
I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

47

A Semantic Framework for Analyzing Web Services
Composition

F. Latreche F. Belala
Department of Computer Science

Mentouri University
Constantine, Algeria

Department of Computer Science
Mentouri University
Constantine, Algeria

ABSTRACT
Service oriented architecture (SOA) is an emergent paradigm that

aims at building applications and components by assembling

existing ones. Several works on composition aspects have been

proposed by researchers and industrial practitioners. The overall

observation about these works is that they only provide means for

service composition and invocation; but, they offer little support

for analysis, and formal checking of composite Web services.

In this work, we exploit rewriting logic as a unique semantic

formalism for well describing and checking Web services

composition. Thanks to this formalization we lean on the category

model to give precise and sufficient semantics to Web service

behavior. Besides, this high level specification constitutes an

executable one, it allows formal analysis using a particular well-

founded language Maude having a proof and prototyping

environment.

General Terms
Formal Methods, Web Services.

Keywords
Web Services, Rewriting Logic, Behavioral Checking.

1. INTRODUCTION
One of the important challenges in Service Oriented Architecture

(SOA) paradigm is to allow building new applications, by

assembling independent and loosely coupled services. The

objective is supplying new personalized, rich and more interesting

services for applications and for other complex Web services.

In this context, different works on composition aspects have been

proposed by many researchers and industrial practitioners. These

works have given birth to several new programming and

description languages customized to the specification of Web

service composition such as, WSCL [1], BPML [2], XLANG [3],

WSFL [4], WS-BPEL [5], WS-CDL [6], and WSCI [7].

Web service composition languages address Web services

composition by following two complementary views:

Orchestration and Choreography. The orchestration view focuses

on the description of the computation carried on by a single

partner of a composite service that plays the role of the

coordinator, while in Choreography, coordination responsibility is

distributed between partner services [8]. The overall observation

about these languages is that they do not consider verification and

validation aspect of Web service composition. In addition, the

majority of these languages are semi formal requiring translation

to generate formal models that admit mathematical rigors [9].

Many researchers have used existing model checker tools to

analyze and check composite Web services. For example in [10],

WSFL descriptions are translated into Promela (the input

language of the SPIN model checker) in order to analyze

composite Web service. Besides, the authors of [11] proposed an

analysis tool called WSAT (based on the SPIN model checker)

that accepts as input a BPEL4WS description and some LTL

properties. This type of works is being done in the literature

tempting to analyze Web services while transforming their

description to other models that come with some convenient tools.

Another category of works has been done in the literature using

some well known formalisms to formal specify and reason on

composite Web services and then check their correctness [12, 13,

14]. However, each of this work concentrates only on specific

aspect of Web services composition. Our proposed approach is

situated in this context of works and its main objective is to

propose rewriting logic as a unique semantic formalism for well

describing and checking Web services composition.

The rewriting logic is a general framework, in which not just

applications, but entire formalisms and other languages can be

naturally expressed. This logic has been introduced by Jose

Meseguer [15], as a consequence of his work on general logics to

describe concurrent systems. It allows correct reasoning on

concurrent systems behaviors, having states and evolving in terms

of transitions [15].

In rewriting logic, a concurrent system is represented by a

rewriting theory describing its static and dynamic aspects. The

rewriting logic benefits also from presence of numerous tools and

operational environments. The most known is Maude system

created by SRI laboratory (United States). Maude is at the same

time an expressive language and an efficient environment

containing many analysis tools.

In this work we define a formal model based on revised rewriting

logic allowing analysis of conversation among peers of a

composite Web service. This model will enable developers to

detect erroneous behaviors and contradictions in the global

interaction protocol. Its main advantage is the clear distinction

between the two concerns static and dynamic ones. Thus, firstly

we describe the static aspects of composite Web services using a

Maude functional module. Then, we proceed to the enrichment of

this module to ensure its behavior description. The execution

semantic of a system composed of communicating Web services

is naturally defined thanks to rewrite rules concurrent execution.

I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

48

The proposed model is generic enough, it may be easily enriched

to take in account other Web service issues.

Thus, rewriting logic offers a suitable semantic framework to

reason on the behavior of composite Web services. Also, proof of

generic functional properties is successfully achieved via the

Maude LTL model-checker tool.

The remainder of this paper is organized as follows. In section 2,

we review the state of the art in Web services analysis. Then, we

present briefly in section 3 rewriting logic basic concepts. In the

fourth section, we first describe the proposed model. Next, we

show how this model can be extended to describe the behavior of

Web services. Subsequently, some functional properties of Web

services composition, describing a classical example of the Virtual

Travel Agency service, are checked using the LTL model-checker

of Maude environment. Finally, a conclusion and some

perspectives of this work are presented.

2. ANALYSIS OF WEB SERVICES
The validation of Web service specification is an important step in

the development of distributed systems. It allows developers to

eliminate errors as early in the development cycle as possible. In

fact, a composition based on an incorrect specification causes a

waste of money and time. In this section we present the most

known works attached to Web service analysis.

There are several lines of research that are closely related to ours.

First, we have the works that try to provide test based approaches

for Web service composition analysis. So far they are quite

limited, there is no connection yet to any formal toolkit to reason

about the formal specification. Yet, there is a very interesting

classification of A. Bucchiarone et al. in [8] to give approaches for

Web services composition testing: (a) White box approach, in

which executable descriptions of Web services composition (like

BPEL descriptions) are considered as the source code of the

composition, and (b) black box approach, in which test cases are

generated from the composition specification without any

knowledge about its implementation.

Secondly, there is quite a large number of papers about the formal

verification based works. But, there is no potential benefits of

having a formal representation of Web services composition that

have been fully exploited. For instance, authors in [14] proposed a

model-based approach to early verify compositions. BPEL Web

service specification is represented using UML in the form of

message sequence charts, and then transformed into a finite state

process (FSP). Then, a Labeled Transition System Analyzer

(LTSA) is used to check if a Web service composition satisfies the

specification. However, most of these related formalisms (BPEL,

UML, FSP and LTSA) have been independently defined, and

there is no clear connection between them. Another work [13] has

given a design and verification framework for composite Web

services using process algebras. A two-way mapping between

LOTOS and BPEL is proposed. Authors are only interested by

showing how simulation and bisimulation are involved in the

automatic composition of services and in the redundancy check of

services. Also, the work by Roberto Lucchi et al [12] proposed a

novel orchestration language based on the π-calculus. In

particular, the semantics of a BPEL fragment is formally

addressed to specify event, fault and compensation handlers

behavior.

Finally, this second works category is very close to ours. They use

formal models to specify and check Web services composition,

although they use various formalisms (at least two ones) to

achieve their formalization. Our proposal is quite different since

it uses only one formalism, rewriting logic (RL), for specification

and analysis of Web services composition. Besides, this logic has

already served for integrating an important set of these formalisms

[15].

3. REWRITING LOGIC AND MAUDE

SYSTEM
In addition to the use of the rewriting logic in specification of

concurrent and distributed system semantics, rewriting logic (RL)

is also a promising logical framework in which many logics and

formal systems can be naturally represented and interrelated [16].

Such representations can then be used to generate a diversity of

formal tools by using the Maude environment. The objective of

this section is to present elementary concepts of rewriting logic

allowing a good comprehension of this work.

3.1 Theoretical Aspects of RL
Rewriting logic is a logic of change that allows expression of

concurrent and nondeterministic computation in a very suitable

manner. In this logic, static aspect of systems is represented by

membership equational theories and dynamic aspect is represented

by rewriting theories describing the possible transitions between

states of concurrent systems.

Equational theories allow modular specifications of systems; they

are multi sorted theories in which basic statements are either

equations of algebraic terms or memberships.

Rewriting theories extend equational ones by adding a set of

rewriting rules. Each rewrite theory T is a quadruplet (Σ, E, L, R),

where (Σ, E) is the signature describing states of the system, L is a

set of labels and R is a set of rewriting rules (noted [t] → [t'])

modeling the possible transitions between states of the concurrent

system. [t], [t'] are equivalence classes of algebraic terms

belonging to the set TΣ,E(X), Reasoning in rewriting logic is

accomplished by finite application of the following rules:

Reflexivity. For each term [t] in TΣ,E(X),

][][tt →

Congruence. For each f∈Σn, n∈N,

() ()]',,'[],[

]'[][]'[][

11

11

nn

nn

ttfttf

tttt

KK

K

→

→→

Replacement. for each rewriting rule :

()[] ()[]nn xxtxxtr ,,',,: 11 KK → in R,

[] [] [] []
)]/'('[)]/([

''11

xwtxwt

wwww nn

→

→→ K

Transitivity.

[] [] [] []
[] []31

3221

tt

tttt

→

→→

I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

49

Rewriting logic is also a reflexive logic, i.e. aspects of its meta-

theory can be represented in a consistent way, namely there is a

universal theory in which other theories can be represented, we

can not only represent and simulate other logics, but we can

reason about meta-logical properties of these logics.

3.2 Practical Aspects of RL
Rewriting logic has also many operational environments, the most

known is the Maude language. Maude is a declarative language

based on rewriting logic, used as a meta-language to create

different environments. It regroups three types of modules mainly:

functional modules to define the static aspects of a system, they

form a Maude sub-language (extension of OBJ3) based on the

equational logic; system modules specify the dynamic aspect of

the system using rewriting rules; while object oriented modules

specify the objects oriented systems.

The fact that specifications in rewriting logic are executable

makes possible to have a flexible formal model of system which

can constitute a prototype for the analysis and validation phase.

In particular, the Maude system [16, 17] offers a powerful model

checker (LTL) for checking systems properties. It acts as follows:

it takes as input a system model (the module "M") expressed in

rewriting logic formalism, and a specification (the module "M-

Preds") which represents a system specification property

expressed in linear temporal logic. For a given initial state of the

system (expressed in the module "M-Check"), it performs a

calculus using the "on the fly" local methods principle to produce

two possible results. Positive result if all the model executions

satisfy the specification, and negative result if at least one

execution of the model does not satisfy the specification. In this

case, the Model-Checker gives this execution or it’s a

simplification as a counter example which serves for the user to

correct the source of the problem and then re-execute a new

checking of the model.

4. THE PROPOSED APPROACH
The use of formal methods is an effective means to improve the

reliability and the quality of complex systems. The objective of

this work is to adapt one of these methods, largely mastered due to

its widespread use in our recent research works [18, 19], to Web

service specification and analysis, so that the system development

depending on Web service can benefit from it.

In this section, we present our formal mathematical model for

composite Web services, based on rewriting logic. This model

provides the required and unified support for correctly analyze

behavior of composite Web services.

Indeed, our formalization gives a clear distinction between the

two concerns, static and dynamic ones. Thus, it will be done in

two stages. The first one describes the static aspects of Web

services using a Maude functional module. Then, we proceed to

the enrichment of this module to ensure the behavior description.

The obtained model serves to show how we use the LTL (Linear

Temporal Logic) model-checker tool of Maude to formal check

crucial properties of Web services composition, we will focus first

on functional properties.

4.1 Composite Web Service Formalization
The theoretical model that we associate to composite Web

services WS is an equational theory TWS of the membership

equational logic, a rewriting logic subclass. This model is noted :

TWS = (ΣWS, EWS U AWS), where Σ WS is our model signature, the

useful set of sorts, and operators to statically describe a composite

Web service WS, EWS represents the set of our model equations,

and finally AWS represents the set of operators equational

attributes.

The Figure 1 shows the functional Maude module "WS-SPEC"

that implements the equational theory TWS. In fact, we adopt a

modular approach that associates to each concept of a composite

Web service "WsComp" (or a simple one "WsSpec", inheriting all

concepts of the former thanks to the subsort declaration of line 2),

an algebraic term, so messages exchanged among peers

participating in a composite Web service and their directions are

respectively modeled with terms of sorts "Mes" and "Dir", also

gathering two terms of sort "Mes" and "Dir" with the operation

declared in line 3, generates a term of sort "Cnvr" that represents

the basic send and receive actions.

In addition, the sort "St" represents the state of a Web service,

the operation declared in line 4 models its elementary behavior,

i.e. one state change of a peer. Another important operation

describing behavioral signature of Web services is presented in

line 6. In this operation declaration, sorts "WsN" and "St"

represent, respectively the name of a peer and its active state.
Table 1 shows the mapping between the main SOA constructs and

algebraic sorts of the proposal.

Table 1. Mapping SOA constructs to algebraic sorts

Algebraic sorts SOA constructs

WsN Web service identifier

Mes Exchanged messages

Dir Message direction

Cnvr Send and receive actions

Behav Web services behavior protocol

4.2 Behavioral Analysis of Web Services
To mechanize behavior of Web services peers, we introduce the

Maude system module "WS-BEHAV" (Figure 2) that extends the

functional module "WS-SPEC" of Figure 1. In this module, state

fmod WS-SPEC is
1 sorts WsComp WsSpec WsN Behav St Cnvr Dir Mes .
2 subsort WsSpec < WsComp .
3 op __ : Dir Mes -> Cnvr [ctor prec 21] .
4 op `(_._._`) : St Cnvr St -> Behav [ctor prec
22] .
5 op _;_ : Behav Behav -> Behav [ctor comm prec
23 id: none assoc] .
6 op _`(_`):_ : WsN St Behav -> WsSpec [ctor prec
24] .
7 op __ : WsComp WsComp -> WsComp [ctor comm prec
25 id: none assoc] .
8 op none : -> WsSpec [ctor] .
9 op none : -> Behav [ctor] .
10 ops ? ! : -> Dir [ctor] .
endfm

Figure 1. Composite web service

formalization

I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

50

change of peers participating in a conversation is defined by one

generic rewriting rule ("beh-rl").

Through the presented modules of this section, we achieved a

modular and legible specification of composite Web service. In

the same way this specification can be easily enriched,

particularly, we can add other elements to specify new concepts.

Another important fact is that each deduced Maude module: "WS-

BEHAV" or "WS-SPEC", specifies not just a theory, but also an

intended mathematical model. The user has intuitively in mind

this model. For functional modules such models are algebras (as

TWS, certain sets of data and certain functions defined on such

data). For system modules such models are categories TWS-BEHAV,

which in essence are algebraic (labeled) transition systems. The

states and data of this system are elements of the underlying initial

algebra TWS. The state transitions are the (possibly complex)

concurrent rewrites possible in the system given by application of

the local rules in TWS-BEHAV and RL deduction rules. Again, the

programmer of such system has this model in mind. So, the

essential asset of this logic is the so-called agreement between the

mathematical semantics (the models) and the operational

semantics (the computations).

For the behavior level, the category model, inherited from

rewriting theories, associates a precise definition in terms of

mathematic morphisms to composite Web service state evolution

and algebraic terms to Web service static concepts. All possible

behaviors of the composite Web service are formally specified by

a mathematical category.

5. CASE STUDY
In order to illustrate the proposed approach, we consider in this

section a variant of the Virtual Travel Agency service (Figure 3).

The objective of this composite Web service is to provide a hotel

booking service to his travelers by integrating three

communicating peers: User, Agent and Hotel service. In this

composition the User service launch the process by sending a

request ("! request") stating his constraints to the Agent

service. Then, after interaction with the Hotel service, it is

possible that the request of the User cannot be fulfilled ("?

hotel-na"), in which case the Agent service sends a not-

available ("! na") notification to the User service. If a

reservation offer is sent instead ("! offer"), the User can accept

("! ack") or reject it ("! nack"), by sending a corresponding

message to the Agent service.
Although this composition is a simple one, complex interactions

amongst participating services are produced. Using formal

techniques for their analysis will felicitate error fixing.

mod WS-BEHAV is
extending WS-SPEC .
vars st1 st2 st3 st4 : St .
vars mes1 : Mes .
vars sern1 sern2 : WsN .
vars behav1 behav2 : Behav .
rl [beh-rl] :
 sern1(st1) : (st1 . ! mes1 . st3); behav1
 sern2(st2) : (st2 . ? mes1 . st4) ; behav2
 =>
 sern1(st3) : (st1 . ! mes1 . st3) ; behav1
csern2(st4) : (st2 . ? mes1 . st4) ; behav2 .
endm

Figure 2. Web service behavior specification

Figure 3: The Virtual travel agency web service

(b) A g e n t s e r v i c e

(a) U s e r s e r v i c e ? nack

? hotel-offer

S21

S22

S23

S27 S28

S26

S24 S25

S29

? request

! ticket

! hotel-request

? hotel-na

! na

! offer

? ack

? request (c) H o t e l s e r v i c e
S31

S32

S33

 ! hotel-na

? hotel-request

? hotel-request ! hotel-offer

! nack

! request

! ack

S12

S11

S13

S15

S16

S14

? offer

? na

! request

? ticket

I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

51

5.1 The Specification Step
In this section we show how we can use our generic formal model

to describe the Web Services behavior of The Virtual Travel

Agency example and their composition. The proposed approach is

general enough since the functional theory "WsSpec" presented in

Figure 1 is a generic model of composite Web services; it remains

valid for any Web service example. So, in order to transcript the

Virtual Travel Agency service (Figure 3), in rewriting logic, we

declare a new system Maude module "VTA-WS" (Figure 4)

extending the module "WS-BEHAV" and it will contain the

constant operators specification to identify in this case, Web

services names (User, Agent and Hotel), the Web services states

(s11, …., s33), the exchanged messages (request , …., hotel-

na), and finally our Web service composition name (VTA). Indeed,

only one equation is included in this module to specify clearly and

in a global manner each Web service composition; this represents

a typical instance of the generic model. The modular Maude

programs produced (in figure 4) can be executed and formally

analyzed under Maude system.

5.2 Analysis Step
The use of rewriting logic via its Maude language, offers an

executable and analyzable specification that takes advantage of

tools around Maude environment, as the model-checker for linear

temporal property verification.

This section will explain how, under appropriate finite reachability

assumptions, we can model check any linear temporal logic (LTL)

property of the Virtual Travel Agency composition by using the

Maude LTL model-checker. So, in order to do that, we need to

make explicit two things: (a) the intended sort of states in the

composite Web service signature, and (b) the relevant state

predicates. In our proposed model these two elements are

specified in the system module "WSPREDS" presented in Figure 5.

We will deal here with simpler, yet very useful, properties such as

accessibility, safety and liveness, while considering the formal

description of the composite Web service (the functional module

"VTA-WS" in this example case). We show in figure 6 that a

check, for instance, of two liveness properties by the LTL model-

checker of Maude, is launched by these commands appearing in

the following window (reduce in …).

mod VTA-WS is
extending WS-BEHAV .
op VTA : -> WsComp [ctor] .
ops User Agent Hotel : -> WsN [ctor] .
ops s11 s12 s13 s14 s15 s16 s21 s22 s23 s24 s25 s26 s27 s28 s29 s31 s32 s33 : -> St [ctor] .
ops request offer nack ack ticket na hotel-request hotel-offer hotel-na : -> Mes [ctor] .
eq VTA =
 User(s11) : (s11 . ! request . s12) ; (s12 . ? offer . s13) ; (s13 . ! nack . s14)
 ; (s13 . ! ack . s15) ; (s15 . ? ticket . s16) ; (s12 . ? na . s16)
 ; (s14 . ! request . s12)
 Agent(s21) : (s21 . ? request . s22) ; (s22 . ! hotel-request . s23)
 ; (s23 . ? hotel-offer . s24) ; (s23 . ? hotel-na . s25)
 ; (s24 . ! offer . s26) ; (s26 . ? ack . s27) ; (s26 . ? nack . s28)
 ; (s27 . ! ticket . s29) ; (s25 . ! na . s29) ; (s28 . ? request . s22)
 Hotel(s31) : (s31 . ? hotel-request . s32) ; (s32 . ! hotel-offer . s33)
 ; (s32 . ! hotel-na . s33) ; (s33 . ? hotel-request . s32) .
endm

Figure 4. The Virtual Travel Agency Web service in Maude

mod WSPREDS is
protecting VTAWS .
including SATISFACTION .
subsort WsComp < State .
subsort Mes < Prop .
vars st1 st2 st3 st4 : St .
var mes1 : Mes .
vars sern1 sern2 : WsN .
vars behav1 behav2 : Behav .
var wscomp : WsComp .
var C : WsComp .
var P : Prop .
eq sern1(st1) : (st1 . ! mes1 . st3)
 ; behav1 sern2(st2) : (st2 . ? mes1 . st4); behav2 wscomp |= mes1 = true .
eq C |= P = false [owise] .
endm

Figure 5. The System Module WSPREDS

I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

52

The specification of the considered properties:

“The Agent service always sends not available
notification or an offer on user’s request”,

“After each reservation offer, the user can accept

or reject it“,

is given by the following LTL formulas:

• "[] (request -> <> (na \/ offer))", and

• "[](offer -> O (nack \/ ack))" .

In the comparison with the existing works, the proposed model

achieves a balance between understandability of representation

and formal reasoning techniques.

6. CONCLUSION
In this paper, we have shown how we exploit rewriting logic to

ensure the correctness of Web Services composition. We firstly

presented a semantic framework for Web service description,

based on rewrite theories. In fact, we presented how each element

of a composite Web service will be transformed towards one

algebraic term (see Table 1). We have then extended this algebraic

model to categorical one, in order to take into account the

behavior of peers participating in a composite Web service.

Indeed, our interest in this work is to make possible formal

verification of behavioral properties. This has been achieved by

executing this model under Maude system and taking benefit of its

LTL model checker tool. Through this formalization, it is clear

that the proposed model is generic enough; it can be extended to

formalize all constructs of service composition languages, and

more this model is based on mathematically sound semantic

enabling rigorous semantic reasoning.

As future work, we plan to transcript the obtained Maude modules

to object oriented ones for natural execution and prototyping and

exploit Maude analysis tools for addressing new issue of SOA

paradigm.

7. REFERENCES
[1] Web Service Conversation Language (WSCL) 1.0.

http://www.w3.org/TR/2002/NOTE-wscl10-20020314/.

[2] Business Process Modeling Language (BPML).

http://www.bpmi.org.

[3] Satish,T. XLANG.2001. Web services for business process

design. www.gotdotnet.com/team/xml-wsspecs/xlang-

c/default.htm.

[4] Leymann, F. 2001. Web Services Flow Language (WSFL)

1.1. In http:/www.w3.org/TR/wsfl/.

[5] Business Process Execution Language for Web Services

(Version 1.0). 2002.

http://www.ibm.com/developerworks/library/ws-bpel.

[6] Nickolas, K. David, B. Gregory, R. Tony , F and Yves, L .

2004. Web services choreography description language

version 1.0 - w3c working draft 17 december 2004.

[7] Assaf , A. Web Service Choreography Interface (WSCI) 1.0.

In http:/www.w3.org/TR/wsci/.

[8] Bucchiarone, A. Melgratti, H. and Severoni, F. 2007.

Testing service composition. In: Proceedings of the 8th

Argentine Symposium on Software Engineering (ASSE

2007).

[9] Hai, H. Rick A. M. 2006. Model Checking Technologies for

Web Services. Proceedings of the Fourth IEEE Workshop on

Software Technologies for Future Embedded and Ubiquitous

Systems and Second International Workshop on

Collaborative Computing, Integration, and Assurance

(SEUS-WCCIA’06). IEEE.

[10] Nakajima, S. 2002. Model-checking verification for reliable

Web service. In OOP-SLA 2002 Workshop on Object-

Oriented Web Services, Seattle, Washington.

[11] Tevfik, B. Xiang, F. and Jianwen, S. 2006. Analyzing

conversations of Web services. IEEE Internet Computing,

10(1):18–25.

[12] Roberto, L. and Manuel, M. 2007. A pi-calculus based

semantics for WS-BPEL.J. Log. Algebr. Program., 70(1):96–

118.

[13] Ferrara, A. 2004. Web services: a process algebra approach.

In ICSOC ’04: Proceedings of the 2nd international

conference on Service oriented computing, pages 242–251,

New York, NY, USA. ACM Press.

[14] Foster, H. Uchitel, S. Magee, J. and Kramer, J. 2003. Model-

based Verification of Web Service Composition, Proc. 18th

IEEE International Conference on Automated Software

Engineering (ASE’03), Montreal, Canada , pp. 152-163.

[15] Meseguer, J. 1992. Conditional Rewriting as a Unified

Model of Concurrency, Theoretical Computer Science 96,

pp. 73-155.

[16] Clavel, M. Durán, F. Eker, S. Lincoln, P. Martí-Oliet, N.

Meseguer, J. Talcott, C. 2007. All about Maude: A High-

Performance Logical Framework, Lecture Notes in Comput.

Sci., vol. 4350, Springer.

[17] Clavel M., Duran F., Eker S., Martı-Oliet N., Lincoln P.,

Meseguer J., and Quesada J. 1999 “Maude: Specification

and Programming in Rewriting Logic”, SRI International

Lab., http://maude.csl.sri.com.

\||||||||||||||||||/
--- Welcome to Maude ---
/||||||||||||||||||\

Maude 2.4 built: Dec 9 2008 20:35:33
Copyright 1997-2008 SRI International

Fri Jun 25 21:33:34 2010
==
reduce in serv-CHECK : modelCheck(initial1,
[](request -> <> (offer \/ na))) .
rewrites: 66 in 8967494011ms cpu (5ms real)
(0 rewrites/second)
result Bool: true
==
reduce in serv-CHECK : modelCheck(initial1,
[](offer -> O (nack \/ ack))) .
rewrites: 46 in 8967494801ms cpu (4ms real)
(0 rewrites/second)
result Bool: true
Maude>

Figure 6. Composite Web Service Properties Analysis

I n t e r n a t i o n a l J o u r n a l o f C o m p u t e r A p p l i c a t i o n s (0 9 7 5 – 8 8 8 7)V o l u m e 5 – N o . 4 , A u g u s t 2 0 1 0

53

[18] Benammar M., Belala F., Barkaoui K., Benlahrache N.

2009. “Extension d’ABAReL par les Propriétés

d’Exécution”, CAL’09, 3ième Conférence Francophone Sur

les Architectures Logicielles, Cépaduès-Editions, RNTI L-4,

pp.45-58, Nancy 24-25 Mars 2009,

[19] Belala F., Latreche F., Benammar M. 2008. “Vers

l’Intégration des Propriétés non Fonctionnelles dans le

Langage SADL”. 2ième Conférence Francophone Sur les

Architectures Logicielles CFP-CAL’08, RNTI, pp.91-105,

Montréal, Canada.

