
International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

30

A Survey on Operational Transformation Algorithms:

Challenges, Issues and Achievements
1
Santosh Kumawat

M.Tech Scholar

Poornima College of Engg.
Jaipur, Rajasthan, India

2
Ajay Khunteta

Asst Prof. Dept. of CS

Poornima College of Engg.
Jaipur, Rajasthan, India

ABSTRACT

Consistency maintenance is one of the most significant

challenges in the design and implementation of the systems,

where a group of users is allowed to view and edit the same

document at the same time. From geographically dispersed

sites connected by communication networks Operational

transformation (OT) is an established optimistic consistency

control method in collaborative applications. In addition, they

generally support two character-based primitive operations,

insert and delete, in a linear data structure. This paper presents

an integrative review of the evolution of operational

transformation techniques. It discusses major issues,

algorithms, achievements and remaining challenges. A

comparative study is done of various algorithms of OT based on

different parameters.

General Terms

Operational transformation (OT), optimistic consistency control

method.

Keywords

Operational transformation (OT), Inclusion and Exclusion

transformation, dOPT, TP2, etc

1. INTRODUCTION
Consistency maintenance is a fundamental issue in many areas

of computing systems, including database systems [Bernstein et

al. 1987], distributed systems [Birman et al. 1991], and

groupware systems [Baecker 1992; Sun et al. 1998]. Real-time

collaborative graphics editing systems allow a group of users to

view and edit the same graphics document at the same time

from geographically dispersed sites connected by

communication networks. Consistency maintenance in the face

of concurrent accesses to shared objects is one of the core

issues in the design of these types of systems. Real time group

editors (e.g., Grove and Reduce) are a category of distributed

systems that allow a group of users to edit the same document

collaboratively at the same time over a computer network, e.g.,

the Internet. They are frequently used as an effective research

vehicle and model of a wide range of distributed interactive

groupware applications that feature coordinated manipulation

of shared data objects. Consistency maintenance is a critical

and challenging issue in many interactive groupware

applications that can be modeled as group editors. Due to the

fact that human users are an integrated part of the system, there

are specific requirements [1] [2]:

 High local responsiveness: A group editor should be as

responsive as its single-user counterparts.

 Unconstrained interaction: The users should be able to edit

any part of the shared document at any time in a way

comparable to using single-user editors.

 Real-time communication: The users must be notified of

each other‘s operations in a timely manner for mutual

awareness and effective coordination.

 Consistency: Eventually the users must be able to see a

converged version of the shared document that is

consistent with their actual intentions.

Group editors usually replicate the shared document at each

site. Each user‘s operations are executed on the local replica

immediately without being blocked or delayed. Operations are

then propagated to remote sites and concurrency control

protocols are sought to repair inconsistencies. Traditional

concurrency control methods, such as locking and serialization,

are found unsuitable for interactive groupware applications.

Moreover, concurrency control methods in traditional

distributed systems in general only consider content

consistency, i.e., that all replicas eventually converge, while

overlooking intention consistency, i.e., that the converged

content is what the users want.

 Over the past decade operational transformation (OT) [4,

5, 7] has become an established method for consistency

maintenance in group editors. Compared to alternative

concurrency control methods such as locking and serialization,

OT has been found uniquely promising in achieving

convergence, causality and intention preservation without

sacrificing responsiveness and concurrent work in Sun et al.

[8]. The main property of OT, allowing users to edit any part of

the shared data at any time, in particular matches the vision of

Bentley and Dourish[3] of developing collaborative systems as

a customizable collaboration medium. In light of their

arguments, group editors with this property do not impose any

constraint on how people use the technology. Users are allowed

to use group editors for either asynchronous or synchronous

editing. With the right" single- user features (e.g., formatting)

and multi-user features, group editors appear capable of

accommodating a variety of editing purposes, work styles, and

processes [6].

2. OPERATIONAL TRANSFORMATION
OT[13, 14] is an optimistic consistency control method that

lies in the heart of many collaborative applications such as

group editors and Google Wave1. The method replicates the

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

31

shared data at cooperating sites. Local operations are always

executed as soon as they are generated by the user. Remote

operations are transformed before execution to repair

inconsistencies.

2.1 Inclusion and Exclusion Transformation

Sun et al [12] distinguishes inclusion transformation (IT) and

exclusion transformation (ET) functions. The IT function

requires that if O1 is transformed against O2, the effect of

executing its transformed version O1 ‗(O1‘= IT (O1, O2)) on the

document state that contains the effect of O2 should be the

same as the effect of executing O1 on the document state that

does not contain the effect of O2. The ET function means that

O1 is transformed against O2 (O1‘= ET (O1, O2)) in such a way

that the effect of O2 is effectively excluded from O1.

2.2 Transformation Properties
 Given two operations O1 and O2 let O1‘= IT (O1, O2) and O2= IT

(O2, O1), transformation function IT is required to possess the

following two properties [12]:

TP1: O1 o O2‘= O2 o O1‘

TP2: IT(IT(O, O1), O2)= IT(IT(O, O2), O1‘)

TP1 ensures that if O1 and O2, the effect of executing O1 before

O2 is the same as executing O2 before O1. TP2 ensures that

transforming any operation O along different paths will yield

the same result. These two properties actually ensure that

arbitrary communication order can lead to a consistent final

document state. In other words, it is not necessary to

conservatively enforce a global total order of operations

because inconsistencies can always be repaired with

operational transformation, if TP1 and TP2 can be satisfied

2.3 The dOPT Puzzle
The original dOPT algorithm failed in some cases. These cases

were re-discovered by several research groups [9] [10] [11] [12]

and are termed as the dOPT puzzle. Figure 1 illustrates a

simple scenario of the dOPT puzzle. Consider two users, A and

B, start a group editing session from the same document state

―abcd‖. At site 1, user A executes operation O1 =Del(0, ―a‖)

and then O2 =Ins(2, ―x‖), yielding document state ―bcxd‖.

.

At site 2, user B concurrently performs operation O3= Del(2 ,

―c‖), yielding ―abd‖. According to the dOPT algorithm, a

remote operation must be transformed against concurrent

operations that have been executed locally. Then the

transformed form is executed. So when site 1 receives O3from

site 2, (O3 is transformed against O1 and O2 in order and

becomes O3=Del(1, ―c‖)). After O3‘ is executed, the document

state at site 1 becomes ―bxd‖. At site 2, when O1 arrives, it is

transformed against O3, O1 is exactly the same as O1 because its

operation position precedes that of O3. The document state of

site 2 becomes ―bd‖ after executing O1. And then O2 arrives

and is transformed against O3 which results in O2 = O1 because

of the transformation rule (insert against delete) .After the

execution of O2, the document state of site 2 becomes ―bdx‖,

which is not consistent with the state of site 1.

The root of the dOPT puzzle is that, when operation O2 is

transformed against O3 (at site 2, these two concurrent

operations to be transformed are not originated from the same

document state. The document state from which O2 was

generated includes the effect of O1, while the document state

from which O2 was generated does not. So the position

parameters of O2 and O3 are not comparable

2.4 The TP2 Puzzle
The In addition to the dOPT puzzle, another transformation

puzzle was discovered by Sun et al. [16], which is illustrated by

the scenario shown in Figure 2. In figure 2, three users start

with the same initial document state ―abc‖. User A performs an

insert operation O1 =Ins(2, ―1‖) at site 1 and its document state

becomes ―ab1c‖. User B performs O2 =Ins(1, ―2‖) at site 2 and

its document state becomes ―a2bc‖. At site 3, user C performs

O3=Del(1, ―b‖) and the document state becomes ―ac‖. Those

three operations are mutually concurrent with each other. When

site 2 receives O3, it is transformed against O2 and becomes O3

‗=Del(2, ―b‖). After O3 is executed, the document state of site 2

becomes ―a2c‖. When O1 arrives at site 2, it is transformed

against O2 and O3 ‗in a sequel and becomes O1‗=Ins(2, ―1‖),

which is the same as O1 . After executing O1‘ the document

state of site 2 becomes ―a21c‖.

At site 3, O2 arrives first and is transformed against O3. The

transformation result O2 is the same as O2 and the document

state becomes ―a2c‖. When O1 arrives, it is transformed against

O3 first and changed to O1‘=Ins(1, ―1‖). O1‘ is transformed

against O2‘=Ins(1, ―2‖). Since the site id of O2 ‗ is greater than

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

32

one of O1 ‗,O1 ‗=Ins(1, ―1‖) is not modified. After O1 ‗ is

executed, the document state of site 3 becomes ―a12c‖, which

is not consistent with the state of site 2.

The puzzle seems to be fixable by simply applying the

following rule as proposed in [11]: when two insert operations

have the same position parameter, the position of the operation

with a larger site identifier will be shifted. Unfortunately, this

quick fix works only in this case but fails in another similar

scenario obtained by simply reversing the site identifiers of O1

and O2. The root of the problem is deeper than it appears and

requires a more sophisticated solution than just considering the

site identifier. The puzzle has a different nature from the dOPT

puzzle.

Since TP2 fails in this case, we call it TP2 puzzle

3. ALGORITHMS
A plethora of OT algorithms have been proposed over the past

two decades. There are two open challenges: First, most of

them are developed under the framework of Sun, which

includes an informal condition called "intention preservation".

As a consequence, their correctness cannot be formally proved

and counterexamples are often reported. Secondly, except for

[11], all other OT algorithms only consider two character-based

primitive operations. Although this simplification is

theoretically acceptable, there is a practicality gap when

applying those algorithms to real collaborative applications in

which string based operations are common. The handling of

string operations is very intricate.

3.1 dOPT
To achieve good responsiveness and avoid a single point of

failure in the system, a replicated architecture & been adopted

by GROVE the shined documents are replicated at the local

storage of each participating site. An (update) operation is

cxecuted on the local replica of the shared document

immediately after its generation, then broadcast to remote sites

for execution (after some delay and transformation).

GROVE invented distributed Operation Transformation

(dOPT) algorithm. GROVE‘s solution consists of two

components: one is the statevector timestamping scheme for

ensuring the precedence property, and the other is the dOPT

algorithm for ensuring the convergence property. The basic idea

of the dOPT algorithm is that when an operation satisfies the

precedence condition for execution, it is transformed against

independent operations in the Log (which saves executes

operations in the order of their execution) in such a way that

executions of the same set of properly transformed independent

operations in different orders produce identified document

states, thus ensuring the convergence property.A sketch of the

dOPT algorithm The transformation function T lies on the

semantics of the editing operations and hence is application-

dependent. The dOPT algorithm, however, is gentic and takes

care of selecting operations for transformation and determining

the transformation order. The basic control structure of the

dOPT algorithms is simple: Given a causally ready operation O,

the dOPT algorithm- the Log to transform O against any

operation in the Log which is independent of then the

transformed O, denoted as EO (i.e., the execution form of 0, is

executed and saved in the Log.

3.2 adOPTed
The Jupiter consistency maintenance algorithm[18] was

derived from the dOPT algorithm. The most interesting part of

the Jupiter approach is the adaptation of the dOPT optimistic

algorithm to an environment with multiple replicated clients

sites plus one centrtized server site. In Jupiter, the shared

documents are replicated at all cooperating client sites, which

is the same as in GROVE. The difference is that the shared

documents are also maintained at the central server and

communications happen only between a client and the

server.When an updating operation is generated on a client site,

it is immediately executed at the local client site (for fast

response to user actions), and then propagated to the central

server. The server fit transforms the incoming operation if

necesary, then executes the transformed operation on its copy of

the shared document, and finally broadcasts the transformed

operation to other client sites. Upon receiving an operation

propagated from the central server, a client site may transform

this operation if necessary, and then executes it on the local

copy of the document. Convergence property is also getting

satisfied here a bit.

The adOPTed algorithm added to the original dOPT algorithm

a multidimensional interaction graph, which keeps track of all

valid paths of transforming operations, and a double recursive

function (similar in functionality to our GOT control algorithm)

to determine which operations should apply the L-

Transformation (similar to our Inclusion Transformation)

against which others. If the L-Transformation functions could

always satisfy the properties specified by Ressel et al. [1996],

the adOPTed approach would be equivalent to our approach in

the sense that the execution of the same set of operations on the

same initial document by the two algorithms will produce the

same outcome document the adOPTed algorithm works on an

N-dimensional (where N is the number of cooperating sites)

interaction graph containing all operations in various possible

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

33

forms (i.e., the original, intermediate, and executed) in addition

to a linear Log (the same as our history buffer) with operations

in their original forms. The interaction graph provides a very

useful model for visualizing the transformation relationship

among original and transformed operations, but maintaining

and searching a dynamically growing and potentially large N-

dimensional graph at run time is inefficient and unnecessary

(as proved by our approach). The adOPTed approach achieves

both convergence and intention preservation at the application-

dependent transformation algorithm level. The correctness of

the adOPTed approach can be ensured by requiring

LTransformation functions to guarantee the uniqueness of the

labeling of vertices (for document states) and edges (for

original /transformed operations) of the interaction graph.

3.3 IMOR
IMOR (Imine et al., 2003) ,[15] uses one new parameter in the

insert operation, as insert(c; p; ip), where ip is the position of

the operation relative to its generation state. When inclusively

transforming two concurrent insertions whose positions tie,

their ip values are compared, after which the ASCII codes of

the characters are compared if there is still a tie. Intuitively, it

may not make sense to compare the ip values of two concurrent

operations if they are not defined on the same state. The nature

of this problem resembles that of the dOPT puzzle (Sun and

Ellis, 1998)

3.4 GOT
Although IT and ET functions defined in GOT[18] do not use

explicit extra parameters, they use extra internal data structures

to save information that helps break ties in some cases. are

proposed to free TP2 by maintaining the same transformation

path (total order of operations) at all sites every time an

operation o is transformed. Although these algorithms can

converge, those approaches are not always able to preserve the

correct object order because they cannot prevent the loss of

landmark characters in their transformation paths, without

requiring TP1 and TP2, the GOT control algorithm, integrated

with the undo/ do /redo scheme [17], is the only known

solution for achieving both intention- preservation and

convergence..

3.5 GOTO
The two additional post-conditions TP1 and TP2 can be

employed to optimize the GOT control algorithm by reducing

the number of IT/ET transformations. The optimized algorithm,

named as GOTO [18] (GOT Optimized), resembles the

Original GOT algorithm in handling the fit and the second

cases. For the third case, the handling is different. In addition

to performing transformations on the definition context of, we

also perform transformations on the execution context. of O to

make the two contexts equivalent. GOTO (Sun et al. 1998; Sun

2002) need extra memory for handling the so-called ―lossy IT‖

problem. GOTO use function convert2HC(), which requires ET

between an insert and a concurrent delete.

3.6 SOCT2
IT functions defined in SOCT2 (Suleiman et al. 1997) use

explicit extra parameters, which take extra computation to

derive. The transpose_bk function in SOCT2 (Suleiman et al.

1997; Suleiman et al. 1998) is also similar to our SWAP

function. Note that SOCT2 only transforms two concurrent

operations. SOCT2[19] implement an additional

transformation, called Exclusion Transformation or Backward

Transposition, which enables the order of execution of two

consecutive operations to be changed without violating the user

intention.

GOTO and SOCT2 : The space complexity of SOCT2 and

GOTO are O(|H|2). The control procedure of SOCT2 and

GOTO is more general under the established design framework

of (Sun and Ellis 1998); the quadratic space complexity is

derived basing on their provided transformation. Every time a

remote operation is integrated, other algorithms (SOCT2,

GOTO) call convert2HC() to transpose the whole history H.

Hence the time complexities of all those algorithms are at least

in the order of magnitude of O(|H|2).

3.7 SOCT3
Suppression of condition C2 requires the use of an unique

global order precede S compatible with the causal order

precede C. Moreover, in order to avoid to undo/redo operations

the order of operations delivery must be consistent with the

precede S order. It proposes to satisfy both constraints by using

a sequencer to obtain a global and continuous order.

Local Execution, Broadcast and Reception of Operations in

SOCT3[19]:A sequencer is an object which delivers

continuously growing positive integer values, called

timestamps. A timestamp is obtained through a call to function

Ticket. The various methods of implementing a sequencer in a

distributed system, namely circulating sequencer or replicated

sequencer will not be discussed in this paper. Thanks to the

Ticket function of the sequencer, each operation generated in

the collaborative system is assigned a timestamp. The precedes

order follows the order of the timestamps and we show below

that it is compatible with the causal order precede.

3.8 SOCT4
In SOCT4 as in SOCT3, the operations are ordered globally

using a timestamp given by a sequencer. They are then

delivered on each site in this order thanks to the sequential

reception. The originality of SOCT4[19] comes from the fact

that forward transpositions that take into account concurrent

operations are now made by the generator sites of the

operations. This results in three major advantages:

a) The receiver site does not have to separate history any more ;

thus backward transposition becomes unnecessary,

b) The received operation can be stored as it is in the history

without further transformation,

c) State vectors are no longer needed. To achieve this, the

broadcast of an operation must be deferred. More precisely, an

operation generated on a site S is as usual executed locally

without delay to satisfy the real−time constraint, but it is not

broadcast until it has been assigned a timestamp and all the

operations which precede it according to the timestamp order

(i.e. precedeS) have been received and executed on site S.

Moreover, before being broadcast, the operation is forward

transposed with all concurrent operations, that is to say with

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

34

operations received by S after its generation and preceding it in

the global order.

3.9 TIBOT
Time interval based operational transformation algorithm

(TIBOT) [17]that overcomes the various limitations of previous

related work. Our approach guarantees content convergence

and is significantly more simple and efficient than existing

approaches. This is achieved in a pure replicated architecture

by using a linear clock and by posting some constraints on

communication that are reasonable for the application domain.

TIBOT achieves the time complexity of O with the storage

complexity significantly reduced, as compared to adOPTed, and

the algorithm itself significantly simplified, as compared to

GOTO. It use a linear time interval

based logical clock for the same purpose of causality

preservation as the more complex vector clock approach in

existing operational transformation algorithms. This increases

system scalability in terms of accommodating late comers in a

dynamic collaboration environment. Second, we solve the

dOPT puzzle with a one- dimensional history buffer and Third,

we solve the TP2 puzzle in a fully replicated architecture and

without using ET (as compared to GOT or extra mechanisms.

3.10 WOOT & TTF
In WOOT (Oster et al. 2006a) and TTF (Oster et al. 2006b),

Oster et al propose approaches that differ from the above.

According to (Oster et al. 2005b), WOOT uses a model checker

to prove convergence by verifying all cases that involve up to

four sites and five characters, which deservers further work

with regard to convergence. TTF uses a theorem prover to

verify TP1 and TP2, which are sufficient conditions for

convergence by (Ressel et al. 1996). In both works, they

explain the concept of operation intention somewhat between

the interpretation of (Sun et al. 1998) and our definitions of

operation effects relation (Li and Li 2004; Li and Li 2007; Li

and Li 2005). Nevertheless, they do not provide proofs with

regard to their interpretation of intention preservation. It seems

that our formalization of effects relation (Li and Li 2007) or

admissibility in it [16] is compatible with and complementary

to their approach of automated proofs. There is a potential that

their approach and ours can leverage each other in future

research.

3.11 LBT
LBT (Li and Li 2007) is the first work that builds special

transformation paths (versus arbitrary paths). Each time a

remote operation o is to be integrated, it[16] first transpose H

into an HC sequence Hh • Hc. If o is a deletion, we inclusively

transform o with Hc. If o is an insertion, however, we first

transpose Hh into an ID sequence Hhi • Hhd and then transpose

Hhd • Hc into another ID sequence Hi • Hd. After that, o is first

exclusively transformed with Hhd (the backward path) to

exclude its effects and then inclusively transformed with Hi •

Hd (the forward path) to include its effects. The correctness of

IT is thus ensured: Since H=Hhi • Hi • Hd, when processing IT

between insertion o with Hi, the landmark characters are all

present. However, ET in the two transposition steps has to

handle happened-before and concurrent operations ordered

arbitrarily. The solution in LBT is to build ET-safe sequences

by reordering the operations according to their effects relation.

Consequently, ET is still very complicated.

3.12 SLOT
The SLOT transformation control algorithm is much simpler

and more efficient than other algorithms such as GOTO. There

are three other important advantages. Firstly, it is free of state

vectors. State vectors are usually needed to capture concurrent

relationships among operations, which have been achieved

because the notification protocol ensures operations in OB and

IB at the same site are concurrent. Secondly, it is free of ET

transformation functions.

3.13 SDT
State difference based transformation (SDT)[15] approach

which ensures convergence in the presence of arbitrary

transformation paths. Our approach is based on a novel

consistency model that is more explicitly formulated than

previously established models for proving correctness. SDT is

the first OT algorithm proved to converge in peer-to-peer

group editors.It is able to ensure CSM consistency at the

system level. In particular, it introduces a concept of operation

effects relation and an approach to capture the correct effects

relation between any operations. The performance of SDT in Li

and Li (2005a): its worst-case time complexity is O(n3) and the

expected time is O(n2).

3.14 ABT
Admissibility-based transformation (ABT) [16], that is

theoretically based on formalized, provable correctness criteria

and practically no longer requires transformation functions to

work under all conditions. It requires only two correctness

conditions, causality preservation and admissibility, that are

formalized and provable. The new admissibility condition

requires that the execution of every operation be admissible‖,

i.e., not violating object relations that have been established by

earlier admissible executions. Because convergence is implied

by these two conditions, our consistency model does not include

an explicit condition of convergence. Practically, it establishes

a principled design methodology in which sufficient conditions

of transformation functions are first identified and a suitable

control procedure is then found to satisfy those sufficient

conditions. This way, the control procedure and transformation

functions are not separated as in previous works (Suleiman et

al. 1998; Sun and Ellis 1998)—instead, they work

synergistically in ensuring correctness; correctness of the

algorithm can be easily proved without requiring the

transformation functions to work in all possible cases. Due to

the above properties of ABT, it is easier to develop OT

algorithms and prove their correctness. In the ABT algorithm

[16], the history H is maintained as an ID sequence Hi • Hd at

every site and, before any operation o is propagated, the effects

of Hd (the backward path), which contains all deletions that

happened before o, have been excluded from o. As a result,

when integrating a remote operation o, we only need to

transpose Hi into an HC sequence Hih • Hic and then 38 Du Li

and Rui Li inclusively transform o with Hic • Hd (the forward

path). Hence the correctness of IT is ensured as simply as in

LBT. However, ET is no longer required to work on arbitrary

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

35

paths: In function updateHL(), ET is only between an (insert or

delete) operation and deletions that happened before it. In

function updateHR(), ET is only between concurrent

insertions. Therefore, the handling of ET in ABT is much

simpler.

3.15 ABTS
The presented string wise ABTS algorithm is a significant

extension to its character wise version ABT [21, 20].It supports

string based primitive operations. The presented algorithm is

the first of its kind with string wise operations and correctness

formally proved. Specifically, when transforming two string

wise operations, the algorithm is greatly complicated by the

handling of position relations between the operation regions

because operations may be split cascadingly during

transformation. In it operations are stored in their execution

order in the history H, the time complexity to integrate a

remote operation is roughly O(IHI 2) , The space complexity of

the presented ABTS algorithm is trivially O(IHI).

In ABTS a history buffer H is maintained at each site which

logs operations that have been applied to the data replica at that

site. For correctness reasons [21, 20], H is maintained as a

concatenation of of two subsequences, Hi and Hd' which record

the executed insert and delete operations in their order of

execution, respectively. That is, H = Hi. Hd. In addition, each

site maintains RQ, a list of operations received from remote

sites in their order of arrival. Each site j runs the following

three concurrent threads:

Thread £ each time receives a local operation 0, applies it to

the data replica, calls algorithm updateHL to update H and

compute 0', a transformed version of 0, and propagates the

resulting 0' to remote sites. Thread N receives remote

operations from the network and appends them to RQ in their

order of arrival. Thread R scans RQ for a remote operation 0 at

a time that is causally- ready, i.e., all operations that happen

before o have been executed at site j. Then algorithm update

HR is called to update H and transform 0 into a version 0' that

can be correctly executed in current state of site j. After that, 0'

is executed on the data replica at site j.

3.16
The COT [22] algorithm the theory of operation context and,

provide a new theoretical framework and uniformed solutions

to both consistency maintenance and undo problems in

distributed collaborative editing systems. With these results,

we have achieved the goals to better understand and solve OT

problems, reduce complexity, verify correctness, improve

efficiency, and support the continual evolution of OT. The COT

algorithm has two entries: the COT-DO entry for consistency

maintenance (do) and the COT-UNDO entry for supporting

undo. Operation context and context-based conditions are at the

core of the whole COT algorithm. In the COT algorithm

description, we use the context set representation C(O), rather

than the context vector representation CV (O). This is because

the context set representation is not only concise in expression

but also directly implementable. Moreover, a document state

DS is expressed as a set of original operations as well. By using

original operation set expressions, we keep the COT algorithm

independent of internal operation buffering schemes. When an

operation O is propagated from the local site to remote sites,

however, it is the context vector, not the operation set, that is

actually piggybacked on O. Based on the information in CV

(O), operations in C(O) can be easily determined from

operations in DS.

4. CONCLUSION
Table 1 gives an overview of SOCT3, SOCT4, dOPT, adopted,

GOT, GOTO and SOCT2 and many other algorithms. Many

similarities exist among these algorithms regarding the

techniques employed and we will take a closer look at the

differences that make the originality of each one.

A relative comparison of a number of OT algorithms like

dOPT, adOPTed, GOT, GOTO, SDT, SOCT2, SOCT3,

SOCT4, ABT, ABTS ,SLOT is done relative to various

parameters like various constraints like intention preservation,

causality reservation, convergence ,in case of remote operations

nature of communication and order of operation dispersion ,

and memory operations like order in memory or during

integration operation type in memory and also other parameters

like time complexity, space complexity, support for string

handling, transformation functions and framework. A

comparison with the existing algorithms concludes this article,

and gives a synthetic overview of advantages and drawbacks of

the different techniques implemented in each one. In this paper,

we have reviewed a number of major operational

transformation algorithms for consistency maintenance in real-

time group editors, including the dOPT algorithm, the GOT

algorithm, the GOTO algorithm, the SDT algorithm, the

SCOT2, SCOT3, SCOT4 algorithm, the Jupiter algorithm, and

the adOPTed algorithm, ABT algorithm, ABTS algorithm. In

this conclusion section, we summarize the major achievements

in the past 15 Years on the transformation-based consistency

maintenance techniques and point out the major open issues for

future exploration.

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

36

Table 1. Comparison of different algorithms(Parameters\Algorithms base table)

 dOPT adOPTed GOT GOTO SOCT2 SOCT3 SOCT4 SDT ABT ABTS

Correctness

Criteria

Intention

preservation

dOP

Transformation

L−Transformation

and

multidimensional

graph

Inclusion

Transformation

And Exclusion

Transformation

Inclusion

Transformation

and Exclusion

Transformation

Forward

Transposition

and

Backward

Transposition

Forward

Transposition

And

Backward

Transposition

Forward

Transposition

Inclusion

Transformation

And Exclusion

Transformation

IT and ET IT and ET

Causality

preservation

State vectors State vectors State vectors State vectors State vectors Timestamps Timestamps Vector

timestamps

State

vectors

Vector times

tamps

Convergence Condition C1

(but

convergence is

not achieved)

Condition C1

And Condition C2

Non continuous

global order

and Undo/Redo

Condition C1

And Condition

C2

Condition C1

And

Condition C2

Condition C1

And

Continuous

global order

Condition C1 and

Continuous global order

IT functions –

two properties,

TP1 and TP2, It

along arbitrary

transformation

paths.

Satisfying

TP1 and

TP2

Admissibility

preservation

and Causality

preservation

Property of

operations

of remote

sites

Nature of

communication

Immediate Immediate Immediate Immediate Immediate Immediate

(as soon as

timestamp is

assigned)

Deferred,

in timestamp

order

Every

local operation

is timestamped

by the state

vector of the

state

immediately

resulted from

its generation

(and execution)

Vector

timestamps

Causal Order

Order of

operation

dispersion

Causal order Causal order Causal order Causal order Causal order Continuous

global order

Continuous

global order

Causal Order -

Reordering of

history buffer

before the

integration of

remote

operations

Causal

Order

Immediate

Storage

Order in

Memory

Execution

order

Several equivalent

orders respecting

the causal order

Global order

(= execution

order)

Optimized

causal order

Optimized

causal order

Continuous

global order

(≠execution

order)

Continuousglobal

order(≠executionorder)

Execution order Execution

order

Continuous

global order

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

37

 During

integration

operations

type in

Memory

Executed

operation

Received operation

and some

transformed

operations

Executed

operation

Executed

operation

Executed

operation

Transformed

operation

conforming to

the timestamp

order

Received

operation

Executed

Operation

Integrate

every

operatio

n in an

admissib

le

manner

and use

the

partial

order

Received

Operation

Time

Complexity

Time Consume more

time

Less than dOPT A bit less than

adOPTed

O(I H 2 I)

which is slower

than ABT at

least by some

factor

determined by

the ratio of

insertions in H

O(I H 2 I)

which is slower

than ABT at least

by some factor

determined by

the ratio of

insertions in H

A bit more than

SCOT4

A bit more

than ABT

O(I H 2 I)

which is slower

than ABT at least

by some factor

determined by the

ratio of insertions

in H

Worst case O(I H
3 I) and expected

time O(I H 2 I)

O(I H 2 I

)

O(H)

Transformati

on Function

 Condition C2 Condition C2 Condition C2 Condition C2 Condition C2 Global Order and

C2

Global

Order and

C2

Condition TP1

and TP2 and IT

and ET

Conditio

n TP1

and TP2

and IT

and ET

Condition TP1 and

TP2 and IT and ET

Support for

String

handling

 No No Yes Yes No No No No No Yes

Framework CC Framework CC Framework CC Framework CC Framework CC Framework CC Framework CC

Framework

CCI Framework ABT

Framew

ork

ABT Framework

Space

complexity

 More space A bit less than

dOPT

O(I H 2 I) O(I H 2 I) O(I H 2 I) A bit more than

SCOT4

A bit more

than ABT

A bit more than

ABT

O(|H|) O(|H|)

International Journal of Computer Applications (0975 – 8887)

Volume 3 – No.12, July 2010

38

5. FUTURE WORK
Two types of consistencies one is syntactic consistency, which

is concerned with whether all sites have the same view of the

shared objects, regardless of whether the common view makes

sense in the application context; and the other is semantic

consistency, which is concerned with whether all sites have the

same view of the shared objects, as well as whether the

common view makes sense in the application context. There

may exist many levels of syntactic consistency and semantic

consistency in a particular application context. Previous work

has mainly explored issues related to syntactic consistency.

Particularly, the term intention defined and used in this paper

has intention from the human user‘s perspective. This brings up

interesting areas of research concerned with characterization

and preservation of the human user‘s intentions in collaborative

contexts, or group intentions. It may be infeasible for the

system alone to automatically determine the human group

intentions for different groups with divergent group goals. A lot

of work is done to reduce time and space complexity .Still there

is a scope to reduce time complexity and space complexity.

6. REFERENCES
[1] C. A. Ellis and S. J. Gibbs. Concurrency control in

groupware systems. In ACM SIGMOD‘89 Preceedings,

pages 399–407, Portland Oregon, 1989

[2] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.

Achieving convergence, causality-preservation, and

intention preservation in real-time cooperative editing

systems. ACM Transactions on Computer-Human

Interaction, 5(1):63–108,

[3] [3] R. Bentley and P. Dourish. Medium versus

mechanism: Supporting collaboration through

customization. In ECSCW'95 Proceedings, 1995.

[4] A. H. Davis, C. Sun, and J. Lu. Generalizing operational

transformation to the standard general markup language.

In ACM CSCW'02, pages 58{67, Nov. 2002.

[5] C. A. Ellis and S. J. Gibbs. Concurrency control in

groupware systems. In ACM SIGMOD'89 Preceedings,

pages 399{407, Portland Oregon, 1989.

[6] S. Noel and J.-M. Robert. Empirical study on collaborative

writing: What do co-authors do, use, and like. Journal of

Computer Supported Cooperative Work, 13:63{89, 2004.

[7] C. Sun and C. Ellis. Operational transformation in real-

time group editors: issues, algorithms, and achievements.

In ACM CSCW'98, pages 59{68, Dec. 1998.

[8] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.

Achieving convergence, causality-preservation, and

intention-preservation in real-time cooperative editing

systems. ACM Transactions on Computer-Human

Interaction, 5(1):63{108, Mar. 1998.

[9] G. V. Cormack. A calculus for concurrent update.

Technical Report CS-95-06, Dept. of Computer Science,

University of Waterloo, Canada, 1995.

[10] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-

latency, low-bandwidth windowing in the jupiter

collaboration system. In ACM UIST‘95 Proceedings, Nov.

1995.

[11] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauser. An

integrating, transformation-oriented approach to

concurrency control and undo in group editors. In ACM

CSCW‘96 Proceedings, pages 288–297, Nov. 1996.

[12] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.

Achieving convergence, causality-preservation, and

intention- preservation in real-time cooperative editing

systems. ACM Transactions on Computer-Human

Interaction, 5(1):63–108, Mar. 1998.

[13] C. A. Ellis and S. J. Gibbs. Concurrency control in

groupware systems. In Proceedings of the ACM

SIGMOD'89 Conference on Management of Data, pages

399-407, Portland Oregon, 1989.

[14] C. Sun and C. Ellis. Operational transformation in real-

time group editors: issues, algorithms, and achievements.

In Proceedings of the ACM Conference on Computer-

Supported Cooperative Work, pages 59-68, Dec. 1998.

[15] D. Li and R. Li. An approach to ensuring consistency in

peer-to-peer real-time group editors. Computer Supported

Cooperative Work: The Journal of Collaborative

Computing, 17(5-6):553-611, Dec. 2008.

[16] D. Li and R. Li. An admissibility-based operational

transformation framework for collaborative editing

systems. Computer Supported Cooperative Work: The

Journal of Collaborative Computing, Aug. 2009. Accepted.

[17] R. Li, D. Li, and C. Sun, ―A Time Interval Based

Consistency Control Algorithm for Interactive Groupware

Applications,‖ Proc. IEEE Int‘l Conf. Parallel and

Distributed Systems (ICPADS ‘04), pp. 429-436, July

2004.

[18] C. Sun and C. Ellis. Operational transformation in real-

time group editors: issues, algorithms, and achievements.

In Proceedings of the ACM Conference on Computer-

Supported Cooperative Work, pages 59-68, Dec. 1998.

[19] N. Vidot, M. Cart, J. Ferrie, and M. Suleiman, ―Copies

Convergence in a Distributed Realtime Collaborative

Environment,‖ Proc. ACM Conf. Computer-Supported

Cooperative Work (CSCW ‘00), pp. 171-180, Dec. 2000

[20] D. Li and R. Li. An admissibility-based operational

transformation framework for collaborative editing

systems. Computer Supported Cooperative Work: The

Journal of Collaborative Computing, Aug. 2009. Accepted.

[21] R. Li and D. Li. Commutativity-based concurrency control

in groupware. In Proceedings of the First IEEE Conference

[22] on Collaborative Computing: Networking, Applications

and Worksharing (CollaborateCom '05), San Jose, CA,

Dec. 2005.

[23] D. Sun and C. Sun. Context-based operational

transformation in distributed collaborative editing systems.

IEEE Transactions on Parallel and Distributed Systems,

20(10):1

