
International Journal of Computer Applications (0975 – 8887)

Volume 4– No.9, August 2010

20

Scenario Based Performance Analysis of Variants of TCP

Using NS2 - Simulator
Yuvaraju B N

Department of Computer Science

& Engineering
N M A M Institute of Technology,

Nitte – 574 110, Karnataka, INDIA

Dr. Niranjan N Chiplunkar
Department of Computer Science

& Engineering
N M A M Institute of Technology,

Nitte – 574 110, Karnataka, INDIA

ABSTRACT
The increasing demands and requirements for wireless

communication systems especially in settings where access to

wired infrastructure is not possible like natural disasters,

conferences and military settings have led to the need for a better

understanding of fundamental issues in TCP optimization in

MANETS.TCP primarily designed for wired networks, faces

performance degradation when applied to the ad-hoc scenario.

Earlier work in MANETs focused on comparing the performance

of different routing protocols. Our analysis is on performance of

the variants of TCP in MANETS. Several different variants have

been developed in order to refine congestion control in Mobile

Adhoc Networks. These variants of TCP perform better under

specific scenarios, our Analysis of the variants of TCP is based

on three performance metrics: TCP Throughput ,Average End- to

-End delay and Packet Delivery Fraction in high and low

mobility. This analysis will be useful in determining the better

variant among TCP Protocols to ensure better data transfer, speed,

reliability and congestion control. In this paper we carry out

performance study of six variants of TCP to be able to classify

which variant of TCP performs better in various possible

scenarios in MANETs.

 Index Terms: Ad-hoc Networks, Congestion and Mobile

 Relays.

1. INTRODUCTION
Effectively and fairly allocating the resources of a network among

a collection of competing users is a major issue. The resources of

a network being shared include the bandwidth of the links and the

queues on the routers or switches. Packets are queued in these

queues awaiting transmission. When too many packets are

contending for the same link, the queue overflows and packets

have to be dropped. When such drops become common events,

the network is said to be congested [1].

Networks are mainly classified into wired networks and wireless

networks. In wired networks routers are separate network

elements that have the sole functionality of routing the packets.

Wireless networks [6] are classified into infrastructure based

networks and infrastructure less networks. Ad-hoc networks [5]

are infrastructure-less networks. In Ad-hoc networks, since there

is no fixed infrastructure there are no separate network elements

called routers and hence the mobile nodes themselves act as the

routers (i.e. they are responsible for routing the packets).

Congestion control methods [4] can be router centric or host/node

centric. In existing congestion control methods, the source is

informed about the congestion in the network so that either it may

slow down the packet transmission rate or find an alternate route

which may not necessarily be an optimal route. It must be pointed

out that all the congestion control methods are able to inform the

source about the congestion problem because they use

Transmission Control Protocol (TCP).

Our proposed method to solve the congestion problem can be

implemented only in the network elements (e.g.: routers) and is

independent of the underlying transport protocols. Hence this

congestion control method can be used for Transmission Control

Protocol (TCP) as well as User Datagram Protocol (UDP).

2. CONGESTION CONTROL

MECHANISMS

This section describes the predominant example of end-to-end

congestion control[2] in use today, that implemented by TCP. The

essential strategy of TCP is to send packets into the network

without a reservation and then to react to observable events that

occur. TCP assumes only FIFO queuing in the network‘s routers,

but also works with fair queuing.

2.1 Additive Increase/Multiplicative Decrease

TCP maintains a new state variable for each connection, called

Congestion Window[3], which is used by the source to limit how

much data it is allowed to have in transit at a given time. The

congestion window is congestion control‘s counterpart to flow

control‘s advertised window. TCP is modified such that the

maximum number of bytes of unacknowledged data allowed is

now the minimum of the congestion window and the advertised

window.

MaxWindow = MIN (CongestionWindow, AdvertisedWindow)

EffectiveWindow = MaxWindow − (LastByteSent −

LastByteAcked).

That is, MaxWindow replaces AdvertisedWindow in the

calculation of EffectiveWindow.

Thus, a TCP source is allowed to send no faster than the slowest

component—the network or the destination host—can

accommodate.

The problem, of course, is how TCP comes to learn an appropriate

value for CongestionWindow. Unlike the AdvertisedWindow,

sent by receiving side of the connection, there is no one to send a

suitable CongestionWindow to the sending side of TCP.

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.9, August 2010

21

TCP does not wait for an entire window‘s worth of ACKs to add

one packet‘s worth to the congestion window, but instead

increments CongestionWindow by a little for each ACK that

arrives. Specifically, the congestion window is incremented as

follows each time an ACK arrives:

Increment = MSS × (MSS/CongestionWindow)

CongestionWindow + = Increment

That is, rather than incrementing CongestionWindow by an entire

MSS bytes each RTT, we increment it by a fraction of MSS every

time an ACK is received. The important concept to understand

about AIMD is that the source is willing to reduce its congestion

window at a much faster rate than it is willing to increase its

congestion window.

2.2 Fast Retransmit and Fast Recovery

The mechanisms described so far were part of the original

proposal to add congestion control to TCP. It was soon

discovered, however, that the coarse-grained implementation of

TCP timeouts led to long periods of time during which the

connection went dead while waiting for a timer to expire. Because

of this, a new mechanism called fast re- transmit was added to

TCP. Fast retransmit is a heuristic that sometimes triggers the

retransmission of a dropped packet sooner than the regular

timeout mechanism.

3. VARIANTS OF TCP

3.1 TCP TAHOE
Tahoe[10] refers to the TCP congestion control algorithm which

was suggested by Van Jacobson in his paper. TCP is based on a

principle of ‗conservation of packets‘, i.e. if the connection is

running at the available bandwidth capacity then a packet is not

injected into the network unless a packet is taken out as well. TCP

implements this principle by using the acknowledgements to clock

outgoing packets because an acknowledgement means that a

packet was taken off the wire by the receiver. It also maintains a

congestion window CWD to reflect the network capacity. Tahoe

suggests that whenever a TCP connection starts or re-starts after a

packet loss it should go through a procedure called ‗slow-start‘.

The reason for this procedure is that an initial burst might

overwhelm the network and the connection might never get

started. The congestion window size is multiplicatively increased

that is it becomes double for each transmission until it encounters

congestion. Slow start suggests that the sender set the congestion

window to 1 and then for each ACK received it increase the CWD

by 1. So in the first round trip time (RTT) we send 1 packet, in the

second we send 2 and in the third we send 4. Thus we increase

exponentially until we lose a packet which is a sign of congestion.

When we encounter congestion we decreases our sending rate and

we reduce congestion window to one. And start over again. The

important thing is that Tahoe detects packet losses by timeouts.

Sender is notified that congestion has occurred based on the

packet loss.

3.2 TCP RENO
This RENO retains the basic principle of Tahoe, such as slow

starts and the coarse grain retransmit timer. However it adds some

intelligence over it so that lost packets are detected earlier and the

pipeline is not emptied every time a packet is lost. Reno requires

that we receive immediate acknowledgement whenever a segment

is received. The logic behind this is that whenever we receive a

duplicate acknowledgment, then his duplicate acknowledgment

could have been received if the next segment in sequence

expected, has been delayed in the network and the segments

reached there out of order or else that the packet is lost. If we

receive a number of duplicate acknowledgements then that means

that sufficient time have passed and even if the segment had taken

a longer path, it should have gotten to the receiver by now. There

is a very high probability that it was lost. So Reno suggests an

algorithm called ‘Fast Re-Transmit’. Whenever we receive 3

duplicate ACK‘s we take it as a sign that the segment was lost, so

we re-transmit the segment without waiting for timeout.

Thus we manage to re-transmit the segment with the pipe almost

full. Another modification that RENO makes is in that after a

packet loss, it does not reduce the congestion window to 1. Since

this empties the pipe. It enters into an algorithm which we call

‘Fast-Re-Transmit’.

Problems:

 RENO performs very well over TCP when the packet

losses are small. But when we have multiple packet losses

in one window then RENO doesn‘t perform too well and

its performance is almost the same as Tahoe under

conditions of high packet loss.

 Another problem is that if the window is very small when

the loss occurs then we would never receive enough

duplicate acknowledgements for a fast retransmit and we

would have to wait for a coarse grained timeout. Thus is

cannot effectively detect multiple packet losses.

3.3 New RENO
New RENO is a slight modification over TCP-RENO. It is able to

detect multiple packet losses and thus is much more efficient that

RENO in the event of multiple packet losses. Like RENO, New-

RENO also enters into fast-retransmit when it receives multiple

duplicate packets, however it differs from RENO in that it doesn‘t

exit fast-recovery until all the data which was out standing at the

time it entered fast recovery is acknowledged. The fast-recovery

phase proceeds as in Reno, however when a fresh ACK is

received then there are two cases:

 If it ACK‘s all the segments which were outstanding when

we entered fast recovery then it exits fast recovery and sets

CWD to threshold value and continues congestion

avoidance like Tahoe.

 If the ACK is a partial ACK then it deduces that the next

segment in line was lost and it re-transmits that segment

and sets the number of duplicate ACKS received to zero.

It exits Fast recovery when all the data in the window is

acknowledged

Problems:

New-Reno suffers from the fact that it takes one RTT to detect

each packet loss. When the ACK for the first retransmitted

segment is received only then can we deduce which other segment

was lost.

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.9, August 2010

22

3.4 TCP SACK
TCP with ‗Selective Acknowledgments‘ is an extension of TCP

RENO and it works around the problems face by TCP RENO and

TCP New-RENO, namely detection of multiple lost packets, and

re-transmission of more than one lost packet per RTT. SACK

retains the slow-start and fast retransmits parts of RENO. It also

has the coarse grained timeout of Tahoe to fall back on, in case a

packet loss is not detected by the modified algorithm. SACK TCP

requires that segments not be acknowledged cumulatively but

should be acknowledged selectively. If there are no such

segments outstanding then it sends a new packet. Thus more than

one lost segment can be sent in one RTT.

Problems:

The biggest problem with SACK is that currently selective

acknowledgements are not provided by the receiver to implement

SACK we‘ll need to implement selective acknowledgment which

is not a very easy task.

3.5 TCP FACK
FACK or Forward Acknowledgement is a special algorithm that

works on top of the SACK options, and is geared at congestion

controlling. FACK algorithm uses information provided by SACK

to add more precise control to the injection of data into the

network during recovery – this is achieved by explicitly

measuring the total number of bytes of data outstanding in the

network. FACK decouples congestion control from data recovery

thereby attaining more precise control over the data flow in the

network. The main idea of FACK algorithm is to consider the

most forward selective acknowledgement sequence number as a

sign that all the previous un-(selectively)-acknowledged segments

were lost. This observation allows improving recovery of losses

significantly.

3.6 TCP VEGAS
Vegas is a TCP implementation which is a modification of

RENO. It builds on the fact that proactive measure to encounter

congestion is much more efficient than reactive ones. It tried to

get around the problem of coarse grain timeouts by suggesting an

algorithm which checks for timeouts at a very efficient schedule.

Also it overcomes the problem of requiring enough duplicate

acknowledgements to detect a packet loss, and it also suggests a

modified slow start algorithm which prevents it from congesting

the network. The three major changes induced by Vegas are:

New Re-Transmission Mechanism: Vegas extend on the re-

transmission mechanism of RENO. It keeps track of when each

segment was sent and it also calculates an estimate of the RTT by

keeping track of how long it takes for the acknowledgment to get

back.

Congestion avoidance: TCP Vegas is different from all the other

implementation in its behavior during congestion avoidance. It

does not use the loss of segment to signal that there is congestion.

It determines congestion by a decrease in sending rate as

compared to the expected rate, as result of large queues building

up in the routers. It uses a variation of Wang and crow croft‘s Tri-

S scheme.

Modified Slow-start: TCP Vegas differs from the other

algorithms during its slow-start phase. The reason for this

modification is that when a connection first starts it has no idea of

the available bandwidth and it is possible that during exponential

increase it over shoots the bandwidth by a big amount and thus

induces congestion. To this end Vegas increases exponentially

only every other RTT, between that it calculates the actual

sending through put to the expected and when the difference goes

above a certain threshold it exits slow start and enters the

congestion avoidance phase.

4. RESULTS AND ANALYSIS BASED ON

THROUGHPUT

4.1 Analysis of graph of throughput versus no

of nodes

Figure 1: Graph of No. of Nodes vs. Throughput for 5

Connections in Low Mobility

Figure 2: graph of no. Of Nodes vs. Throughput for 25

connections in low mobility

Figure 1 and 2 are graphs of Throughput v/s Number of nodes for

5 connections and 25 connections respectively. As we mentioned

earlier, large variations are observed in the graph because TCP‘s

performance in Mobile Ad hoc Networks is affected due to

network asymmetry. Also the behavior of the underlying routing

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.9, August 2010

23

protocol used affects the performance of TCP. The routing

protocol used in our simulations is AODV which maintains only

one hop information in the routing table. Due to reactive nature of

AODV it may happen that data packets and ACK packets may

take a different path from source to destination. This results in

large variations of RTT. TCPs basic functioning depends largely

on RTT and thus due to variations in RTT, we observe variations

in throughput achieved as shown above in figures1 and 2.

4.2 Analysis of graph of throughput versus no

of connections with low mobility

The below Figure 3 and 4 are graphs of Throughput v/s Number

of connections for 100 nodes and 200 nodes respectively. It is

observed that almost all the variants of TCP have similar

performance except TCP Vegas. The performance of TCP Vegas

is similar to other variants of TCP initially but later when we

increase the number of connections, the performance degrades

drastically. When we increase the number of connections in a

network (keeping number of nodes fixed) more packets are

dropped in the network due to collision. TCP Vegas has a

proactive behavior that prevents the packets being dropped in the

network. Due to this nature it restricts the amount of data that it

transmits in the network. Thus TCP Vegas achieves low

throughput as compared to other variants.

TCP SACK gives better throughput than other variants in most of

the scenarios. This is because it avoids frequent retransmission of

packets by sending selective acknowledgements. This mechanism

is better than the mechanisms used in TCP RENO and TCP New

RENO where in multiple packet losses lead to frequent

retransmission of packets. Comparing figure 3 and 4 we can see

that more throughput is achieved when the number of nodes are

more . We can see that the range of values obtained for

throughput in figure 3 is from 250 to 425 whereas in case of

figure 4 it is from 300 to 500. This is because when we increase

the number of nodes in a network, node density also increases.

Figure 3: Graph of No. of Connections vs. Throughput

for 100 nodes in Low Mobility

Figure 4: Graph of No. of Connections vs. Throughput

for 200 nodes in Low Mobility

4.3 Analysis of graph of throughput versus no

of connections with high mobility

Figure 5: Graph of No. of Connections vs. Throughput

for 100 nodes in High Mobility

International Journal of Computer Applications (0975 – 8887)

Volume 4– No.9, August 2010

24

Figure 6: Graph of No. of Connections vs. Throughput

for 200 nodes in High Mobility

The Figure 5 and 6 are graphs of Throughput v/s Number of

connections for 100 nodes and 200 nodes with high mobility. It is

observed that almost all the variants of TCP have similar

performance except TCP Vegas. The performance of TCP Vegas

is similar to other variants of TCP initially but later when we

increase the number of connections, the performance degrades

drastically. When we increase the number of connections in a

network (keeping number of nodes fixed) more packets are

dropped in the network due to collision. TCP Vegas has a

proactive behavior that prevents the packets being dropped in the

network. Due to this nature it restricts the amount of data that it

transmits in the network. Thus TCP Vegas achieves low

throughput as compared to other variants.

We can also observe the fact that wireless networks have hidden

node and exposed node problems. Hidden node problem can be

solved by Carrier Sensing, wherein a RTS (Request to Send)

packet is first sent by the sender and if the transmission medium is

free then a CTS (Clear to Send) packet is sent by the receiver.

Once a CTS packet is sent, the two nodes can communicate with

each other for the requested amount of time. However this cannot

solve exposed node problem. Two other nodes which are in the

transmission range of the two nodes communicating will have to

wait until the transmission medium is free. This would cause the

throughput to drop. This can be seen in fig 5 and fig 6 where

throughput drops when the connection is increased to 15.

CONCLUSION AND FUTURE WORK

We calculated the performance of six TCP variants; they are TCP

Tahoe, TCP RENO, TCP New RENO, TCP SACK, TCP FACK

and TCP Vegas. After analyzing the performance from simulated

data and graphs obtained, we found that TCP Vegas is better than

any other TCP variants for sending data and information due to its

better Packet Delivery Fraction and Avg. end- to- end delay in

both high and low mobility. This is due to fine tuning of

congestion window size by taking into consideration the RTT of a

packet, whereas other reactive protocols like TCP Tahoe, RENO,

New RENO, SACK, and FACK continue to increase their

window size until packet loss is detected. We have given the

detailed behavior of all these variants of TCP under various

different scenarios. We hope these results will be of some use in

future study in this area helping the growing interest and resulting

in the required protocol for today‘s high demanding world.

The future work of this project can be done in following areas:

1) The performance analysis of variants of TCP under other

routing protocols like DYMO, DSR, OLSR, DSDV.

2) Expanding the range of analysis by considering other new

TCP‘s like HS-TCP, TCP WESTWOOD etc

3) Working using the other two propagation models in ns2 -

Shadowing model and Free space model

4) Considering more performance metrics like Routing

Overhead, Bandwidth Delay Product, Total route requests

sent, Retransmission attempts etc.

ACKNOWLEDGMENT

The authors would like to thank Mr. Mohit T and Ms Manasa for

their contribution to the programming for some associated

experiments. They would also like to thank Dr. S.Y Kulkarni,

Pricipal, for his encouragement and helpful comments.

REFERENCES

[1] Raju Kumar, Riccardo Crepaldi, Hosam Rowaihy, Albert F.

Harris III, Guohong Cao, Michele Zorzi, Thomas F. La Porta

―Mitigating Performance Degradation in Congested Sensor

Networks‖, IEEE Transactions on Mobile Computing, Vol. 7, No.

6, June 2008.

[2] Jeffrey Andrews et al, ―Rethinking Information Theory for

Mobile Ad Hoc Networks‖ IEEE Communications Magazine,

December 2008.

[3] Xiaoqin Chen, Haley M. Jones, A.D.S Jayalath ―Congestion

Aware Routing Protocol for Mobile Ad-hoc Networks‖,

Department of Information Engineering, CECS, The Australian

National University, Canberra.

[4] P. Chenna Reddy, Dr. P. ChandraSekhar Reddy.

―Performance Analysis of Adhoc Network Routing Protocols‖.

[5] Larry L. Peterson and Bruce s. Davie.‖Computer Networks-A

Systems Approach.Edition-3‖Morgan Kaufmann Publishers.

[6] Subir Kumar Sarkar, T G Basavaraju, C

Puttamadappa.‖Adhoc Mobile Wireless Networks-Principles,

Protocols and Applications‖ Auerbach Publications.

[7] Marc Greis‘ Tutorial for the UCB/LBNL/VINT Network

Simulator ―ns‖. http://www.isi.edu/nsnam/ns/tutorial/

[8] Network Simulator - 2 (NS-2) http://mohit.ueuo.com/NS-

2.html

[9] Christian Lochert, Bjorn Scheuermann, Martin Mauve.‖A

Survey on Congestion Control in Mobile Adhoc Networks.‖

[10] Laxmi Subedi, Mohamadreza Najiminaini, and Ljiljana

Trajković ―Performance Evaluation of TCP Tahoe, Reno, Reno

with SACK, and NewReno using OPNET Modeler‖

http://www.isi.edu/nsnam/ns/tutorial/
http://mohit.ueuo.com/NS-2.html
http://mohit.ueuo.com/NS-2.html

