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ABSTRACT 
The increasing demands and requirements for wireless 

communication systems  especially in settings where access to 

wired infrastructure is not possible like natural disasters, 

conferences and military settings have led to the need for a better 

understanding of fundamental issues in TCP optimization in 

MANETS.TCP primarily designed for wired networks, faces 

performance degradation when applied to the ad-hoc scenario. 

Earlier work in MANETs focused on comparing the performance 

of different routing protocols. Our analysis is on performance of 

the variants of TCP in MANETS. Several different variants have 

been developed in order to refine congestion control in Mobile 

Adhoc Networks. These variants of TCP perform better under 

specific scenarios, our Analysis of the variants  of  TCP is based 

on three performance metrics: TCP Throughput ,Average End- to 

-End delay and Packet Delivery Fraction in high and low 

mobility. This analysis will be useful in determining the better 

variant among TCP Protocols to ensure better data transfer, speed, 

reliability and congestion control. In this paper we carry out 

performance study of six variants of TCP to be able to classify 

which variant of TCP performs better in various possible 

scenarios in MANETs. 

              Index Terms: Ad-hoc Networks, Congestion and Mobile          

              Relays. 

1. INTRODUCTION 
Effectively and fairly allocating the resources of a network among 

a collection of competing users is a major issue. The resources of 

a network being shared include the bandwidth of the links and the 

queues on the routers or switches. Packets are queued in these 

queues awaiting transmission. When too many packets are 

contending for the same link, the queue overflows and packets 

have to be dropped. When such drops become common events, 

the network is said to be congested [1]. 

Networks are mainly classified into wired networks and wireless 

networks. In wired networks routers are separate network 

elements that have the sole functionality of routing the packets. 

Wireless networks [6] are classified into infrastructure based 

networks and infrastructure less networks. Ad-hoc networks [5] 

are infrastructure-less networks. In Ad-hoc networks, since there 

is no fixed infrastructure there are no separate network elements 

called routers and hence the mobile nodes themselves act as the 

routers (i.e. they are responsible for routing the packets). 

Congestion control methods [4] can be router centric or host/node 

centric.  In existing congestion control methods, the source is 

informed about the congestion in the network so that either it may 

slow down the packet transmission rate or find an alternate route 

which may not necessarily be an optimal route. It must be pointed 

out that all the congestion control methods are able to inform the 

source about the congestion problem because they use 

Transmission Control Protocol (TCP). 

Our proposed method to solve the congestion problem can be 

implemented only in the network elements (e.g.: routers) and is 

independent of the underlying transport protocols. Hence this 

congestion control method can be used for Transmission Control 

Protocol (TCP) as well as User Datagram Protocol (UDP). 

 

2. CONGESTION CONTROL 

MECHANISMS  

This section describes the predominant example of end-to-end 

congestion control[2] in use today, that implemented by TCP. The 

essential strategy of TCP is to send packets into the network 

without a reservation and then to react to observable events that 

occur. TCP assumes only FIFO queuing in the network‘s routers, 

but also works with fair queuing. 

2.1 Additive Increase/Multiplicative Decrease  

TCP maintains a new state variable for each connection, called 

Congestion Window[3], which is used by the source to limit how 

much data it is allowed to have in transit at a given time. The 

congestion window is congestion control‘s counterpart to flow 

control‘s advertised window. TCP is modified such that the 

maximum number of bytes of unacknowledged data allowed is 

now the minimum of the congestion window and the advertised 

window. 

MaxWindow = MIN (CongestionWindow, AdvertisedWindow) 

EffectiveWindow = MaxWindow − (LastByteSent − 

LastByteAcked). 

That is, MaxWindow replaces AdvertisedWindow in the 

calculation of EffectiveWindow. 

Thus, a TCP source is allowed to send no faster than the slowest 

component—the network or the destination host—can 

accommodate. 

The problem, of course, is how TCP comes to learn an appropriate 

value for CongestionWindow. Unlike the AdvertisedWindow, 

sent by receiving side of the connection, there is no one to send a 

suitable CongestionWindow to the sending side of TCP.  
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TCP does not wait for an entire window‘s worth of ACKs to add 

one packet‘s worth to the congestion window, but instead 

increments CongestionWindow by a little for each ACK that 

arrives. Specifically, the congestion window is incremented as 

follows each time an ACK arrives: 

Increment = MSS × (MSS/CongestionWindow) 

CongestionWindow + = Increment 

That is, rather than incrementing CongestionWindow by an entire 

MSS bytes each RTT, we increment it by a fraction of MSS every 

time an ACK is received. The important concept to understand 

about AIMD is that the source is willing to reduce its congestion 

window at a much faster rate than it is willing to increase its 

congestion window.  

2.2 Fast Retransmit and Fast Recovery 
 

The mechanisms described so far were part of the original 

proposal to add congestion control to TCP. It was soon 

discovered, however, that the coarse-grained implementation of 

TCP timeouts led to long periods of time during which the 

connection went dead while waiting for a timer to expire. Because 

of this, a new mechanism called fast re- transmit was added to 

TCP. Fast retransmit is a heuristic that sometimes triggers the 

retransmission of a dropped packet sooner than the regular 

timeout mechanism.  

3. VARIANTS OF TCP 

3.1 TCP TAHOE 
Tahoe[10] refers to the TCP congestion control algorithm which 

was suggested by Van Jacobson in his paper. TCP is based on a 

principle of ‗conservation of packets‘, i.e. if the connection is 

running at the available bandwidth capacity then a packet is not 

injected into the network unless a packet is taken out as well. TCP 

implements this principle by using the acknowledgements to clock 

outgoing packets because an acknowledgement means that a 

packet was taken off the wire by the receiver. It also maintains a 

congestion window CWD to reflect the network capacity. Tahoe 

suggests that whenever a TCP connection starts or re-starts after a 

packet loss it should go through a procedure called ‗slow-start‘. 

The reason for this procedure is that an initial burst might 

overwhelm the network and the connection might never get 

started. The congestion window size is multiplicatively increased 

that is it becomes double for each transmission until it encounters 

congestion. Slow start suggests that the sender set the congestion 

window to 1 and then for each ACK received it increase the CWD 

by 1. So in the first round trip time (RTT) we send 1 packet, in the 

second we send 2 and in the third we send 4. Thus we increase 

exponentially until we lose a packet which is a sign of congestion. 

When we encounter congestion we decreases our sending rate and 

we reduce congestion window to one. And start over again. The 

important thing is that Tahoe detects packet losses by timeouts. 

Sender is notified that congestion has occurred based on the 

packet loss.  

3.2 TCP RENO 
This RENO  retains the basic principle of Tahoe, such as slow 

starts and the coarse grain retransmit timer. However it adds some 

intelligence over it so that lost packets are detected earlier and the 

pipeline is not emptied every time a packet is lost. Reno requires 

that we receive immediate acknowledgement whenever a segment 

is received. The logic behind this is that whenever we receive a 

duplicate acknowledgment, then his duplicate acknowledgment 

could have been received if the next segment in sequence 

expected, has been delayed in the network and the segments 

reached there out of order or else that the packet is lost. If we 

receive a number of duplicate acknowledgements then that means 

that sufficient time have passed and even if the segment had taken 

a longer path, it should have gotten to the receiver by now. There 

is a very high probability that it was lost. So Reno suggests an 

algorithm called ‘Fast Re-Transmit’. Whenever we receive 3 

duplicate ACK‘s we take it as a sign that the segment was lost, so 

we re-transmit the segment without waiting for timeout.  

Thus we manage to re-transmit the segment with the pipe almost 

full. Another modification that RENO makes is in that after a 

packet loss, it does not reduce the congestion window to 1. Since 

this empties the pipe. It enters into an algorithm which we call 

‘Fast-Re-Transmit’.  

Problems: 

 RENO performs very well over TCP when the packet 

losses are small. But when we have multiple packet losses 

in one window then RENO doesn‘t perform too well and 

its performance is almost the same as Tahoe under 

conditions of high packet loss.  

 Another problem is that if the window is very small when 

the loss occurs then we would never receive enough 

duplicate acknowledgements for a fast retransmit and we 

would have to wait for a coarse grained timeout. Thus is 

cannot effectively detect multiple packet losses. 

3.3 New RENO 
New RENO is a slight modification over TCP-RENO. It is able to 

detect multiple packet losses and thus is much more efficient that 

RENO in the event of multiple packet losses. Like RENO, New-

RENO also enters into fast-retransmit when it receives multiple 

duplicate packets, however it differs from RENO in that it doesn‘t 

exit fast-recovery until all the data which was out standing at the 

time it entered fast recovery is acknowledged. The fast-recovery 

phase proceeds as in Reno, however when a fresh ACK is 

received then there are two cases:  

 If it ACK‘s all the segments which were outstanding when 

we entered fast recovery then it exits fast recovery and sets 

CWD to threshold value and continues congestion 

avoidance like Tahoe. 

 If the ACK is a partial ACK then it deduces that the next 

segment in line was lost and it re-transmits that segment 

and sets the number of duplicate ACKS received to zero. 

It exits Fast recovery when all the data in the window is 

acknowledged 

 

Problems: 

New-Reno suffers from the fact that it takes one RTT to detect 

each packet loss. When the ACK for the first retransmitted 

segment is received only then can we deduce which other segment 

was lost.  
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3.4 TCP SACK 
TCP with ‗Selective Acknowledgments‘ is an extension of TCP 

RENO and it works around the problems face by TCP RENO and 

TCP New-RENO, namely detection of multiple lost packets, and 

re-transmission of more than one lost packet per RTT. SACK 

retains the slow-start and fast retransmits parts of RENO. It also 

has the coarse grained timeout of Tahoe to fall back on, in case a 

packet loss is not detected by the modified algorithm. SACK TCP 

requires that segments not be acknowledged cumulatively but 

should be acknowledged selectively.  If there are no such 

segments outstanding then it sends a new packet. Thus more than 

one lost segment can be sent in one RTT. 

 

Problems: 

The biggest problem with SACK is that currently selective 

acknowledgements are not provided by the receiver to implement 

SACK we‘ll need to implement selective acknowledgment which 

is not a very easy task. 

3.5 TCP FACK 
FACK  or Forward Acknowledgement is a special algorithm that 

works on top of the SACK options, and is geared at congestion 

controlling. FACK algorithm uses information provided by SACK 

to add more precise control to the injection of data into the 

network during recovery – this is achieved by explicitly 

measuring the total number of bytes of data outstanding in the 

network. FACK decouples congestion control from data recovery 

thereby attaining more precise control over the data flow in the 

network. The main idea of FACK algorithm is to consider the 

most forward selective acknowledgement sequence number as a 

sign that all the previous un-(selectively)-acknowledged segments 

were lost. This observation allows improving recovery of losses 

significantly. 

3.6 TCP VEGAS 
Vegas  is a TCP implementation which is a modification of 

RENO. It builds on the fact that proactive measure to encounter 

congestion is much more efficient than reactive ones. It tried to 

get around the problem of coarse grain timeouts by suggesting an 

algorithm which checks for timeouts at a very efficient schedule. 

Also it overcomes the problem of requiring enough duplicate 

acknowledgements to detect a packet loss, and it also suggests a 

modified slow start algorithm which prevents it from congesting 

the network. The three major changes induced by Vegas are: 

New Re-Transmission Mechanism: Vegas extend on the re-

transmission mechanism of RENO. It keeps track of when each 

segment was sent and it also calculates an estimate of the RTT by 

keeping track of how long it takes for the acknowledgment to get 

back.  

Congestion avoidance: TCP Vegas is different from all the other 

implementation in its behavior during congestion avoidance. It 

does not use the loss of segment to signal that there is congestion. 

It determines congestion by a decrease in sending rate as 

compared to the expected rate, as result of large queues building 

up in the routers. It uses a variation of Wang and crow croft‘s Tri-

S scheme.  

Modified Slow-start: TCP Vegas differs from the other 

algorithms during its slow-start phase. The reason for this 

modification is that when a connection first starts it has no idea of 

the available bandwidth and it is possible that during exponential 

increase it over shoots the bandwidth by a big amount and thus 

induces congestion. To this end Vegas increases exponentially 

only every other RTT, between that it calculates the actual 

sending through put to the expected and when the difference goes 

above a certain threshold it exits slow start and enters the 

congestion avoidance phase. 

4. RESULTS AND ANALYSIS BASED ON 

THROUGHPUT 
 

4.1 Analysis of graph of throughput versus no 

of nodes 

 

 
 

Figure 1: Graph of No. of Nodes vs. Throughput for 5 

Connections in Low Mobility 

 
 

 

 

 

 

 

 

 
 

 
 

Figure 2: graph of no. Of Nodes vs. Throughput for 25 

connections in low mobility 
 

Figure 1 and 2 are graphs of Throughput v/s Number of nodes for 

5 connections and 25 connections respectively. As we mentioned 

earlier, large variations are observed in the graph because TCP‘s 

performance in Mobile Ad hoc Networks is affected due to 

network asymmetry. Also the behavior of the underlying routing 
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protocol used affects the performance of TCP. The routing 

protocol used in our simulations is AODV which maintains only 

one hop information in the routing table. Due to reactive nature of 

AODV it may happen that data packets and ACK packets may 

take a different path from source to destination. This results in 

large variations of RTT. TCPs basic functioning depends largely 

on RTT and thus due to variations in RTT, we observe variations 

in throughput achieved as shown above in figures1 and 2. 

4.2 Analysis of graph of throughput versus no 

of connections with low mobility 

The below Figure 3 and 4 are graphs of Throughput v/s Number 

of connections for 100 nodes and 200 nodes respectively. It is 

observed  that almost all the variants of TCP have similar 

performance except TCP Vegas. The performance of TCP Vegas 

is similar to other variants of TCP initially but later when we 

increase the number of connections, the performance degrades 

drastically. When we increase the number of connections in a 

network (keeping number of nodes fixed) more packets are 

dropped in the network due to collision. TCP Vegas has a 

proactive behavior that prevents the packets being dropped in the 

network. Due to this nature it restricts the amount of data that it 

transmits in the network. Thus TCP Vegas achieves low 

throughput as compared to other variants. 

TCP SACK gives better throughput than other variants in most of 

the scenarios. This is because it avoids frequent retransmission of 

packets by sending selective acknowledgements. This mechanism 

is better than the mechanisms used in TCP RENO and TCP New 

RENO where in multiple packet losses lead to frequent 

retransmission of packets. Comparing figure 3 and 4  we can see 

that more throughput is achieved when the number of nodes are 

more . We can see that the range of values obtained for 

throughput in figure 3 is from 250 to 425 whereas in case of 

figure 4 it is from 300 to 500. This is because when we increase 

the number of nodes in a network, node density also increases.  

 

 

 
 

 

 

 

 

 

 

Figure 3: Graph of No. of Connections vs. Throughput 

for 100 nodes in Low Mobility 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Graph of No. of Connections vs. Throughput 

for 200 nodes in Low Mobility 

4.3 Analysis of graph of throughput versus no 

of connections with high mobility 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graph of No. of Connections vs. Throughput 

for 100 nodes in High Mobility 
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Figure 6: Graph of No. of Connections vs. Throughput 

for 200 nodes in High Mobility 

 

The  Figure 5 and 6 are graphs of Throughput v/s Number of 

connections for 100 nodes and 200 nodes with high mobility. It is 

observed  that almost all the variants of TCP have similar 

performance except TCP Vegas. The performance of TCP Vegas 

is similar to other variants of TCP initially but later when we 

increase the number of connections, the performance degrades 

drastically. When we increase the number of connections in a 

network (keeping number of nodes fixed) more packets are 

dropped in the network due to collision. TCP Vegas has a 

proactive behavior that prevents the packets being dropped in the 

network. Due to this nature it restricts the amount of data that it 

transmits in the network. Thus TCP Vegas achieves low 

throughput as compared to other variants. 

 

We can also observe the fact that wireless networks have hidden 

node and exposed node problems. Hidden node problem can be 

solved by Carrier Sensing, wherein a RTS (Request to Send) 

packet is first sent by the sender and if the transmission medium is 

free then a CTS (Clear to Send) packet is sent by the receiver. 

Once a CTS packet is sent, the two nodes can communicate with 

each other for the requested amount of time. However this cannot 

solve exposed node problem. Two other nodes which are in the 

transmission range of the two nodes communicating will have to 

wait until the transmission medium is free. This would cause the 

throughput to drop. This can be seen in fig 5 and fig 6 where 

throughput drops when the connection is increased to 15. 

CONCLUSION AND FUTURE WORK 

We calculated the performance of six TCP variants; they are TCP 

Tahoe, TCP RENO, TCP New RENO, TCP SACK, TCP FACK 

and TCP Vegas. After analyzing the performance from simulated 

data and graphs obtained, we found that TCP Vegas is better than 

any other TCP variants for sending data and information due to its 

better Packet Delivery Fraction and Avg. end- to- end delay in 

both high and low mobility. This is due to fine tuning of 

congestion window size by taking into consideration the RTT of a 

packet, whereas other reactive protocols like TCP Tahoe, RENO, 

New RENO, SACK, and FACK continue to increase their 

window size until packet loss is detected. We have given the 

detailed behavior of all these variants of TCP under various 

different scenarios. We hope these results will be of some use in 

future study in this area helping the growing interest and resulting 

in the required protocol for today‘s high demanding world. 

 

The future work of this project can be done in following areas: 

1) The performance analysis of variants of TCP under other 

routing protocols like DYMO, DSR, OLSR, DSDV. 

 

 

 

 

 

 

 

2) Expanding the range of analysis by considering other new 

TCP‘s like HS-TCP, TCP WESTWOOD etc 

3) Working using the other two propagation models in ns2 - 

Shadowing model and Free space model 

4) Considering more performance metrics like Routing 

Overhead, Bandwidth Delay Product, Total route requests 

sent, Retransmission attempts etc. 
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