
International Journal of Computer Applications (0975 – 8887)

Volume 4– No.11, August 2010

18

Main Content Extraction from Detailed Web Pages

Mohsen Asfia

Islamic Azad University, Science &
Research Branch

Department of Computer
Engineering

Tehran, Iran

Mir Mohsen Pedram
Tarbiat Moallem University
Department of Computer

Engineering

Karaj, Tehran, Iran

Amir Masoud Rahmani
Islamic Azad University

Science & Research Branch
Department of Computer

Engineering

Tehran, Iran

ABSTRACT

As we know internet detailed web pages contains information

which are not considered as primary content such as

advertisements, headers, footers, navigation links and copyright

information. Also information on web pages such as comments

and reviews are not preferred by search engines to index as

informative content, thereby having an algorithm to extracts only

main content could help better quality on web page indexing.

Almost all algorithms have been proposed are tag dependent

means they could only look for primary content among specific

tags such as <TABLE> or <DIV>. The algorithm in this paper

simulates a web page user visit and how the user finds the main

content block position in the page. The proposed method is tag

independent and has two phases to accomplish the extraction job.

First it transforms input DOM tree obtained from input HTML

detailed web page into a block tree based on their visual

representation and DOM structure in a way that on every node it

will have specification vector, then it traverses the obtained small

block tree to find main block having dominant computed value in

comparison with other block nodes based on its specification

vector values. The introduced method doesn’t have any learning

phases and could find informative content on any random input

detailed web page. This method has been tested in large variety of

websites and as we will show, it gains better precision and recall

based on other compared method K-FE.

Keywords

Web mining, Noise elimination, Informative content, Information

retrieval, Information extraction.

1. INTRODUCTION
A web page structure and layout varies depend on different

content type it will represent or the tastes of designer styling its

content. Thereby main content position or the main tag containing

main content differs in variety of websites. Even there might be

some content in page view that are besides each other but actually

in DOM tree they are not in the same level and same parents, so

finding the main content in this area that doesn’t follow any

specific rules for arranging and positioning elements needs

complicated and costly algorithms.

Algorithms that could simulate a user visiting a website, in high

probability could find informative content as result because in

most cases actual users in internet could find the area of the main

content. But which specifications and structures could help an

algorithm to find main content?

Figure 1 shows VIPS algorithm [5] uses visual cues to produce

content structure from DOM structure and with this content

structure it fills the gap between DOM structure and the

conceptual structure of the webpage. The algorithm uses obtained

content structure and tries to simulate how actual user finds a

main content by blocking the page based on structure and visual

delimiters. The blocking result is satisfactory but the algorithm

does many loops to reach its desire granularity.

Fig. 1. VIPS algorithm process [5].

CE [11] considers all detailed pages of a website as pages with the

same class. It runs a learning phase with two or more pages as its

input and finds the blocks that their pattern repeats between input

pages and marks them as non-informative blocks then stores them

in storage. These non-informative blocks are mostly copyright

information, header, footer, sidebars and navigation links. Then

when we use CE algorithm in actual world it first eliminate non-

informative patterns from the structure of its input pages based on

the stored patterns in its storage for specific class of input pages.

Finally from the remaining blocks in the page it will return the

text of block containing the most text length. CE needs a learning

phase so it couldn’t extract the main content from random one

input web page.

FE [11] extracts the text content of a block that has the most

probability of having text so it will work fine in web pages that

text content of main content dominates other types of content. In

addition FE could return just one block of the main content, so

[11] proposed K-FE that returns k blocks with high probability of

having the main content. Algorithm steps of K-FE and FE are the

same except the last part. In K-FE the algorithm final section,

sorts the blocks depends on their probability then it uses k-means

clustering and takes high probability clusters.

So the proposed paper intends to introduce an algorithm which

could extract main content that is not necessarily the dominant

content and without any learning phase, with one random page

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.11, August 2010

19

and by using visual cues to simulate user page visit and block the

page based on it and gains higher precision.

Next section demonstrates the proposed algorithm in this paper in

two main phases, first block tree construction, and then it finds

main block from the block nodes in the computed block tree.

2. PROPOSED ALGORITHM
Figure 2 shows the proposed algorithm called Visual Clustering

Extractor (VCE). It gets DOM tree of input web page as its input

and returns the informative content block as its output.

Figure 2. VCE algorithm general look.

The first line of the algorithm use GetBlockTree sub-algorithm

and sends the DOM tree as its input. The GetBlockTree sub-

algorithm recursively traverses the input DOM tree in pre-order

and returns block tree and general parameters as its output. Each

node in block tree clusters one or more nodes from DOM tree so

the number of elements in block tree is significantly lower than

the number of nodes in DOM tree. Each node in block tree has

specification vector that we will use it to find the main block later.

General parameters contain general total value of specifications

for text. Link density, width and height and we can use these

values to compute average values before starting to find the main

block. In Section 2.1 GetBlockTree sub-algorithm will introduce

in detail.

As depicted in Figure 2 the third line of VCE algorithm is

FindMainBlock sub-algorithm that traverses obtained block tree

from GetBlockTree sub-algorithm pre-order and based on general

parameters it returns the collection of candidate blocks and finally

the main block. Section 2.2 will demonstrate FindMainBlock sub-

algorithm in detail.

2.1 Constructing Block Tree
This section will introduce the process of block tree construction

through GetBlockTree algorithm Figure 3. This algorithm

recursively loops through input DOM tree and it produces block

tree as final result and meanwhile it flags the blocks such as

comment blocks which their patterns repeats in unordinary

manner and they should not consider as the main content. In

addition besides constructing the block tree, the algorithm append

the text of child blocks to their parent so we will have text

manipulation just in this section without any need for additional

loop for text computation later on the block tree. This sub-

algorithm contains sub-sections which will introduce in the next

parts.

Figure 3. GetBlockTree sub-algorithm gets DOM tree as its input

and returns block tree and general parameters as its output.

2.1.1 Why Block
First I define the concept of block in this paper. A block is a

family of elements with same visual styles and order in DOM tree

and their conceptual purpose to appear in the page are the same.

The algorithm proposed in this paper tries to first divide the page

into some blocks. One thing that we should consider here is why

we should make block tree in content extraction algorithms? or

further why we should have block? I answer this question with an

example. Consider we want to remove the navigation links in

sidebar, to accomplish this target we should eliminate the parts of

the page which have high link density. If you don’t use block then

the algorithm will consider each individual node element as a

page part and removes all the links in the page even if the links

are in the main content, because the link density on each

individual link is high. But when you are using block, the

algorithm would decide on blocks instead of each individual

DOM node. So in our example algorithm will remove the

navigation links in side bars and it doesn’t remove the links in the

main content.

2.1.2 Pattern Cache
Finding repetitive block pattern among child blocks of a block

node needs additional loop through them, to prevent this and

finding them while we are constructing the sub-block tree of a

block node we should have a PatternCache which roles as an array

and holds the unique patterns among its child blocks. Later we

will use this cache array to count the number of repetitive patterns

in child blocks of a specific node.

2.1.3 DetectBlock Method
This method will specify either its input node should form a new

block or it should use the block of its parent node in DOM tree.

This method makes this decision by checking if the visual

distance of current node in contrast with its parent is more than a

threshold value or not. If its distance was not valid then it would

make a new block and the algorithm flags the current DOM node

as the parent of new block. If the distance was valid it means we

should only add the current element to the block of its DOM

parent node. The visual distance is the number of differences on

their visual styles which are important in this algorithm, such as

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.11, August 2010

20

width, height, font-size, background color, top and left. Actually

these visual styles are the parts of a block specification vector.

2.1.4 AddText Method.
This method will compute the immediate text of current node and

immediate link text of current node and add them to the relevant

attribute of its block. Other child nodes could add their text to

these texts later. Figure 4 shows the immediate text and immediate

link text of a DOM node. The text length and link text length are

some of the specifications in a block specification vector.

Figure 4. Immediate text and Immediate link text for a DOM

element

2.1.5 Children Manipulations

For each DOM children of input element first we do the recursive

GetBlockTree algorithm. The recursive algorithm make sub block

tree for each child node and their subordinating child nodes. Then

PatternVerifier algorithm runs for the child block with additional

input called PatterCache. PatternVerifier checks if the current

block pattern has any same pattern among its siblings. To

accomplish this task, it uses PatternCache which contains unique

pattern of the current block siblings (Figure 5). No of repetitive

patterns is a negative specification in a block specification vector.

Figure 5. PatternVerifier method

The last process which operates the block of child node is

TextManipulation method that add the text of child node to its

parent if the link density of child node was ok depend on a

threshold. Figure 6 depicts more detail for TextManipulation

method.

Figure 6. TextManipulation method for a DOM element

2.1.6 Final ElementManipulation Method

This method updates general parameters such as width, height,

text length and link text length, based on updated attributes of

current input DOM element. Later the algorithm uses these

general parameters for computing average values which can be

use for evaluating importance and validity of a block in finding

main block section.

So after GetBlockTree algorithm finished, we have the block tree

and general parameters which can be used for computing general

averages. Finally the algorithm sends the block tree and general

parameters to FindingTheMainBlock sub-algorithm to find the

main block.

2.2 Finding the Main Block Based on the

Block Tree
This part is the algorithm final round. The FindMainBlock sub-

algorithm (Figure 7) takes general parameters (general averages)

and the block tree. It traverses through the block tree recursively

in pre-order manner and for each block it does the following

operations:

2.2.1 Check If Block is Valid
First it compares the block with general parameters to check if the

block met the least conditions to be chosen as candidate for the

main block.

2.2.2 Compute FactorValue

Then if the block has those conditions, it computes FactorValue

for the current block base on its specification vector. The factor

value for a block is obtained from the following formula:

As we could see in this formula, having more text length, width,

average font size and distance from bottom of the page is positive

values for a block to be selected as the main block. If a block had

repetitive patterns in its children to have higher chance to be

selected as The Main Block it would be better the distance of the

block from the top of the page would be lower and if the number of

these rep patterns are lower it would be better. Having higher link

density makes it more difficult for a block to be selected as The

Main Block.

The block that we already compute its FactorValue is added to the

candidate block list and the algorithm compares its FactorValue

with the FactorValue of The Main Block, if the FactorValue of

candidate block is greater than the FactorValue of The Main Block

then the current block is selected as The Main Block.

(1)

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.11, August 2010

21

Figure 7. FindMainBlock sub-algorithm, the final round of

content extractor

Finally FindMainBlock sub-algorithm returns The Main Block

which has the highest FactorValue and the content of this block

represented in the output.

3. EXPERIMENTAL RESULTS
In this section we evaluate our algorithm with the dataset in [11]

which contains over 5000 pages and compare it with K-FE [11]

(because it seems to have better result in comparison with other

algorithms), in block-level based on Block-Precision, Block-

Recall and Block-F-Measure factors which are introduced in [11],

[3] (Table 1).

Table 1. Block-Level comparison between VCE (proposed

algorithm in this paper) and K-FeatureExtracor [11]

4. Conclusion
We proposed an algorithm called VCE here, which could extract

the main content from a random detailed web page. As we saw in

section 3 this algorithm gains higher b-Precision, b-Recall and b-

F-measure so we gain higher precision in extracted content. The

VCE algorithm is not dependant on any tag type and it just has an

iteration to block its input page while it doesn’t have any learning

phase. Furthermore it could detect and eliminate comments from

the extracted content.

5. REFERENCES
[1] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran

Soares da Silva, Juliana S. Teixeira: A Brief Survey of Web

Data Extraction Tools. SIGMOD Record 31(2): 84-93 (2002).

[2] Bing Liu: Web Data Mining. Springer (2007).

[3] C. J. Van Rijsbergen: Information Retrieval. Butterworth-

Heinemann (1979).
[4] Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-Ying Ma: Block

Based Web Search. In: Proc. 2004 Int. Conf. on Research and

Development in Information Retrieval (SI-GIR’04), Sheffield,

UK (July 2004).

[5] Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-Ying Ma:

Extracting Content Structure for Web Pages based on Visual

Representation. In: The Fifth Asia Pacific Web Conference

(APWeb2003), Springer Lecture Notes in Computer Science

(2003).

[6] Deng Cai, Xiaofei He, Ji-Rong Wen and Wei-Ying Ma: Block

Level Link Analysis. In: Proc. 2004 Int. Conf. on Research and

Development in Information Retrieval (SIGIR’04), Sheffield,

UK (July 2004).
[7] Hwanjo Yu, AnHai Doan, and Jiawei Han: Mining for

Information Discovery on the Web: Overview and Illustrative

Research. In: Intelligent Technologies for Information

Analysis, edited by Ning Zhong, Springer-Verlag, invited

paper, pp. 135-168 (2004).

[8] Jeff Pasternack, Dan Roth: Extracting Article Text from the

Web with Maximum Subsequence Segmentation. In: www '09:

proceedings of the 18th international conference on World

Wide Web, New York, ny, usa, acm, 971—980 (2009).
[9] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu and Fred

Douglis: Automatic Detection of Fragments in Dynamically

Generated Web Pages. In: 13th International Conference on the

World Wide Web (WWW-2004), pp. 443-454 (2004).

[10] Lan Yi, Bing Liu, and Xiao-Li Li: Eliminating Noisy

Information in Web Pages for Data Mining. In: Proceedings of

the ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (KDD-2003), Washington, DC,

USA, August 24 – 27 (2003).
[11] Sandip Debnath, Prasenjit Mitra, Nirmal Pal, C. Lee Giles:

Automatic Identification of Informative Sections of Web Pages.

In: IEEE Transactions on Knowledge and Data Engineering,

17(9): 1233-1246 (2005).

[12] Shian-Hua Lin and Jan-Ming Ho: Discovering informative

content blocks from web documents. In: Proceedings of the

eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 588–593 (2002).

[13] Suhit Gupta, Gail Kaiser, David Neistadt, Peter Grimm: DOM-

based Content Extraction of HTML Documents. In: 12th

International World Wide Web Conference, 12th International

World Wide Web Conference (May 2003).

[14] Valter Crescenzi , Giansalvatore Mecca , Paolo Merialdo:

RoadRunner: Towards Automatic Data Extraction from Large

Web Sites. In: Proceedings of the 27th International

Conference on Very Large Data Bases, p.109-118, September

11-14 (2001).

[15] World Wide Web Consortium. World Wide Web consortium

hypertext markup language.
[16] Yanhong Zhai, and Bing Liu: Web Data Extraction Based on

Partial Tree Alignment. In: Proc. The 14th international World

Wide Web conference (WWW-2005), in Chiba, Japan10-14

(2005).

[17] Yves Weibig, Thomas Gottron: Combinations of Content

Extraction Algorithms. In: Workshop Information Retrieval

(2009).

