
International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

1

An Approach to Optimize the Cost of Software Quality
Assurance Analysis

Manju Lata Rajendra Kumar
 Dept. of Computer Science & Engg. Dept. of Computer Science & Engg.
 IIMT, Engineering, College, Meerut Vidya College of Engineering, Meerut

ABSTRACT
In this paper we present an approach to optimize the cost of software

quality assurance. It points out, how to optimize the investment into

various software quality assurance techniques and software quality.

The expected and reliable development of high quality software

regularly becomes a major problem due to late removal of defect. The

detection and removal of defect is a software inspection providing

technical support for the defect detection activity, and large volume

of documentation are related to software inspection in the

development of the software quality assurance as a cost effective.

The value of an inspection improves the quality and saves defect cost.

We describe the optimization model for selecting the best

commercial off-the-self (COTS) software product among alternatives

for each module. As objective function of the models is to maximize

quality within a budgetary constraint and standard quality assurance

(QA) methodologies cuts maintenance costs. Increase reliability, and

reduces cycle time for new distribution modeling system. An

analytical and stochastic model of the economics of analytical

software quality assurance (SQA) is based on expected values. The

model is able to handle different type of techniques such as static and

dynamic. The model can be used to analysis different type of

techniques theoretically, and to optimize the software quality

assurance.

Keywords: Defect detection; modeling system; software

acquisitation; analytical SQA; quality Assurance.

1. Introduction

As an approach to optimize the cost, software quality can be boiled

down to cost and benefit in the economical sense because usually

software use for some business reason. Business value for the vendor

as well as for the customer depends on the quality. Software quality

assurance (SQA) is an important factor in the development of the

software quality, and followed throughout the software acquisition

life cycle. Software development and control processes should

include quality assurance. Inspection and testing are used for defect

detection and removal. Software design inspection saves on average

44% of the testing cost and code inspection save on average 39% of

the cost [7]. Quality cost analysis shows the companies send between

50% to 80% of their development effort on testing [6], and the cost of

analytical SQA is significant. Many estimates say that analytical

SQA constitutes about 50% of the total development costs.

Cost and benefits of various software quality assurance techniques

allows for economically decision-making. The software quality

measures how well software is designed. As the cost of SQA, we

need to optimize the development process with the aim to reduce

costs and increase benefits. There are two approaches: (1) Develop

existing techniques, and (2) the existing techniques use in a cost

optimal way. In the development process, this approach identify

defect–prone component based on detailed UML models, and

contains several case-studies that ratify the proposed approach.

2. Related Work
Steve McConnell’s code [16] divides software into two parts: internal

and external quality characteristic. External are those parts of the

product that face its users, while internal are those that do not. Tom

De Marco [17] says “a product’s quality is a function of how much it

changes the world for the better” that means user satisfaction is more

important than anything in determining software quality [15] as in

[18]. Software quality assurance is defined by the theoretical model

of the effectiveness and efficiency of either test techniques or

inspections, and by the economics-oriented, abstract models for

quality assurance, approaches to identify defect-prone components,

and small number of components of a system contains most of the

defects [12]. Detailed design models offer the possibility to analysis

the system early in the development life-cycle. Humphrey [11]

presents an understanding of software quality economics. The

defined cost metrics do not represent monetary values but only

fractions of the total development time.

2.1 Defect Introduction and removal

An analytical quality assurance typically accounts for about 50% cost

during development. In this approach describes analytical model of

the effectiveness and efficiency of defect introduction and removal.

The most detailed and comprehensive model of defect introduction

and removal was developed by Chulani and Boehm [2, 3]. This is a

part of COQUALMO. COQUALMO is an extension of COCOMO.

According to Boehm [1], different phase and defect classes are

introduced such as requirements, design, code, and documentation

are introduced in the defect introduction and removal model.

Requirement can also be applied specifically to the analysis proper,

as opposed to elicitation or documentation of requirements.

Software designing phase usually involves the use of more abstract

and general means of specifying the parts of software, and break the

large code into small code as given in figure 1.

 Fig. 1. Illustration of design synthesis

 Requirement

Analysis

System Analysis

and control

(Balance)

Design Synthesis

Requirements

 Loop

Verification

Design

Loop

Functional

Analysis and

Allocation

 Process

 Input

Process

Output

http://en.wikipedia.org/wiki/File:SE_Process.jpg
http://en.wikipedia.org/wiki/File:SE_Process.jpg

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

2

2.2 Cost-Benefit of SQA
Mandeville [9] describes software quality costs as an adoption of the

PAF model. Quality costs are the costs associated with preventing,

finding, and correcting defective work. PAF (Prevention, Appraisal,

Failure) model define the first step of the quality cost and software

quality cost. Many software quality cost model are also based on the

PAF model but do not refine the cost factors [13, 14]. Furthermore, it

includes technical factors of the quality assurance process, and

general methodology for cost collection. Figure 2 represents the

categorization of cost of quality.

 Fig. 2. Categorization of cost of quality

Prevention cost is the cost of activities that are specifically designed

to poor quality. Examples of poor quality includes coding errors,

design errors. Prevention cost eliminate from the software quality

cost. AF (Appraisal, Failure) model essentially reduced the PAF

model. Appraisal cost defines by the setup and execution costs. Fault

removal cost means found the fault and remove it. It can be

attributing to the internal failure costs and external failure costs.

External failure also cause effect-cost associated with the failure

apart from the removal costs.

Total cost of quality

The sum of the costs is defined as

Prevention + Appraisal + Internal failure + External failure.

As define in [4] Software inspection ensures the software quality by

finding the defect in development process. Cost and benefit is a factor

in planning software quality assurance and formal techniques include

cost-effectiveness analysis, impact analysis, fiscal impact analysis

and social return on investment (SROI) analysis. In the software

inspection process, first review software artifacts individually and

then team finding many defect using two techniques: Check-list

Based Reading (CBR) and Perspective-Based Reading (PBR). In [5]

cost-benefit model use for inspection and re-inspection, and justify

the cost and benefit assumption.

3. Cost Estimation Model

Software cost estimation model developed by Barry Boehm. As

define in [1], the Constructive cost model (COCOMO) was first

published in 1981, used for estimating effort, cost, and schedule for

software project. It is based on waterfall model. This model is

typically calling COCOMO 81. In 1997 COCOMO II was developed

and finally published in 2000. COCOMO consists of three

increasingly detailed and accurate forms.

Basic COCOMO: It is a first level, basic COCOMO is use for

quick estimate of software cost, and program size is expressed in

estimated thousand of lines of code (KLOC). COCOMO uses three

classes of software project-

1. Organic projects: small teams with good experience

working with less than rigid requirements.

2. Semi-detached projects: medium teams with mixed

experience working with a mix of rigid and less than rigid

requirements.

3. Embedded project: developed within a set of tight

constraints (hardware, software, operational).

Basic COCOMO equation takes the form.

Effort Applied = ab (KLOC) bb [man-month]

Development Time = cb (Effort Applied) db [months]

People required = Effort Applied / Development Time [count]

The coefficients ab, bb, cb and db are given in this table 1.

Table 1. Coefficient Table

Software project ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for quick estimate of software costs.

Intermediate COCOMO: It is a second level, intermediate

COCOMO takes these Cost Drivers into account. Cost Derivers

include subjective assessment of product, hardware, personnel,

project attributes. Each of the 15 attributes of four Cost Derivers

receives a rating on a six-point scale that ranges from very low to

extra high (in importance or value). An effort multiplier from the

table blow applies to the rating. The product of all effort multipliers

results in an effort adjustment factor (EAF). Typical values for EAF

range from 0.9 to 1.4 in table 2.

Table 2. EAF table

Cost Derivers

 Ratings

Very

Low

Low Nominal High Very

 High

 Extra

 High

Product attributes

Required software

reliability
0.75 0.88 1.00 1.15 1.40 --

Size of application

database
-- 0.94 1.00 1.08 1.16 --

Complexity of the

product
0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes

Run-time

performance

constraints

-- -- 1.00 1.11 1.30 1.66

Memory constraints -- -- 1.00 1.06 1.21 1.56

Volatility of the

virtual machine

environment

-- 0.87 1.00 1.15 1.30 --

Required turn

about time
-- 0.87 1.00 1.07 1.15 --

Cost of quality

Conform

ance
 Non-conference

 Internal
Failure

 Appraisal cost External

Failure

 Executions Setup Effect Fault remover

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

3

Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71 --

Application

experiences
1.29 1.13 1.00 0.91 0.82 --

Software engineer

capability
1.42 1.17 1.00 0.86 0.70 --

Virtual machine

experience
1.21 1.10 1.00 0.90 -- --

Prog. language

experience
1.14 1.07 1.00 0.95 -- --

Project attributes

Application of s/w

Engg. methods
1.24 1.10 1.00 0.91 0.82 --

Use of s/w tools 1.24 1.10 1.00 0.91 0.83 --

Required

development

schedule

1.23 1.08 1.00 1.04 1.10 --

The Intermediate COCOMO formula now takes the form:

 E = ai (KLOC) bi .EAF

Where E is the effort applied in person-month, KLOC is the

estimated number of thousands of delivered lines of code for the

project, and EAF is the factor calculated above. The coefficient ai and

the exponent bi are given in the table 3.

Table 3. The coefficient and exponent table

Software Project ai bi

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20
Third level is Detailed COCOMO follow the each step of analysis,

design, etc. with all characteristics of the intermediate cost driver’s

impact. Boehm et al. present in [10] the iDAVE model that is based

on COCOMO II and COQUALMO. This model allows a through

analysis of the return on investment (ROI) of dependability.

4. Our Analytical Model for Cost Defect-Detection

The model is divided into three components, all components depends

on the spent effort (say t) as a global parameter.

1. Direct costs d(t)

2. Future costs f(t)

3. Revenues or saved costs r(t)

Direct costs: The direct costs are those costs that can be directly

measured from the application of a defect-detection technique. They

are dependent on the length t of the direct costs for an application of

technique A.

Fig. 3. The components of the direct costs

It contains two main cost blocks- setup costs and execution costs. It is

dependent on the spent effort for A denoted by tA. From the execution

costs we can derive the difficulty of detecting the faults in the

software which represents the probability that the fault is not

detected. However, if a fault is detected it incurs costs for its

removal. The expected value of the direct costs E [dA (tA)]:

 E [dA(tA)] = uA + eA (tA) +

i

(1 - A(i , tA)) vA (i)

Where uA are the setup costs, eA(tA) the execution costs, and vA (i) the

fault removal costs specific to that technique.

Future costs: The future costs denoted by E [ƒA (tA)]. It is divided

into two parts - fault removal costs vF (i) and failure effect costs cF (i).

E [ƒA (tA)] =

i

i A (i , tA) (vF (i) + cF (i))

where i = P (fault i is activated by randomly selected input and is

detected and fixed) [8]. Hence, it describes the probability.

Revenues: It is considering not only the costs of the defect detection

technique but also their revenues. They are essentially saved future

costs. We denote the revenues with E [rA (tA)]

E [rA (tA)] =

i

FFAAi icivti))()())(,(1(

5. Working of the Model

Based on the three components of the model, we are able to calculate

several different economical metric of the quality assurance process.

There are metrics total cost, profit, and return on investment. All

these metrics can be used for two purposes: (1) an up-front evolution

of the quality assurance plan as the expected total cost, profit, or

return on investment, and (2) a single post-evolution of the quality

assurance of the project.

Total Cost: The total cost describes the sum of all economic costs for

producing products. It is one possible metric that can be optimized.

Total cost can be calculated by adding the direct costs and the future

costs. The expected value of the direct costs dx and future costs fx of

the sequence of defect-detection technique applications X.

Total cost = dx + fx

Profit: We describe the gain provided by the quality assurance with

the term profit. Hence, it is the revenues less the total cost. It is

defined using the three components as: direct costs, future costs,

revenues. The expected value of the revenues rx of the sequence of

defect-detection technique applications X.

Profit = rx – dx – fx

ROI: Another metric used in economic analyses is the return on

investment (ROI) of the defect-detection techniques. The ROI- also

called rate of return - is commonly defined as the gain divided by the

used capital. We use Boehm et al. [10] equation for (Benefits - Costs)

/ Costs, to calculate the total return on investment (ROI).

ROI = rx – dx – fx / dx + fx

5. CONCLUSION

In conclusion an overview on the debate concerning quality and cost

ascertaining in general we will be given. There are the numbers of

techniques to verify the cost effectiveness of quality assurance. Cost

optimal use analytical quality assurance but we do not distribute the

effort between different techniques but we analysis how the effort is

best distributed over the components of the system. This is done by

Removal

costs

 Software

 with Faults

Technique

application

 Difficulty A (i,tA)

Fault i detected

Setup

costs

Execution

costs

• • • •

• • • • •

• • • •

• •

Effort tA

International Journal of Computer Applications (0975 – 8887)

Volume 5– No.8, August 2010

4

identifying the most fault- and failure-prone components based on a

metrics suite and detailed design models. The approaches that exist

for models either have slightly different aims, analysis dependability

attributes or readability, or concentrate on the static structure,

analysis the fault-proneness. During the development and quality

assurance, we use estimating quality models that assess the current

state of the product and process. All the discussion so far viewed the

system of which the quality is assure as the whole, however, there are

the possibility to optimize cost of quality assurance on the

architectural level. In particular, defect-detection techniques can be

concentrated on components that are most defect-prone.

REFERENCES

[1] Barry Boehm. “Software engineering economics”, Englewood,

Cliffs, NJ: Prentice- Hall, 1998.

[2] Sunita Chulani and Barry Boehm, “Modeling Software Defect

Introduction and Removal: COQUALMO (COnstructive

QUALity MOdel)”, Technical Report USC-CSE-99-510,

University of Southern California,

enterforSoftwareEngineering,1999.

[3] Sunita Devnani Chulani, “Bayesian Analysis of Software Cost

and Quality Models”, PhD Dissertation, University of

Southern California, 1999.

[4] Maria Victoria Cengarle, “Inspection and Testing – Towards

combining both approaches”, Technical Report 024.02/E,

Fraunhofer IESE, 2002.

[5] Stefan Bill, Bernd Freimut, Oliver Lait emberger. “Investigating

the cost- effectiveness of reinspections in software

development”, Proceedings of the 23rd International

Conference of software Engineering, P. 155-164, May 12-19,

2001.

[6] J.S. Collofello, S.N. Woodfield, “Evaluating the Effectiveness of

Reliability-Assurance techniques”, Journal of systems and

software 9 (3) (1989) 191-195.

[7] L. Briand, K. EI Emam, O. Laitenberger, “Using Simulation to

Build Inspection Efficiency Benehmarks for development

projects”, T. Fussbroich, Proceedings of The 20th

International Conference on Software Engineering, Kyoto,

Japan, (1998) 340-349.

[8] Bev Littlewood, Peter T. Popov, Lorenzo Strigini, and Nick

Shryane, “Modeling the Effects of Combining Diverse

Software Fault Detection Techniques”, IEEE Transactions on

Software Engineering, 26(12): 1157-1967, 2000.

[9] William A. Mandeville, “Software costs of quality”, IEEE

Journal on Selected Areas in Communications, 8(2): 315-318,

1990.

[10] Barry Boehm, LiGuo Huang, Apurva Jain, and Ray Madachy,

“The ROI of software Dependability: The iDAVE model”,

IEEE software, 219(3): 54-61, 2004.

[11] Watts S. Humphrey, “A Discipline for Software Engineering”,

The SEI Series in Software Engineering, Addison-Wesley,

1995.

[12] Barry Boehm and Victor R. Basili, “Software Defect Reduction

Top 10 List. IEEE Computer”, 34(1): 135-137, 2001.

[13] Daniel Galin, “Towards an inclusive model for the cost of

software quality”, Software quality Professional, 6(4): 25-31,

2004.

[14] Stephen T. Knox, “Modeling the costs of software quality”,

Digital Technical Journal, 5(4): 9-16, 1993.

[15] Crosby, P., “Quality is Free”, McGraw-Hill, 1979.

[16] McConnell, “Code Complete: A Practical Handbook of

Software Construction”, Microsoft Press, 1993

[17] DeMarco, T., “Management can make quality impossible”,

Cutter IT Summit, Boston, April 1999.

18] Pressman, “Software Engineering”, McGraw Hill, 2005.

