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ABSTRACT  

In this paper we present control flow prediction (CFP) in parallel 
register sharing architecture to achieve high degree of ILP. The 
main idea behind this concept is to use a step beyond the 
prediction of common branch and permitting the architecture to 
have the information about the CFG (Control Flow Graph) 
components of the program to have better branch decision for 
ILP. The navigation bandwidth of prediction mechanism 
depends upon the degree of ILP. It can be increased by 

increasing control flow prediction at compile time. By this the 
size of initiation is increased that allows the overlapped 
execution of multiple independent flow of control. The multiple 
branch instruction can also be allowed. These are intermediate 
steps to be taken in order to increase the size of dynamic 
window to achieve a high degree of instruction level parallelism 
exploitation.   
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1. Introduction 
Instruction Level Parallelism (ILP) is the methodology for 
execution of multiple instructions per cycle. It is now desirable 
to modern processors for better performance. It has been 
observed that ILP is greatly forced by branch instructions. Also 
it has been observed that branch prediction is employed with 

speculative execution [1]. However, inevitable branch 
misprediction compromises such a remedy. On the other hand 
branch prediction exposes high degree of ILP to scheduler by 
converting control flow into equivalent predicated instructions 
which are protected by Boolean source operands. The if-
conversion [2] has been shown to be promising method for 
exploitation of instruction level parallelism in the presence of 
control flow.  

 The if-conversion in the prediction is responsible for 
control dependency between the branches and remaining 
instructions creating data dependency between the predicate 
definition and predicated structures of the program. As a result 
the transformation of control flow becomes optimized traditional 
data flow and branch scheduling becomes reordering of serial 
instructions. The degree of instruction level parallelism can be 
increased by overlapping multiple program path executions. 

Some predicate specific optimization may also be performed as 
a supplement of traditional sequential computing approaches. 
The major questions regarding the if-conversion: what to if-
convert and when to if-convert explore that the if-conversion 
should be performed early in the compilation stage. It has the 
advantage of classified optimization facilitation on the predicted 
instructions whereas a delay in if-conversion is scheduled in the 
time slots for better selection for code efficiency and target 
processor characteristics. The dynamic branch prediction is 

fundamentally is restricted to establishing a dynamic window 
because it can make local decision without any prior knowledge 
or of global control statement in the code. This short of 

knowledge creates several problems like (1) branch prediction and 
(2) its identity. It means the branch must be encountered by parallel 
register sharing architecture [12]. Due to normal branch prediction, 
a prediction can be made while the fetch unit fetches the branch 

instruction for their execution. 
 

2. Related Work 
The fetch unit has a great role in prediction mechanism [2] in 
parallel register sharing architecture but Pan, So and Rahmeh 
(1992) [14], and Yeh Y. Patt (1993) [16] proposed some recent 

prediction mechanism that do not require the addresses of branches 
for prediction rather there is requirement of identity of each branch 
to be known so that the predicted target address can be obtained 
using either BTB [7] or by decoding branch instructions in parallel 
register sharing architecture. There are so many commercially 
available embedded processors that are capable to extend the set of 
base instructions for a specific application domain. A steady 
progress has been observed in tools and methodology for automatic 

instruction set extension for processors that can be configured to 
exploit ILP. It has been observed that the limited data bandwidth is 
available in the core processors. This creates a serious performance 
deadlock. Cong, Han and Zhiru Zhang (2005) [5] represents a very 
low cost architectural extension and a compilation technique 
responsible for data bandwidth problem. A novel parallel global 
register binding is also presented in [5] with the help of hash 
function algorithm. This leads to a nearly optimal performance 
speedup of 2% of ideal speedup. A compilation framework [1] is 

presented that allows a compiler to maximize the benefits of 
prediction. Steve Carr (1996) [15] shown how the weakness of 
traditional heuristics are exploited. Optimal use of loop cash is also 
explored to release the unnecessary pressure. A technique to 
enhance the ability of dynamic ILP processors to exploit the 
parallelism is introduced in [3]. A performance metric is presented 
in [15] to guide the nested loop optimization. This facilitates 
INSTRUCTION LEVEL PARALLELISM with loop as combined 

optimization.  
The impact of ILP processors on the performance of shared 
memory multiprocessors [17] with and without latency hiding 
optimizing software prefetching has been represented by Pai, 
Ranganathan, Shafi andAdve (1999). One of the critical goals in 
the code optimization for multiprocessor system on single chip 
architecture [4] is to minimize the number of off chip memory 
access. A strategy has been represented in [4] to reduce the number 

of off chip references due to shared data. 
Static techniques (for example, like trace scheduling [4, 6], 
predicated execution [9], super block and hyper block scheduling 
[3, 13], etc.) have been used to promote the impact of control 
dependencies. Lam Wilson (1992) [8] represents a study that 
shows the ILP processors which perform branch prediction and 
speculative execution. But it allows only a single flow of control 
that can extract a parallelism of only 7.0. The parallelism limit is 

increased to 13.05 if the ILP processors use the maximal of control 
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dependence information for instruction execution before 
branches which they are independent.  
 

3. Extraction of CFP Characteristics  

The ISB (Instruction Stream Buffer) architecture and the ISB 
structure are presented in [12] for control flow prediction. The 
information presented in CFG for  a program can be exploited 
by ISB architecture that presents parallelization of shared 
register after inspection of control flow graph of  a program, it is 
possible to infer that some of the basic blocks may be executed 
regardless previous branch outcome. Below is a C language 

code. 

 

Figure 1. Our experimental „C‟ language code 
 

The figure 2 represents a CFG. This shows a number of 
instructions in each basic block.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Control Flow Graph of figure 1 
 

The experiments are performed Trimaran simulator for a MIPS 
2000 executable extending from the node BB-1 following 
multiblock BB-1 to BB-2, BB-1 to BB-3, BB-1 to BB-4, BB-1 to 
BB-5, and BB-1 to BB-8 with  BB-1 to BB-8 as maximal 

multiblock having single target. The multiblock BB-1 to BB-6, 
BB-1 to BB-7 and BB-1 to BB-9 can not be counted as multiblocks 
as they have three targets.  
A CFG (whose nodes are basic blocks) can be transformed into an 
equivalent graph whose nodes are multiblocks. The information of 
multiblock is sent to ISB architecture and informed decisions are 
navigated through the control free graph. When a multiblock enters 
then its exit point can be determined easily even though the exact 

path is unknown.  
The execution of multiblocks may overlap each other creating 
overlapped execution of multiple control flow. The data 
dependencies between the instructions in multiblocks and parallel 
register sharing architecture create a platform for a kind of 
subgraph used in multiblock construction. There are several 
reasons for restricting the scope of multiblocks. As an instance if 
the architecture is capable for exploiting inter multiblock 

parallelism then it could be better to combine the dependent 
instructions into a single unit (multiblock). Each iteration of data 
independent loop can be considered as a multiblock to permit one 
iteration per cycle initiation. Following code shows loop where 
iterations are dependent: 

 

 

 

 

 

 

 

 

 
Figure 3. Iteration dependent loop 

 

As an advantage, an entire loop can be encapsulated to form a 
multiblock. The code given by figure 3 is double nested loop. The 
inner loop is used to traverse a linked list and its execution is 
dependent of data and control. If we define the entire inner loop to 
be a single multiblock then there is a possibility of starting several 
activation of inner loop without waiting for completion of previous 
one. The flexibility in construction in multiblock is increased by 

allowing many targets and as a result a larger multiblock is formed. 
In case, the number of targets are increased the dynamic prediction 
setup needs additional number of state information and as a result 
the accuracy of prediction is decreased. Therefore, it allow 
multiblocks to have maximum two targets that may be 
compromised. As an exception, when a multiblock has three or 
more targets then at run time except on or two, all are rarely 
exercised. The reduced CFG of figure 2 is given by figure 4. 

 

 

 

 

 

 

 
 

Figure 4 Reduced CFG of figure 2 
 

 BB-1  BB-2  BB-3  BB-4  BB-5  BB-6  BB-7 

 BB-8  BB-9 

for (i = 0; i < input; i++){ 

a1 = a[0]->ptand[i]; 

b1 = b[0]->ptend[i]; 

if(a1==2) 

a1 = 0; 

if(b1==2) 

b1 = 0; 

if(a1 != b1){ 

if(a1 < b1) { 

return -1; 

} 

else{ 

return 1; 

    } 

   } 

} 

 for(fptr = xlenv; fptr; fptr=cdr(fptr)) 

{ 

for(ep = car(fptr); ep; ep = cdr(ep)) 

{ 

       if(sym == car(car(ep))) 

       return (cdr(car(ep))); 

} 

} 

 

BB-1 
 Three instructions (1-3) with 62% prediction 

accuracy 

BB-2 
   One instruction (4) 

BB-3 
   One instruction (5) with 62% prediction 
accuracy 

BB-4 
   One instruction (6) 

BB-5 
    Two instructions (7-8) 

BB-6 
   One instruction (9) 

BB-7 
   Two instructions (10-11) 

 

BB-8 
   Two instructions (12-13) 
 

BB-9 
 Four instructions (14-17) with 98% prediction 

accuracy 
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Figure 4 shows a multiblock construction from BB-1 through 
BB-8. It contains 16 static instructions. An average 7.46 
instructions are executed dynamically. The multiblock 
construction for BB-9 has 4 instructions. 
The first multiblock (BB-1 to BB-8) is called MB(1-8) and the 

second multiblock (only BB-9) is MB(9). In this reduced CFG 
only two predictions are required per iteration of the loop as 
compare to four predictions in CFG given by figure 4 that an 
ordinary branch prediction approach would require. Following is 
the control flow table (CFT) for control flow prediction: 
 

Table 1. Control flow table 
Address Target 1 Target 2 Target 3 

MB(1-8) MB(9) Return  16 

MB(9) MB(10) MB(1-8) 4 

 

The control flow prediction buffer (CFPB) is temporary of CFT 
entries. The CFT entries are appended with sufficient 
information to help dynamic prediction decision. The CFPB is 
accessed once for every multiblock activation record to calculate 
the size and targets of multiblock. The following table is for 
CFPB entries of the reduced CFG given by figure 4. 
 

Table 2. CFPB entries 

Address 
State of 

prediction 
Target 1 Target 2 length 

MB(1-8) Taken MB(9) Return 16 

MB(9) Taken MB(10) MB(1-8) 4 

 

4. Experiments on TRIMARAN Simulator 
 

As discussed earlier, we conducted our experiments on 
Trimaran Simulator [18]. Trimaran Simulator is an integration 
of compilation and performance monitoring infrastructure. 
Trimaran is intended to various compiler techniques like ILP, 
compiler optimization, retargetable compilation etc., and 

computer architectures like VLIW, EPIC, etc. We first evaluate 
the strength of control flow prediction concept on abstract 
machine that maintains a dynamic window from which 
instruction level parallelism is extracted.  

For experimental purpose we used compress, gcc, 
SuperMips, xlisp, yacc and tex coded in C language. The table 3 
shows the basic structure for different programs. The programs 
are evaluated in terms of dynamic instructions, conditional and 

unconditional branch ratio, static code size, and CFT size. 
 

Table 3. Basic structure for different programs 

Program 

Name 

Dynamic 

Instructions 

(millions) 

Conditional  

branch ratio 

Un- 

conditional 

branch ratio 

Static 

code 

size 

Static 

CFT 

size 

    compress 22.68 0.149 0.040 6144 88.5 

gcc 1000 0.156 0.042  172032 25653 

SuperMips 500 0.111 0.056 14336 1851 

tex 214.67 0.143 0.055 60416 9976 

xlisp 500 0.157 0.091 21504 3637 

yacc 26.37 0.237 0.020 12288 1737 
 

5. Observations 
 

It has been observed that the dynamic window initiates the 
instructions and the machine executes the instructions. The 
instructions chosen by the machine at any given time can be 
from various parts of the dynamic window with different flow of 

control in the program. The table below shows variation in number 
of branches traversed per cycle with control flow prediction.  

 
Table 4. Branch traversal results without control flow prediction 
 Program Initiation 

mean size  

 Window   

 mean size 

Branch prediction 

accuracy 

  compress 5.24 64 89.59 

gcc 5.02 72 91.12 

SuperMips 5.97 320 97.15 

Tex 5.02 169 95.87 

Xlisp 4.02 143 95.64 

Yacc 3.87 103 95.74 
 

In case of gcc, the control flow prediction we observed is 1.47 
branches per cycle and in tex 1.16 branches per cycle as shown in 
table 5. 

 

Table 5. Branch traversal Results with control flow prediction 
 

 Program Initiation 

mean size  

 Window   

 mean  

 size 

Branch 

prediction 

accuracy 

 Traversed  

 branches  

 per cycle 

   compress 8.40 86 89.71 1.33 

gcc 9.44 105 91.02 1.47 

SuperMips 13.24 845 97.72 2.18 

tex 6.24 207 96.10 1.16 

xlisp 5.11 1.57 95.34 1.16 

yacc 4.96 150 96.51 1.22 
 

It was observed that the numbers of branches are reduced by 
control flow prediction. It used traversal of multiple branches in a 
single prediction. The effect on the accuracy of the branch 
prediction was not seen uniform across all programs. 
 

6. Conclusion 
 

The moment prediction decision is completed; the instructions 
from the predicted path are fetched in the next branch to encounter 
the predicated path. It is sometimes impossible for any two 
consecutive arbitrary branches to determine the identity of the next 
branch to make prediction in the very next cycle when a branch 
prediction is over.  
It is concluded that if the branch prediction is not made in each and 

every cycle then the prediction bandwidth and the number of 
instructions per cycle are suffered. The prediction mechanism is 
able to perform one prediction per cycle as long as the next branch 
lies inside the block of fetch instruction in the instruction buffer. 
The number of instruction that can enter into the dynamic window 
in the cycle is another problem. The best case instruction per cycle 
is restricted to the number of instruction that can move in to 
dynamic window. If there is a possibility of traversing then only 
one branch at a time in CFG can be initialized per cycle and 

average initiation time is restricted by the length of code. As a 
possible solution of this problem we used multiblocks to traverse 
multiple branches at a time. This can be achieved by initiating a set 
of node of control flow graph to execute. The problem of accuracy 
and the size of dynamic window can be eliminated if some of the 
branches with low prediction accuracies belong to the if-else 
structure. 
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