by practitioners [7] and are also being

incorporated into industrial software development tools such as

Rational Rose and Together. Chidamber and Kemerer proposed

six metrics; the following discussion shows their metrics.

4.1.1 Weighted Method per Class (WMC)
WMC measures the complexity of a class. The WMC is the

number of methods defined in each class. More precisely, this is

a weighted sum of all the methods defined in a class. High value

of WMC indicates the class is more complex than that of low

values. So class with less WMC is better.

4.1.2 Depth of Inheritance Tree (DIT)
The depth of a class within the inheritance hierarchy is the

maximum number of steps from the class node to the root of the

tree and is measured by the number of ancestor classes So this

metric calculates how far down a class is declared in the

inheritance hierarchy. This metric also measures how many

ancestor classes can potentially affect this class. DIT represents

the complexity of the behavior of a class, the complexity of

design of a class and potential reuse. If DIT increases, it means

that more methods are to be expected to be inherited, which

makes it more difficult to calculate a class’s behavior. Thus it

can be hard to understand a system with many inheritance

layers. On the other hand, a large DIT value indicates that many

methods might be reused.

4.1.3 Number of children (NOC)
This metric measures how many sub-classes are going to inherit

the methods of the parent class. The size of NOC approximately

http://en.wikipedia.org/wiki/Computer_simulation
http://sourceforge.net/projects/jac64/
http://sourceforge.net/projects/jmstella/
http://www.scitools.com/documents/metricsList.php?metricGroup=count#CountLineComment
http://www.scitools.com/documents/metricsList.php?metricGroup=count#CountLineCodeExe
http://www.scitools.com/documents/metricsList.php?metricGroup=count#CountLineCodeExe
http://www.scitools.com/documents/metricsList.php?metricGroup=count#CountLineCodeExe

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.8, August 2011

15

indicates the level of reuse in an application. If NOC grows it

means reuse increases. On the other hand, as NOC increases, the

amount of testing will also increase because more children in a

class indicate more responsibility. So, NOC represents the effort

required to test the class and reuse.

4.1.4 Coupling between objects (CBO)
A class is coupled to another one if it uses its member functions

and/or instance variables. The CBO gives the number of classes

to which a given class is coupled. An increase of CBO indicates

the reusability of a class will decrease. Thus, the CBO values for

each class should be kept as low as possible.

4.1.5 Response for a Class (RFC)
This is the number of methods that can potentially be executed

in response to a message being received by an object of that

class.

4.1.6 Lack of Cohesion in Methods (LCOM)
This metric uses the notion of degree of similarity of methods.

LCOM measures the amount of cohesiveness present, how well

a system has been designed and how complex a class is . This is

the number of pairs of member functions without shared

instance variables, minus the number of pairs of member

functions with shared instance variables

4.1.7 OTHER METRICS
Source Lines of Code (LOC): The SLOC of a class is the

number of all nonempty, non comment lines of the body of the

class and all of its methods.

Base Class: Number of Immediate Base Classes.

Class Methods: Number of Class Methods.

Lorenz & Kidd’s Class Variables: Number of Class Variables.

Lines with Comments (CLOC): Number of lines containing

comment.

Table 1 and 2 shows brief statistics of various metrics of

emulator projects jac64 and table 3 and 4 shows brief statistics

of various metrics of project jmstella.

TABLE 1 Descriptive Statistics of the Classes jac64

 CBO NO

C

WM

C

RFC DIT LCO

M

Max 64.00 2.00 48.00 645.00 5.00 100.00

Min 0.00 0.00 0.00 12.00 1.00 0.00

Mean 8.114 0.04

5

8.898 82.807 1.53

4

47.227

St.

dev

10.863 0.25

9

10.65

4

178.30

6

1.07

2

39.251

TABLE 2 Descriptive Statistics of the Classesjac64

 Base

Classes

Class

Methods

Class

Variables

CLOC SLOC

Max 4.00 9.00 108.00 566.00 1566.00

Min 1.00 0.00 0.00 0.00 4.00

Mean 1.511 0.386 5.634 40.716 174.625

St.

dev

0.711 1.208 13.616 104.428 278.189

TABLE 3 Descriptive Statistics of the Classes jmstella

 CBO NOC WMC RFC DIT LCOM

Max 21.00 0.00 74.00 86.00 3.00 99.00

Min 0.00 0.00 0.00 12.00 1.00 0.00

Mean 4.309 0.00 13.255 37.836 1.455 59.145

St.

dev

5.314 0.00 15.577 23.40 0.633 39.117

TABLE 4 Descriptive Statistics of the Classes jmstella

 Base

Classes

Class

Methods

Class

Variables

CLOC SLOC

Max 3.00 13.00 128.00 524.00 1833.00

Min 1.00 0.00 0.00 0.00 4.00

Mean 1.291 0.945 6.291 58.236 156.382

St.

dev

0.567 2.592 18.357 111.785 320.417

5. ANALYSIS
To analyze the relationship between defect and metrics chosen

for this work, we have chosen Spearman rank correlation

analysis. The Spearman rank correlation is a commonly-used

robust correlation technique [5] because it can be applied even

when the association between elements is non-linear. The

resulting standard Spearman correlation coefficients are shown

in Table 5 and table 6.

We computed spearman’s rank correlation and the statistical

significance of correlation. Presented metrics are significant at p

value < 0.001 using rank correlation analysis i.e. associated

metrics are correlated with number of defects. We found that in

object oriented design metrics NOC and DIT for both projects

are highly significant.

http://www.scitools.com/documents/metricsList.php?metricGroup=count#CountLineCodeExe
http://www.scitools.com/documents/metricsList.php?metricGroup=count#CountLineComment

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.8, August 2011

16

TABLE 5 RESULT OF SPEARMAN’S TEST OF LINEAR CORRELATION

Project

Name

CBO NOC WMC RFC DIT LCOM

Jmstella

0.569 0.947 0.554 0.527 0.539 0.544

Jac64

0.527 0.787 0.579 0.54 0.655 0.576

TABLE 6 RESULT OF SPEARMAN’S TEST OF LINEAR CORRELATION

Project

Name

Base

Classes

Class

Methods

Class

Variables

CLOC

SLOC

Jmstella

0.7 0.721 0.49 0.545 0.543

Jac64

0.43 0.657 0.684 0.581 0.584

The following observations are made based on the results given

in Tables 5 and 6.

CBO metrics that count the both import and export coupling are

related to defects for both emulator projects. Metric NOC

counting number of children of a class is highly related to

defects. We found that NOC (Number of Children) was very

significant. In accordance with findings of [11] NOC was not

significant .Basili et al. [13] also found NOC to be very

significant and they noticed that, the larger the value of NOC,

the lower the probability of fault detection. For our analysis of

project Jmstella it is 0.947 and for jac64 it is 0.787 significant

(p-value <0.001).

WMC (Weighted Methods per Class) was found to be

significant in our analyses. On the other hand, Basili et al. [13]

found it less significant, but, for extensive modified classes and

for UI classes, it was more significant. In the study by Yu et al.

[14], WMC was found significant which is similar to our results.

Subramanyan and Krishnan [2] found WMC to be significant for

C++ (but not significant for Java). All of our two analysis of

WMC yielded the same result; hence, we accepted WMC having

significant relation with defect.

DIT (Depth of Inheritance Tree) was found to be significant in

our analysis .This finding is similar to those given by Basiliet al.

[13].

We found RFC (Response for a Class) to be significant—which

is the same as the result of Basili et al. [13]. Yu et al. [14] found

RFC to be significant as well but they calculated the RFC in a

different way. We examined two RFCs in the case of emulators

and we found high and significant (p-value < 0.001) correlation

between defects.

LCOM show positive coefficients. This indicates that the

probability of defect increases as the cohesion of a class

decreases. The results indicate that inheritance metric DIT

measuring depth of inheritance tree is positively related to faults

SLOC (Source Lines of Code) was found to be significant in our

study. Subramanyan and Krishnan [2] also found that LOC was

significant, but neither Basili et al. [13] nor Yu et al. [14]

examined this metric. Class method was found significant for

the both of the projects in our study but neither Basili et al. [13]

nor Yu et al. [14] examined this metric.

6. THREATS TO VALIDITY
The study has a number of limitations that are not unique to our

study but are common with most of the empirical relationship

analysis in the literature. The degree to which the results of our

study can be generalized to other research settings is

questionable. The reason is that the systems developed are

small-sized. We identified defect fixes from the SVN logs

entered by developers. Surely, some potential issues can be

raised, such as some defects may not surface, some defects may

surface but not get fixed, and some defect fixes may not be

recorded in SVN logs. Still, in many studies of software quality,

defect fix data have served useful purposes. Since we know that

a large community of users and developers used the open-source

products studied here, we are confident that the defects were

revealed and fixed adequately. In this study the severity of faults

is not taken into account. There can be number of faults which

can leave the system in various states e.g. a failure that is caused

by a fault may lead to a system crash or an inability to open a

file. The former failure is more severe than latter, thus the types

of fault is not the same. Though these results provide guidance

for future research on the impact of OO metrics on fault

proneness, further validations are needed with different systems

to draw stronger conclusions.

7. CONCLUSIONS
We presented a method and process with which metrics (and

also other data) can be automatically calculated from the source

code of real-size software. By processing the data from source

forge, we associated the bugs with classes found in the source

code. We employed statistical methods to assess the

applicability of the well-known object-oriented metrics to the

number of bugs in classes. We have conducted an empirical

validation of eleven metrics. The systems under study are

medium sized systems written in Java and have a testing record

including number of faults found in each class. In this study we

found NOC is highly correlated with defects. The NOC metric

seems to be the best in this analysis . The SLOC, CLOC and

Class methods metric performed fairly well and, they can be

easily calculated. More similar type of studies must be carried

out with large data sets to get an accurate measure of

performance. We plan to replicate our study on large data set for

different types of open source software system.

8. REFERENCES
[1] Chidamber, Shyam , Kemerer, Chris F. "A Metrics Suite

for Object- Oriented Design." M.I.T. Sloan School of

Management E53-315, 1993

[2] R. Subramanyan and M.S. Krisnan, ―Empirical Analysis of

CK Metrics for Object-Oriented Design Complexity:

Implications for Software Defects,‖ IEEE Trans. Software

Eng., vol. 29, no. 4, pp 297-310, Apr. 2003.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.8, August 2011

17

[3] Tang, M. H., Kao, M. H., & Chen, M. H. An empirical

study on object-oriented metrics. In Proceedings of 6th

IEEE International Symposium on Software Metrics. 1999,

pp.242–249

[4] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai, ―The

Confounding Effect of Class Size on the Validity of

Object-Oriented Metrics,‖IEEE Trans. Software Eng., vol.

27, no. 7, pp. 630-650, July 2001

[5] Fenton, N., S.L. Pfleeger: ―Software Metrics: A Rigorous

and Practical Approach‖, PWS Publishing Co.

[6] Olague, H., Etzkorn, L., Gholston, S., & Quattlebaum, S.

Empirical validation of three software metrics suites to

predict fault-proneness of object-oriented classes developed

using highly iterative or agile software development

processes. IEEE Transactions on Software Engineering,

33(8), 2007, pp.402–419.

[7] L.C. Briand, J. Wu¨ st, J.W. Daly, and D.V. Porter,

―Exploring the Relationships between Design Measures

and Software Quality in Object-Oriented Systems,‖ J.

Systems and Software, vol. 51, no. 3,pp. 245-273, 2000

[8] JaC64 and JMStella Atari 2600 Emulator for J2ME,

available at www.sourceforge.net/projects/

[9] Scitools. http://www.scitools.com/index.php.

[10] K..El Emam, S. Benlarbi, N.Goel , S. Rai, ―A Validation of

Object-Oriented Metrics‖, Technical Report ERB-1063,

National Research Council of Canada (NRC), 1999.

[11] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation

of object-oriented metrics on open software for fault

prediction. IEEE Trans. on Soft. Eng., 31(10):897–910,

2005.

[12] S. Watanabe, H. Kaiya, K. Kaijiri, Adapting a Fault

Prediction Model to Allow Inter Language Reuse,

PROMISE'08, May 12-13, Leipzig, Germany, 2008Nov.

1999.

[13] V.R. Basili, L.C. Briand, and W.L. Melo, ―A Validation of

Object- Oriented Design Metrics as Quality Indicators,‖

IEEE Trans. Software Eng., vol. 22, no. 10, pp. 751-761,

Oct. 1996.

[14] P. Yu, T. Systa¨ , and H. Mu¨ ller, ―Predicting Fault-

Proneness Using OO Metrics: An Industrial Case Study,‖

Proc. Sixth European Conf. Software Maintenance and

Reeng. (CSMR 2002), pp. 99-107, Mar. 2002.

http://www.sourceforge/

