
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.5, August 2010

28

 t:5

 r:1

 s:4

 p:1

p:1 r:2

 p:1

Batch Processing for Incremental FP-tree Construction

Shashikumar G. Totad
Department of CSE, GMRIT,
Rajam, Srikakulam District

AndraPradesh, India.

Geeta R. B.
Department of IT, GMRIT,
Rajam, Srikakulam District

AndraPradesh, India.

PVGD Prasad Reddy
Department of CS & SE,

Andhra University, Visakhapattnam
AndraPradesh, India.

ABSTRACT

Frequent Patterns are very important in knowledge discovery and

data mining process such as mining of association rules,

correlations etc. Prefix-tree based approach is one of the

contemporary approaches for mining frequent patterns. FP-tree is

a compact representation of transaction database that contains

frequency information of all relevant Frequent Patterns (FP) in a

dataset. Since the introduction of FP-growth algorithm for FP-tree

construction, three major algorithms have been proposed, namely

AFPIM, CATS tree, and CanTree, that have adopted FP-tree for

incremental mining of frequent patterns. All of the three methods

perform incremental mining by processing one transaction of the

incremental database at a time and updating it to the FP-tree of the

initial (original) database. Here in this paper we propose a novel

method to take advantage of FP-tree representation of incremental

transaction database for incremental mining. We propose “Batch

Incremental Tree (BIT)” algorithm to merge two small

consecutive duration FP-trees to obtain a FP-tree that is

equivalent of FP-tree obtained when the entire database is

processed at once from the beginning of the first duration to the

end of the second duration. For large databases, our experimental

results show significant reduction in runtime of the BIT algorithm

compared to the runtime of sequential incremental algorithms.

General Terms

Data mining, FP-tree, Prefix-tree Frequent Patterns, Incremental

mining.

Keywords

Batch Incremental Mining, Batch Incremental tree, Sequential

Incremental Mining, minSup.

1. INTRODUCTION
Large databases, some times distributed over several remote

locations, are becoming more common in the contemporary

Global Economy scenario. The local databases which were

initially small, have grown, growing continually and getting

distributed to several remote sites as a result of globalization.

Many of the conventional data mining algorithms are ineffective

and inefficient for handling large and growing data sets [1] [2].

Hence, the scalable and incremental data mining has become an

active area of research with many challenging problems. The large

set of evolving and distributed data can be handled efficiently by

Incremental Data mining. Incremental data mining algorithms

perform knowledge updating incrementally to amend and

strengthen what was previously discovered [5] [7] [12].

Incremental data mining algorithms incorporate database updates

without having to mine the entire dataset again.

Frequent pattern is a pattern of items or events that appear

frequently in a data set. Frequent patterns are very important in

knowledge discovery and data mining process, such as mining of

association rules, correlations etc. Since the introduction of the

concept of frequent patterns in 1993, by R. Agrawal et al. [3],

there have been many considerable studies[2] [4] [6] proposing

different approaches for discovering various kinds of frequent

patterns and their applications. Prefix-tree-based approach is one

of the contemporary approaches for mining frequent patterns. A

pattern P is said to be frequent in a given data set D if its support

count sup(P, D) is greater than or equal to a predefined threshold

called minSup. Given a data set D and a support threshold m, the

collection of all frequent item sets in D, is F(m, D) and is called

“space of frequent patterns”.

 (a) (b) (c)

Figure 1. a) Initial Dataset b) Projected Dataset with min-

threshold= 50% c) FP-tree

The prefix-tree compactly represents the transactions of a data set.

Prefix-tree enables fast computation of support counts of all the

frequent patterns of a dataset. Frequent patterns can be generated

by traversing the prefix-tree, avoiding multiple scanning of the

dataset. The “Frequent-Pattern” tree (FP-tree) is a prefix-tree,

first proposed in 2000 by Han et al., in ACM-SIGMOD

international conference[13] and later published in 2004[8]. FP-

Tree is a compact representation of transaction database that

contains frequency information of all relevant patterns in a

dataset. To construct a FP-Tree for a given dataset, first, the data

set is transformed into “projected dataset”. The projected data set

contains only the frequent items (with support count>min-

threshold) and each transaction is sorted in the descending order

of their support count. The transactions in projected dataset are

added to prefix-tree one by one. The Figure1 shows the dataset,

projected data set and the corresponding FP-tree constructed for

the given dataset.

Tid Transactions

1 r,s,t,u

2 q, s, t

3 p,q,r, t

4 p,s, t,u

5 p,r,s, t

Tid Transactions

1 t, s, r

2 t, s

3 t, r, p

4 t, s, p

5 t, s, r, p

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.5, August 2010

29

F igure 2 . S tep wise const ruct ion of CATS t re e whi le p rocess ing each t ransact ion

2. RELATED WORK
Han et al. proposed FP-growth algorithm [8] [13] to discover

frequent patterns from FP-tree. FP-growth traverses the FP-tree in

a depth-first manner. It requires only two scans of the dataset to

construct FP-tree, unlike Aprori algorithm [3] that makes multiple

scans over the dataset. Since the introduction of FP-growth

algorithm three major algorithms have been proposed, namely

AFPIM, CATS tree, and CanTree that have adopted FP-tree for

incremental mining of frequent patterns.

AFPIM: Koh and Shieh proposed “Adjusting FP-Tree for

Incremental Mining” (AFPIM) algorithm [9].This algorithm

updates previously constructed FP-tree that contains frequent

items based on user specified minimum support threshold minSup,

by scanning only the incremental part of the dataset. As items are

arranged in descending order of support count based on original

dataset, AFPIM re-sorts the items according to new values of

support count based on incremental dataset through bubble-sort.

There are two major drawbacks of AFPIM: First, computational

expensiveness of sorting process. Second, when new frequent

patterns emerge, as a result of scanning of incremental dataset,

AFPIM has to construct a new FP-Tree.

CATS Tree: CATS tree (Compressed and Arranged Transaction

Sequence Tree) [10] addresses the limitations of AFPIM

algorithm. Unlike AFPIM, the CATS tree considers all the items

in the transactions for representation into tree, regardless of

whether items are frequent or not. This allows CATS tree to

represent even new emerging frequent patterns from incremental

dataset. CATS arranges the nodes based on their local support

count, which helps to achieve high compactness of the tree. For

incremental mining CATS tree updates the existing tree by

considering the transactions of the incremental dataset one by one

and merging them with existing tree branches. Figure 2 shows

how CATS tree is constructed considering the dataset of Figure 1.

However, CATS tree too has two limitations. First, for each new

transaction it is required to find the right path for the new

transaction to merge in. Second, it is required to swap and merge

the nodes during the updates, as the nodes in CATS tree are

locally sorted.

CanTree: CanTree (Canonical-order Tree) is proposed by Leung

et al. [11]. Construction of CanTree is very much similar to CATS

tree except that, in CanTree items are arranged according to some

canonical order. The canonical order can be determined by the

user prior to mining process. Canonical ordering can be

lexicographic or based on certain property values of items. Since

the canonical order is fixed and not based on the support count,

CanTree allows easy insertion of nodes. Unlike the CATS Tree,

transaction insertions in CanTree require no extensive searching

of mergeable paths. CanTree too has some limitations. It

generates compact tree if and only if majority of the transactions

contain common pattern-base in canonical order. It generates

skewed tree with too many branches and hence with too many

nodes, otherwise. Further, though the CanTree takes less time for

tree construction it requires more memory and more time for

extracting frequent patterns from the generated CanTree.

All of the three incremental prefix-tree based algorithms discussed

above perform sequential incremental mining. That is, for

incremental mining they consider one transaction of the

incremental dataset at a time. However, in real scenario it is

required to perform periodical mining of transaction databases for

frequent pattern generation. The above discussed algorithms fail

to take advantage of this periodical mining of frequent patterns.

Supposing two data analysis are available for the first and second

quarter of a year, in the form of FP-trees. And supposing it is

required to obtain FP-tree for the first eight months of a year. All

of the above discussed methods consider the FP-tree for the first

quarter and perform incremental mining by processing one

transaction of the second quarter database at a time. These

methods do not take the advantage of the FP-tree of the second

quarter that is readily available.

Here in this paper we propose a novel method to take advantage

of such previously obtained periodical FP-tree, i.e., FP-tree

representation of incremental transaction database, for

incremental mining. We propose an “Batch Incremental Tree

(BIT)” algorithm to merge the small consecutive duration FP-tree

to obtain a FP-tree that is equivalent of FP-tree obtained when the

entire database is processed at once from the beginning of the first

duration to the end of the second duration.

r:1

s:1

t:1

u:1

 s :2

 t:2

 r:1 q: 1

 u:1

 t :3

 p:1 s:2

 q:1 r:1 q :1

r:1 u:1

 t :4

 p:1 s:3

 q:1 p:1 r:1 q :1

u : 1 u : 1 r:1

 t :5

 p:1 s:4

 q:1 p:1 r:2 q :1

 p:1 u:1 u:1 r:1

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.5, August 2010

30

In this section we discuss about working of the BIT algorithm for

incremental mining of frequent patterns. BIT algorithm takes FP-

tree of the two periodic datasets. It then reads the itemsets of one

of the FP-tree (T1) one by one along with their frequency counts

and searches for the mergeable prefix path of the other FP-tree

(T2). It then merges the itemset of T1 with the mergeable prefix

by updating frequency count of the items and inserting remaining

non-prefix items(if any) by extending the tree branch after the last

matching prefix item of the mergeable pattern. The algorithm

given below precisely tells the steps involved in batch incremental

processing.

3. BATCH INCREMENTAL TREE (BIT)

ALGORITHM

ALGORITHM BatchIncrementalTree(FP-tree T1,FP-tree T2)

1. Get itemsets from T2 by considering each of the leaves one by

one.

2. FP-tree T= T1

3. For each itemset i obtained from T2 do the following steps, up

to 18

4. { Read the next itemset i of T2.

5. Get the next item nk to compare, from T // Initially 1st

 // child of root of T

6. For each item j in the itemset i do the following steps ,

 up to 18

7. if item nk is equal to item j then

8. if nk represents leaf node then

9. { Update node represented by nk.

10. Get the remaining items from the itemset i and

 add each item as descendants of nk

 one below the other.

11. }

12. else // if nk is not leaf node

13. { Update node represented by nk.

14. nk = first child of nk.

15. }

16. else // if item nk is not equal to item j

17. if nk has any more child then nk = next child of nk.

 18. else Get the remaining items from the itemset i and

 add each item as descendants of nk

 one below the other.

19. }

20. Return T.

21.

4. TIME COMPLEXITY ANALYSIS
For incremental data mining, CanTree reads the itemsets

(transactions) of incremental database (D2) one at a time, and

upends each itemset to the FP-tree (T1) of the original database

(D1), whereas the BIT algorithm gets the itemsets from the FP-tree

of the incremental database (D2) and upends each itemset to the

FP-tree (T1) of the original database (D1). Hence, the process of

merging is essentially same for both the algorithms. The

advantage of the BIT algorithm lies in the fact that it processes the

multiple occurrences of the same itemset (represented with the

occurrence frequency in the FP-tree T2) only once for merging,

where as CanTree performs merging for every occurrence of the

itemset. In the following section we bring out this difference by

way of time complexity analysis.

Following notations are used for performance analysis:

 m - Total number of items available. (This corresponds to

 maximum number of children for the root of a tree)

 n – Number of leaf nodes of tree T2.

 qi – Number of nodes / items in branch i (item set i) of T2.

 l – Number of node items of T1 that match with the items of

 itemset i (i.e size of the matching prefix of T1 for itemset

 i of T2).

 t – Total running time of the merging process.

 ti – Time required for processing each itemset i of T2.

 tcm – Time required to Compare and Move to the next node

 in forward or downward direction (if comparison

 fails).

 tca – Time to Create and Add node, corresponding to an item

 of the itemset i of T2, as descendant.

Consider the (worst case) scenario wherein while comparing the

items of itemset i of T2 at every level of the tree, the extreme right

node item matches and the remaining items of itemset i are added

as descendants of the extreme right leaf node of FP– tree T1.

Figure 3 below shows the worst case scenario for FP-tree T1.

Figure 3. FP-tree T1 showing worst case scenario

Time, ti =Time required for comparing items of ith

 itemset of T2 and moving forward and downward +

 Time for adding all the remaining items of ith

 itemset of T2.

Assuming, qi>l

 Root

 . . . Level-1

 . . . Level-2

1 2 m

1 2 m-1

1 2 m-2

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.5, August 2010

31

cai

l

j

cmi tlqtjmt *)(]*)[(
0

In the worst case maximum items (level) of FP – tree would

be equal to m-1, containing m-1 items in a branch.

i.e l = m-1.

 cai

m

j

cmi tmqtjmt *))1((]*)[(
1

0

 ca

m

j

cmi tmmtjmt *))1((]*)[(
1

0

,

as qi=m, in the worst case

 cacmcmi tttmt]*1.....*[

 = (1+2+…………..m) tcm + tca

 i.e cacmi tt
mm

t
2

)1(

There fore, the running time for entire merge process, (in

the worst case) is:

n

i

cacm tt
mm

t
1

*
2

)1(

BIT algorithm gets transactions from the FP – tree T2 unlike of

CanTree which reads from database. In FP-Tree, multiple

occurrences of each itemset are represented with a single branch,

containing also the frequency of occurrence. Hence, in BIT

algorithm multiple occurrences of an itemset are read and

processed for merging only once. Therefore the value of „n‟ is

always much less than that of CanTree and hence the value of „t‟.

Further, as the database size increases the number of itemsets with

high frequency also increases. Hence, BIT algorithm always takes

much less time than the CanTree.

As the CanTree takes less time for FP-tree construction compared

to AFPIM and CATS tree algorithms, we considered CanTree as

the representative of sequential incremental FP-tree algorithms.

We have implemented both CanTree and BIT algorithms and

made comparative study of performance of the algorithms in terms

of the execution time for tree construction. For CanTree, tree

construction time is measured as the time required to read the

transactions from incremental database and insert the items into

the FP-tree constructed for original database. For BIT, tree

construction time is measured as the time required for reading the

itemset from the existing FP-tree of incremental database and

inserting the itemsets into the FP-tree of original database.

0

20

40

60

80

100

120

140

10 30 50 70 90

Database Size (in million transactions)

R
u
n
ti
m

e

(

in
 s

e
c
o
n
d
s
)

CanTree

BIT

(a)

0

10

20

30

40

50

60

70

80

20 40 60 80

% of Incremental DataBase size

(in million transactions)

R
u
n
ti
m

e
 (

 i
n
 s

e
c
o
n
d
s
)

CanTree

BIT

(b)

Figure 4. Runtime: BIT Vs. CanTree

We tested the algorithm for their performance on duel processor

machines with 2.8 GHz speed. We made multiple runs of the

algorithms on synthetic databases of various sizes, ranging from

10 million transactions to 100 million transactions. Average

itemset size of the transactions was 15 in the domain of 500 items.

We tested the algorithms by measuring runtime against (i) varying

size of databases keeping the original and incremental database

size in fixed proportions (60: 40) and (ii) varying the proportion

of original and incremental database keeping the total database

size fixed. The results of the experiments are shown in the form of

the graphs below in Figure 4 (a) & Figure 4 (b).

As can be observed from the graphs below, BIT algorithm takes

much less time (almost half of the time required for CanTree) for

the construction of FP-tree. As the size of the database increases

(Figure 4 (a)), the runtime of BIT algorithm decreases. Further,

the time difference between CanTree and BIT algorithm also

increases as the database size increases. This is because, as the

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.5, August 2010

32

database size increases the frequency of occurrence of items also

increases and hence CanTree requires more time to read

transactions from incremental database. Whereas, in BIT

algorithm as it reads itemsets from FP-tree and FP-tree contains

only one representation for multiple occurrences of the itemsets, it

reads only once.

In Figure 4(a), the runtime decreases as the percentage of the

incremental database decreases (keeping the size of the original

database fixed) for both CanTree and BIT. Here again, it can be

observed that the difference in runtime of CanTree and BIT is

more when the size of incremental database is more (i.e.,

percentage of incremental database) and it reduces as size reduces.

As can be seen from the graph above in Figure 4, runtime of BIT

algorithm reduces to nearly half of the runtime of sequential

algorithms for large size databases.

5. CONCLUSION

BIT algorithm takes much less time to construct FP-tree by using

previously generated FP-tree of incremental database. This is

possible because BIT reads the incremental transactions from the

FP-tree rather than database, where multiple occurrences of a

transaction of the database are represented only once. As can be

seen from the graph above in Figure 4, CanTree does more work

to search for matching prefix as the database size increases. On

the contrary BIT algorithm does less work as the database size

increases. Because, as the database size increases the probability

of recurrence of itemsets also increases and hence the difference

in runtime between BIT algorithm and sequential incremental

algorithms increases, i.e. BIT takes less time for tree construction.

6. REFERENCES
[1] Paul S. Bradley, J. E. Gehrke, Raghu Ramakrishnan and

Ramakrishnan Srikant. “Philosophies and Advances in

Scaling Mining Algorithms to Large Databases”.

Communications of the ACM, August 2002

[2] R.J. Bayardo , “Efficient mining of long patterns from

databases”. In Proc. SIGMOD 1998, pp. 85-93.

[3] Agrawal R., Imielinski, T., and Swami, A. 1993. “Mining

association rules between sets of items in large databases”. In

Proc. of ACM-SIGMOD, 1993 (SIGMOD‟93), pp. 207–216.

[4] Agrawal R, Srikant R. “Fast Algorithms for Mining

Association Rules”. In Proc. of VLDB, Sep 2- 15 1994,

pp. 487-99.

[5] D W Cheung, J. Han, V.T. Ng, and C.Y.

Wong,”Maintenance of discovered association rules in large

databases: an incremental updating technique”. In Proc. of

ICDE 1996, pp. 106–114.

[6] F. Bonchi and C. Lucchese, “ On closed constrained frequent

pattern mining”. In Proc ICDM 2004,pp. 35-42.

[7] Lee, C-H., Lin, C-R., & Chen, M.S., “Sliding window

filtering: an efficient method for incremental mining on a

time-variant database”. In ELSEVIER-Information

Systems,30(3), 2005, pp. 227-244.

[8] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent

Patterns without Candidate Generation: A Frequent-Pattern

Tree Approach”. Data Mining and Knowledge Discovery,

8(1), 2004, pp.53-87.

[9] Koh, J-L., & Shieh, S-F. “An Efficient Approach for

Maintaining Association Rules Based on Adjusting FP-tree

Structures”. Proceedings of the 2004 Database Systems for

Advanced Applications, 2004, pp. 417-424.

[10] Cheung, W, & Zaïane, O. R.. “Incremental Mining of

Frequent-patterns without Candidate Gneration or Support

Constraint”. Proceedings of the 2003 International Database

Engineering and Applications Symposium, 2003, pp. 111-

116.

[11] Leung, C. K-S., Khan, Q. I., Li Z., & Hoque, T. “CanTree: A

Tree Structure for Efficient Incremental Mining of Frequent

Patterns”. Proceedings of the Fifth IEEE International

Conference on Data Mining (ICDM‟05), 2005.

[12] D. W. cheung , S.D. Lee, and B. kao, ”A general incremental

technique for maintaining discovered association rules”. In

Proc. DASFAA 1997, pp. 185-194.

[13] J. Han, J. Pei, and Y. Yin , “Mining Frequent Patterns

without Candidate Generation”. In Proc. of SIGMOD

2000,pp.1-12

