
International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.4, July 2010

28

Role of Multiblocks in Control Flow Prediction using
Parallel Register Sharing Architecture

Rajendra Kumar P K Singh
 Dept. of Computer Science & engineering, Dept. of Computer Science & engineering

 Vidya College of Engineering MMM Engineering College,
 Meerut (UP), India Gorakhpur (UP), India

ABSTRACT

In this paper we present control flow prediction (CFP) in parallel
register sharing architecture to achieve high degree of ILP. The
main idea behind this concept is to use a step beyond the
prediction of common branch and permitting the architecture to
have the information about the CFG (Control Flow Graph)
components of the program to have better branch decision for
ILP. The navigation bandwidth of prediction mechanism
depends upon the degree of ILP. It can be increased by

increasing control flow prediction at compile time. By this the
size of initiation is increased that allows the overlapped
execution of multiple independent flow of control. The multiple
branch instruction can also be allowed. These are intermediate
steps to be taken in order to increase the size of dynamic
window to achieve a high degree of instruction level parallelism
exploitation.

Keywords: CFP, ISB, ILP, CFG, Basic Block

1. Introduction
Instruction Level Parallelism (ILP) is the methodology for
execution of multiple instructions per cycle. It is now desirable
to modern processors for better performance. It has been
observed that ILP is greatly forced by branch instructions. Also
it has been observed that branch prediction is employed with

speculative execution [1]. However, inevitable branch
misprediction compromises such a remedy. On the other hand
branch prediction exposes high degree of ILP to scheduler by
converting control flow into equivalent predicated instructions
which are protected by Boolean source operands. The if-
conversion [2] has been shown to be promising method for
exploitation of instruction level parallelism in the presence of
control flow.

 The if-conversion in the prediction is responsible for
control dependency between the branches and remaining
instructions creating data dependency between the predicate
definition and predicated structures of the program. As a result
the transformation of control flow becomes optimized traditional
data flow and branch scheduling becomes reordering of serial
instructions. The degree of instruction level parallelism can be
increased by overlapping multiple program path executions.

Some predicate specific optimization may also be performed as
a supplement of traditional sequential computing approaches.
The major questions regarding the if-conversion: what to if-
convert and when to if-convert explore that the if-conversion
should be performed early in the compilation stage. It has the
advantage of classified optimization facilitation on the predicted
instructions whereas a delay in if-conversion is scheduled in the
time slots for better selection for code efficiency and target
processor characteristics. The dynamic branch prediction is

fundamentally is restricted to establishing a dynamic window
because it can make local decision without any prior knowledge
or of global control statement in the code. This short of

knowledge creates several problems like (1) branch prediction and
(2) its identity. It means the branch must be encountered by parallel
register sharing architecture [12]. Due to normal branch prediction,
a prediction can be made while the fetch unit fetches the branch

instruction for their execution.

2. Related Work
The fetch unit has a great role in prediction mechanism [2] in
parallel register sharing architecture but Pan, So and Rahmeh
(1992) [14], and Yeh Y. Patt (1993) [16] proposed some recent

prediction mechanism that do not require the addresses of branches
for prediction rather there is requirement of identity of each branch
to be known so that the predicted target address can be obtained
using either BTB [7] or by decoding branch instructions in parallel
register sharing architecture. There are so many commercially
available embedded processors that are capable to extend the set of
base instructions for a specific application domain. A steady
progress has been observed in tools and methodology for automatic

instruction set extension for processors that can be configured to
exploit ILP. It has been observed that the limited data bandwidth is
available in the core processors. This creates a serious performance
deadlock. Cong, Han and Zhiru Zhang (2005) [5] represents a very
low cost architectural extension and a compilation technique
responsible for data bandwidth problem. A novel parallel global
register binding is also presented in [5] with the help of hash
function algorithm. This leads to a nearly optimal performance
speedup of 2% of ideal speedup. A compilation framework [1] is

presented that allows a compiler to maximize the benefits of
prediction. Steve Carr (1996) [15] shown how the weakness of
traditional heuristics are exploited. Optimal use of loop cash is also
explored to release the unnecessary pressure. A technique to
enhance the ability of dynamic ILP processors to exploit the
parallelism is introduced in [3]. A performance metric is presented
in [15] to guide the nested loop optimization. This facilitates
INSTRUCTION LEVEL PARALLELISM with loop as combined

optimization.
The impact of ILP processors on the performance of shared
memory multiprocessors [17] with and without latency hiding
optimizing software prefetching has been represented by Pai,
Ranganathan, Shafi andAdve (1999). One of the critical goals in
the code optimization for multiprocessor system on single chip
architecture [4] is to minimize the number of off chip memory
access. A strategy has been represented in [4] to reduce the number

of off chip references due to shared data.
Static techniques (for example, like trace scheduling [4, 6],
predicated execution [9], super block and hyper block scheduling
[3, 13], etc.) have been used to promote the impact of control
dependencies. Lam Wilson (1992) [8] represents a study that
shows the ILP processors which perform branch prediction and
speculative execution. But it allows only a single flow of control
that can extract a parallelism of only 7.0. The parallelism limit is

increased to 13.05 if the ILP processors use the maximal of control

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.4, July 2010

29

dependence information for instruction execution before
branches which they are independent.

3. Extraction of CFP Characteristics

The ISB (Instruction Stream Buffer) architecture and the ISB
structure are presented in [12] for control flow prediction. The
information presented in CFG for a program can be exploited
by ISB architecture that presents parallelization of shared
register after inspection of control flow graph of a program, it is
possible to infer that some of the basic blocks may be executed
regardless previous branch outcome. Below is a C language

code.

Figure 1. Our experimental „C‟ language code

The figure 2 represents a CFG. This shows a number of
instructions in each basic block.

Figure 2. Control Flow Graph of figure 1

The experiments are performed Trimaran simulator for a MIPS
2000 executable extending from the node BB-1 following
multiblock BB-1 to BB-2, BB-1 to BB-3, BB-1 to BB-4, BB-1 to
BB-5, and BB-1 to BB-8 with BB-1 to BB-8 as maximal

multiblock having single target. The multiblock BB-1 to BB-6,
BB-1 to BB-7 and BB-1 to BB-9 can not be counted as multiblocks
as they have three targets.
A CFG (whose nodes are basic blocks) can be transformed into an
equivalent graph whose nodes are multiblocks. The information of
multiblock is sent to ISB architecture and informed decisions are
navigated through the control free graph. When a multiblock enters
then its exit point can be determined easily even though the exact

path is unknown.
The execution of multiblocks may overlap each other creating
overlapped execution of multiple control flow. The data
dependencies between the instructions in multiblocks and parallel
register sharing architecture create a platform for a kind of
subgraph used in multiblock construction. There are several
reasons for restricting the scope of multiblocks. As an instance if
the architecture is capable for exploiting inter multiblock

parallelism then it could be better to combine the dependent
instructions into a single unit (multiblock). Each iteration of data
independent loop can be considered as a multiblock to permit one
iteration per cycle initiation. Following code shows loop where
iterations are dependent:

Figure 3. Iteration dependent loop

As an advantage, an entire loop can be encapsulated to form a
multiblock. The code given by figure 3 is double nested loop. The
inner loop is used to traverse a linked list and its execution is
dependent of data and control. If we define the entire inner loop to
be a single multiblock then there is a possibility of starting several
activation of inner loop without waiting for completion of previous
one. The flexibility in construction in multiblock is increased by

allowing many targets and as a result a larger multiblock is formed.
In case, the number of targets are increased the dynamic prediction
setup needs additional number of state information and as a result
the accuracy of prediction is decreased. Therefore, it allow
multiblocks to have maximum two targets that may be
compromised. As an exception, when a multiblock has three or
more targets then at run time except on or two, all are rarely
exercised. The reduced CFG of figure 2 is given by figure 4.

Figure 4 Reduced CFG of figure 2

 BB-1 BB-2 BB-3 BB-4 BB-5 BB-6 BB-7

 BB-8 BB-9

for (i = 0; i < input; i++){

a1 = a[0]->ptand[i];

b1 = b[0]->ptend[i];

if(a1==2)

a1 = 0;

if(b1==2)

b1 = 0;

if(a1 != b1){

if(a1 < b1) {

return -1;

}

else{

return 1;

 }

 }

}

 for(fptr = xlenv; fptr; fptr=cdr(fptr))

{

for(ep = car(fptr); ep; ep = cdr(ep))

{

 if(sym == car(car(ep)))

 return (cdr(car(ep)));

}

}

BB-1
 Three instructions (1-3) with 62% prediction

accuracy

BB-2
 One instruction (4)

BB-3
 One instruction (5) with 62% prediction
accuracy

BB-4
 One instruction (6)

BB-5
 Two instructions (7-8)

BB-6
 One instruction (9)

BB-7
 Two instructions (10-11)

BB-8
 Two instructions (12-13)

BB-9
 Four instructions (14-17) with 98% prediction

accuracy

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.4, July 2010

30

Figure 4 shows a multiblock construction from BB-1 through
BB-8. It contains 16 static instructions. An average 7.46
instructions are executed dynamically. The multiblock
construction for BB-9 has 4 instructions.
The first multiblock (BB-1 to BB-8) is called MB(1-8) and the

second multiblock (only BB-9) is MB(9). In this reduced CFG
only two predictions are required per iteration of the loop as
compare to four predictions in CFG given by figure 4 that an
ordinary branch prediction approach would require. Following is
the control flow table (CFT) for control flow prediction:

Table 1. Control flow table
Address Target 1 Target 2 Target 3

MB(1-8) MB(9) Return 16

MB(9) MB(10) MB(1-8) 4

The control flow prediction buffer (CFPB) is temporary of CFT
entries. The CFT entries are appended with sufficient
information to help dynamic prediction decision. The CFPB is
accessed once for every multiblock activation record to calculate
the size and targets of multiblock. The following table is for
CFPB entries of the reduced CFG given by figure 4.

Table 2. CFPB entries

Address
State of

prediction
Target 1 Target 2 length

MB(1-8) Taken MB(9) Return 16

MB(9) Taken MB(10) MB(1-8) 4

4. Experiments on TRIMARAN Simulator

As discussed earlier, we conducted our experiments on
Trimaran Simulator [18]. Trimaran Simulator is an integration
of compilation and performance monitoring infrastructure.
Trimaran is intended to various compiler techniques like ILP,
compiler optimization, retargetable compilation etc., and

computer architectures like VLIW, EPIC, etc. We first evaluate
the strength of control flow prediction concept on abstract
machine that maintains a dynamic window from which
instruction level parallelism is extracted.

For experimental purpose we used compress, gcc,
SuperMips, xlisp, yacc and tex coded in C language. The table 3
shows the basic structure for different programs. The programs
are evaluated in terms of dynamic instructions, conditional and

unconditional branch ratio, static code size, and CFT size.

Table 3. Basic structure for different programs

Program

Name

Dynamic

Instructions

(millions)

Conditional

branch ratio

Un-

conditional

branch ratio

Static

code

size

Static

CFT

size

 compress 22.68 0.149 0.040 6144 88.5

gcc 1000 0.156 0.042 172032 25653

SuperMips 500 0.111 0.056 14336 1851

tex 214.67 0.143 0.055 60416 9976

xlisp 500 0.157 0.091 21504 3637

yacc 26.37 0.237 0.020 12288 1737

5. Observations

It has been observed that the dynamic window initiates the
instructions and the machine executes the instructions. The
instructions chosen by the machine at any given time can be
from various parts of the dynamic window with different flow of

control in the program. The table below shows variation in number
of branches traversed per cycle with control flow prediction.

Table 4. Branch traversal results without control flow prediction
 Program Initiation

mean size

 Window

 mean size

Branch prediction

accuracy

 compress 5.24 64 89.59

gcc 5.02 72 91.12

SuperMips 5.97 320 97.15

Tex 5.02 169 95.87

Xlisp 4.02 143 95.64

Yacc 3.87 103 95.74

In case of gcc, the control flow prediction we observed is 1.47
branches per cycle and in tex 1.16 branches per cycle as shown in
table 5.

Table 5. Branch traversal Results with control flow prediction

 Program Initiation

mean size

 Window

 mean

 size

Branch

prediction

accuracy

 Traversed

 branches

 per cycle

 compress 8.40 86 89.71 1.33

gcc 9.44 105 91.02 1.47

SuperMips 13.24 845 97.72 2.18

tex 6.24 207 96.10 1.16

xlisp 5.11 1.57 95.34 1.16

yacc 4.96 150 96.51 1.22

It was observed that the numbers of branches are reduced by
control flow prediction. It used traversal of multiple branches in a
single prediction. The effect on the accuracy of the branch
prediction was not seen uniform across all programs.

6. Conclusion

The moment prediction decision is completed; the instructions
from the predicted path are fetched in the next branch to encounter
the predicated path. It is sometimes impossible for any two
consecutive arbitrary branches to determine the identity of the next
branch to make prediction in the very next cycle when a branch
prediction is over.
It is concluded that if the branch prediction is not made in each and

every cycle then the prediction bandwidth and the number of
instructions per cycle are suffered. The prediction mechanism is
able to perform one prediction per cycle as long as the next branch
lies inside the block of fetch instruction in the instruction buffer.
The number of instruction that can enter into the dynamic window
in the cycle is another problem. The best case instruction per cycle
is restricted to the number of instruction that can move in to
dynamic window. If there is a possibility of traversing then only
one branch at a time in CFG can be initialized per cycle and

average initiation time is restricted by the length of code. As a
possible solution of this problem we used multiblocks to traverse
multiple branches at a time. This can be achieved by initiating a set
of node of control flow graph to execute. The problem of accuracy
and the size of dynamic window can be eliminated if some of the
branches with low prediction accuracies belong to the if-else
structure.

References

[1] Eduardo Qui˜nones, Joan-Manuel Parcerisa, “Improving
Branch Prediction and Predicated Execution in Out-of-
Order Processors” Proceedings of the 2007 IEEE 13th

International Journal of Computer Applications (0975 – 8887)

Volume 4 – No.4, July 2010

31

International Symposium on High Performance
Computer Architecture, pp: 75-84, 2007.

[2] David I. August, Wen-Mei W. Hwu, Scott A. Mahlke,
“The Partial Reverse If-Conversion Framework for
Balancing Control Flow and Prediction”, International
Journal of Parallel Programming Volume 27, Issue 5,
pp. 381– 423, 1999.

[3] Dionisios N. Pnevmatikatos, Manoj Franklin, Gurindar
S. Sohi, “Control flow prediction for dynamic ILP
processors”, International Symposium on
Microarchitectur, Proceedings of the 26th annual
international symposium on Microarchitecture, pp.
153 – 163, 1993.

[4] Guilin Chen, Mahmut Kandemir, “Compiler-Directed
Code Restructuring for Improving Performance of
MPSoCs”, IEEE Transactions on Parallel and
Distributed Systems, Volume 19, No. 9, 2008.

[5] J Cong, Guoling Han, Zhiru Zhang, “Architecture &
compilation for data bandwidth improvement in
configurable embedded processors”, International
Conference on Computer Aided Design Proceedings

of the 2005 IEEE/ACM International conference on
Computer-aided design, pp. 263-270. 2005.

[6] J. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction”, IEEE Transactions on
Computers, vol. C-30, July 1981.

[7] J. K. F. Lee and A. J. Smith, “Branch Prediction
Strategies and Branch Target Buffer Design”, IEEE
Computer, Volume 17, pp. 6-22, 1984.

[8] Lam Wilson, “Limits of control flow on parallelism”,
Proceedings of 19th annual International symposium
on Computer Architecture, pp. 46-57, 1992.

[9] P. Chang, S. Mahlke, W. Chen, N. Warter, W. Hwu,
“IMPACT: An Architectural Framework for Multiple-
Instruction-Issue Processors”, Proceeding 18th Annual
International Symposium on Computer Architecture,
May 1991.

 [10] P. Y. T. Hsu and E. S. Davidson, “Highly Concurrent
Scalar Processing”, Proceeding 13th Annual International
Symposium on Computer Architecture, June 1986.

[11] R. Colwell, R. Nix, J. O‟Donnell, D. Papworth, and P.
Rodman, “A VLIW Architecture for a Trace Scheduling
Compiler”, IEEE Transactions on Computers, Volume
37, pp. 967-979, 1988.

[12] Rajendra Kumar, P K Singh, “A Modern Parallel
Register Sharing Architecture for Code Compilation”,
IJCA, Volume 1, No. 16, pp. 108-113, 2010.

[13] S. Mahlke, D. Lin, W. Chen, R. Hank, and R.
Bringmann, „„Effective Compiler Support for Predicated
Execution Using the Hyperblock”, Proceedings of the
25th Annual Workshop on Microprogramming and
Microarchitecture, 1992.

[14] S. T. Pan, K. So, and J. T. Rahmeh, “Improving the
Accuracy of Dynamic Branch Prediction Using Branch
Correlation”, Proceeding Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-V), 1992.

[15] Steve Carr, “Combining Optimization for Cache and
Instruction-Level Parallelism”, Proceedings of the 1996
Conference on Parallel Architectures and Compilation
Techniques, 1996.

[16] T. Yeh and Y. Patt, “A Comparison of Dynamic Branch
Predictors that use Two Levels of Branch History”,
Proceeding 20th Annual International Symposium on
Computer Architecture, May 1993.

[17] Vijay S. Pai, Parthasarathy Ranganathan, Hazim Abdel-
Shafi, Sarita Adve, “The Impact of Exploiting
Instruction-Level Parallelism on Shared-Memory
Multiprocessors”, IEEE Transactions on Computers,
Volume 48 , Issue 2, Special issue on cache memory and
related problems, pp. 218 – 226, 1999.

[18] www.trimaran.org

