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ABSTRACT 

To maintain optimum performance throughout the service life of 

an engine and to exercise a tight control over emissions, misfire 

detection is a vital activity. The engine block vibration contains 

valuable hidden information regarding the operating condition of 

the engine. Misfire can be detected by processing the vibration 

signals acquired from the engine using an accelerometer. The 

hidden information in the acquired signal can be analysed using 

various features extracted from the signals. A comparative 

performance analysis on classification accuracy of SVM when 

using statistical and histogram features for misfire detection in a 

spark ignition engine is presented. 
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1. INTRODUCTION 
Misfire in spark ignition IC engine is a major factor leading to 

undetected emissions and performance reduction. According to 

the California Air Resources Board (CARB) regulations [1] 

engine misfire means, “lack of combustion in the cylinder due to 

absence of spark, poor fuel metering, poor compression, or any 

other cause”. Maintenance and condition monitoring of an IC 

engine is a very crucial activity required to ensure optimum 

performance and minimum load on the environment, by restricting 

emissions to bare minimum levels. 

Extensive studies have been done using measurement of 

instantaneous crank angle speed [4]-[8] and diverse techniques 

have been developed to predict misfire. These methods call for a 

high resolution crank angle encoder and associated infrastructure 

capable of identifying minor changes in angular velocity due to 

misfire. The application of these techniques becomes more 

challenging due to continuously varying operating conditions 

involving random variation in acceleration coupled with the effect 

of flywheel, which tries to smoothen out minor variations in 

angular velocity at higher speeds. Fluctuating load torque applied 

to the crankshaft through the drive train poses additional hurdles 

in decoding the misfire signals.  

Chang and Kim [9] have reported their work using a 

combination of engine block vibration and wavelet transform to 

detect engine misfire and knock in a spark ignition engine. The 

use of engine block vibration is appreciable because it requires 

minimum instrumentation but the use of wavelet transforms 

increases the computational requirements. 

The present study proposes the use of a non-intrusive engine 

block vibration measurement using a piezoelectric accelerometer 

for extracting signals to be used for statistical and histogram 

feature extraction. The accelerometer is connected to a computer 

through a data acquisition system. The acquired analog vibration 

signals are converted to digital signals using an analog to digital 

converter and the discrete data files are stored in the computer for 

further processing. Feature extraction and feature selection 

techniques are employed and their classification results obtained 

is presented in the ensuing discussion. 

The text should be in two 8.45 cm (3.33") columns with a .83 cm 

(.33") gutter. 

2. Experimental setup 
Referring to Fig.1, the misfire simulator consists of two 

subsystems namely, IC engine test rig and data acquisition system. 

They are discussed in the following subsections 

2.1  IC Engine test rig 
The experimental setup of the engine misfire simulator consists of  

Fig.1 Flowchart of fault diagnosis system. 

a four stroke vertical four cylinder gasoline engine with a rated 

power of 10 hp and connected to a electrical generator. Switching 

off the high voltage electrical supply to individual spark plugs or 

to a combination of spark plugs simulates the misfire. The engine 

accelerator is manually controlled using a screw and nut 
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mechanism that can be locked in any desired position. The engine 

speed is monitored using an optical interference tachometer.  

2.2  Data acquisition system 
Accelerometers have a wide operating range enabling them to 

detect very small and large vibrations. The vibration sensed is a 

reflection of the internal engine condition. The voltage output of 

the accelerometers is directly proportional to the vibration. A 

piezoelectric accelerometer and its accessories form the core 

equipment for vibration measurement and recording.  

Fig.2 Schematic of experimental setup 

 

As represented in Fig 2 the accelerometer is directly mounted on 

the center of the engine block using adhesive mounting. The 

output of the accelerometer is connected to the signal-

conditioning unit, a FFT analyzer that converts the signal from 

Analogue to Digital (ADC). The digitized vibration signal (in time 

domain) is given as input to the computer through the USB port. 

The data is stored in the secondary memory of the computer using 

the accompanying software for data processing and feature 

extraction. 

3. Experimental procedure 
The engine is started by electrical cranking at no load and warmed 

up for 15 minutes. The FFT analyzer is switched on, the 

accelerometer is initialized and the data is recorded after the 

engine speed gets stabilized. A sampling frequency of 24 kHz and 

sample length of 8192 is maintained for all conditions. The 

highest frequency was found to be 10 kHz and since Nyquist 

sampling theorem says that the sampling frequency must be at 

least twice that of the highest measured frequency or higher. 

Hence the sampling frequency was chosen to be 24kHz.  

 

Extensive trials were taken at 1500 rpm and discrete vibration 

signals were stored in the files. Five cases were considered - 

normal running (without any fault), engine with any one-cylinder 

misfire individually (i.e. first, second, third or fourth). All the 

misfire events were simulated at 1500 rpm, the rated speed of the 

engine electrical generator set. Time domain plots of the 

representative signals at 1500 rpm are shown in Fig.3a and Fig.3b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig.3a Amplitude plot - cylinder 1 misfire 

 

 

 

 
 

 

 

 

 

Fig.3b Amplitude plot – No misfire 

4. Feature extraction  
Referring to Fig.1, after data acquisition, the next step is feature 

extraction. The process of computing relevant parameters of the 

signals that reveal the information contained in the signal is called 

feature extraction. The two different sets of features are extracted 

namely statistical features and histogram features. 

Statistical analysis of vibration signals yields different 

parameters. The parameters taken for this study are mean, 

standard error, median, standard deviation, sample variance, 

kurtosis, skewness, range, minimum, maximum and sum. 

Histogram can be drawn for each signal. It has different values for 

different classes. The total range of amplitude of vibration is 

divided in to 20 sub ranges namely‟f1‟,‟f2‟,….‟f20‟. Histogram is 

plotted with these sub ranges as bin. The height of the histogram 

which is a count of number of data points falling within a sub 

range, becomes the value of the features „f1‟, „f2‟, etc., These 

features are defined as histogram features and can be used to 

detect misfire.  

These features were extracted from the vibration signals. 

All these features may not be required to capture the information 

required for classification. The relevant ones can be selected by 

several means. This work focuses on the use of SVM for feature 

reduction and feature classification. 

5. Support Vector Machines (SVM) 
SVM belongs to the class of supervised learning algorithms in 

which the learning machine is given a set of features (or inputs) 

with the associated labels (or output values). Each of these 

features can be looked upon as a dimension of a hyper plane.  
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SVM‟s construct a hyper plane that separates the hyperspace into 

two classes, this can be extended to multi class problems . While 

doing so, the SVM algorithm tries to achieve maximum separation 

between the classes (See Fig.4). Separating the classes with a 

large margin minimizes the expected generalization error.  By 

„minimum generalization error‟, it is meant that when a new set of 

features (that is data points with unknown class values) arrive for 

classification, the chance of making an error in the prediction (of 

the class to which it belongs) based on the learned classifier 

(hyper plane) should be minimum.  Intuitively, such a classifier is 

one, which achieves maximum separation-margin between the 

classes.  The above process of maximizing separation leads to two 

hyper planes parallel to the separating plane, on either side of it. 

These two can have one or more points on them. The planes are 

known as ‘bounding planes’ and the distance between them is 

called as ‘margin’. By SVM „learning‟, we mean, finding a hyper 

plane, which maximizes the margin and minimizes the 

misclassification error. The points lying beyond the bounding 

planes are called support vectors. The data points P1, P2, P3, P4, 

and P5 belonging to A- are support vectors (See Fig.4), but P6, 

P7 are not. Same facts hold good for class A+. These points play a 

crucial role in the theory and hence the name ‘Support Vector 

Machines’. Here, by „machine‟, we mean an algorithm.  

In the formulation, „A‟ is an m by n matrix whose 

elements belong to real space, „D‟ is an m by 1 matrix 

representing class label (+1 and –1); „e‟ is a vector of ones and „‟ 

is a control parameter that defines the weight of error 

minimization and bounding plane separation in the objective 

function. „w‟ is orientation parameter and „‟ is location parameter 

(location relative to origin) of separating hyper plane. With these 

notations, 
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If the training features are separated without errors by an optimal 

hyper-plane, the expected error rate on a test sample is bounded 

by the ratio of the expectation of the support vectors to the 

number of training vectors. The smaller the size of the support 

vector set, more general the above result. Further, the 

generalization is independent of the dimension of the problem. In 

case such a hyper-plane is not possible, the next best is to 

minimize the number of misclassifications whilst maximizing the 

margin with respect to the correctly classified features. 

 

 

 

 

 

 

Fig. 4. Standard SVM classifier 

6. Results and discussion 
The study of misfire classification using SVM is discussed in the 

following phases 

1. Dimensionality reduction (Feature selection) 

2. Evaluation of the classifier 

From the experimental setup through data acquisition 200 signals 

have been acquired for each condition. The conditions are 

mentioned in section 3. Out of these 200 signals, 100 signals were 

kept aside for testing purpose and the remaining 100 signals were 

used for building the classifier. 

6.1 Dimensionality reduction 
Dimensionality reduction is the process of reducing the number of 

input features that are required for classification, done with the 

main intention of reducing the computational effort. From the 

signals obtained at 1500 rpm, 20 histogram features and 11 

statistical features were extracted. All these features were given as 

input to the SVM algorithm and the corresponding relative 

importance of variable for classification is evaluated 

independently for both statistical and histogram features. The 

results are presented as a bar chart in Fig.5 and Fig 6.  The bar 

chart gives an estimate of the worth of a feature representing them 

in the order of relative weightage. The feature with high relative 

weightage contains maximum information about the signal and 

the remaining features in the chart contain information 

proportional to their relative weightage. The missing features do 

not have significant information for classification; however they 

are considered randomly to complete the list in the study of the 

effect of dimension to the classification accuracy. 

Seven histogram features namely f5, f3, f13, f9, f10, f18 and f8 

are identified as prominent features based on their relative 

weightage and were used for further processing. Similarly eight 

statistical features namely skewness, standard error, standard 

deviation, standard variance, maximum, kurtosis, median and 

range were used for further processing. Including all the features 

may improve the classification accuracy marginally; however 

there is a risk of over fitting the data. After dimensionality 
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reduction the reduced data set is used for training and evaluating 

the network. 

Fig 5 Relative importance of variable for classification using 

histogram feature 

Fig 6 Relative importance of variable for classification using 

statistical feature 

6.2 Evaluation of classifier 
Evaluation of the classifier is performed using the 100 data points, 

which were kept aside for testing. The classifier performance in 

detecting engine misfire using statistical features and histogram 

feature were evaluated separately and the results are presented 

below in the form of confusion matrices. 

The misclassification details obtained using statistical features are 

presented in the form of a confusion matrix in Table 1a and Table 

1b. C1m represents misfire in cylinder 1, c2m, c3m, c4m 

represents misfire in cylinder 2, 3, and 4 respectively. Good 

represents no misfire in any cylinder. The diagonal elements 

shown in the confusion matrix represents the correctly classified 

points and non-diagonal elements are misclassified ones. 

Referring to Table 1, it is evident that the misclassification among 

the faulty conditions and „good‟ condition is nil. However there 

are minor misclassifications among the faulty conditions. In a 

condition monitoring activity fault identification forms the major 

objective and fault classification comes second in priority. In this 

context, the present algorithm (SVM) performs fault identification 

(differentiating between good and faulty conditions) sufficiently 

well (100%). A similar observation can be made for Table 2. 

 

Table 1 Confusion matrix for statistical features – Testing phase 

 

Table 2 Confusion matrix for histogram features - Testing phase 

Observing the results presented in Table 3, it is evident that the 

overall performance of SVM for misfire detection is very 

encouraging. Comparing the performance of the SVM classifier 

with two different set of features namely statistical features and 

histogram features, it is observed that histogram features deliver 

better results than statistical features. It may be concluded that a 

combination of histogram features and SVM perform appreciably 

well for misfire detection. 

A lower margin between the classification accuracies obtained 

during the training and testing phase implies that data over fitting 

error is reduced to a minimum and the classifier performs 

appreciably well when exposed to unseen data in both the cases. 

Table 3 Comparison of classifier performance 

7. Conclusion 
A rapid growth in the use of automobiles the world over and the 

associated environmental impact has induced lot of thrust on 

misfire detection in IC engines and hence taken up for study. The 

search for an effective classifier to do this resulted in the use of 

SVM algorithm. In any fault classification study using pattern 

recognition techniques, feature selection and feature classification 

has to be carried out after extracting the relevant features from the 

vibration signals. SVM algorithm has the distinction of 

performing these two activities simultaneously with reasonably 

less computational effort. The results presented in section 6 

illustrate these capabilities. 

The classification accuracy on unseen data when using histogram 

features is found to be around 98.4%. From the results presented 

it is encouraging to conclude that the combination of histogram 

features and SVM algorithm is well suited for detection of misfire 

in IC engines.  
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