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ABSTRACT 

Abstract— The control of nonlinear chaotic system and the 

estimation of parameters is a vital issue in nonlinear science. 

Studies on parameter estimation for chaotic systems have been 

investigated recently. A variant of Particle Swarm Optimization 

(PSO) known as Chaotic Multi Swarm Particle Swarm 

Optimization (CMS-PSO)  is proposed which is inspired from 

the metaphor of ecological co-habitation of species. The  generic 

PSO is modified with the chaotic sequences for multi-dimension 

parameter estimation and optimization by forming multiple 

cooperating swarms. Results demonstrate the effectiveness of the 

scheme in successfully estimating the unknown parameters of a 

new hyperchaotic finance system. Numerical results and 

comparison demonstrate that for the given parameters of the 

nonlinear system, CMS-PSO can identify the optimized 

parameters effectively to reach the pareto optimal solution and 

convergence speed. 

General Terms 

Swarm intelligence, parameter estimation, chaos theory, Lorenz 

system 

Keywords 
Computational intelligence, particle swarm optimization, 

Finance system, chaos, multi-objective, global optimization. 

1. INTRODUCTION 
The traditional methods of optimization techniques are better 

suited to work on continuous and differential functions in finding 

the unconstrained optimal solution. But many complex real world 

engineering problems involve non linear, multi objective 

dynamical systems which are prone to get caught in areas of local 

optima. These  have to compromise with a non optimal solution 

(Fig 1).  

 

Figure 1: (a) Gradient of continuous function with single optima    

( b ) Multi modal discontinuous functions with several optima 

Meta heuristics are a class of powerful stochastic algorithms 

which have been well proven over the years as an efficient and 

fast problem solver of such magnitude. Computational 

Intelligence (CI) belongs to this class of Meta heuristic search 

technique. Meta heuristic can also be classified based on nature 

inspired population based search technique which include CI and 

a single solution based search technique like Simulated 

Annealing. The world of computing is facing a change in the way 

NP hard problems are solved. This drift in computation 

methodology of non linear dynamic problems in areas of 

engineering, bioinformatics and computing is motivated from the 

demand for efficient solution to problems involving high 

dimension  in relatively faster and computational cheaper way. 

Researchers are gaining inspiration from the way organisms in 

nature solve complex problems by evolution, self learning and 

adaptation. These artifacts based on metaphor of biological 

systems have been modeled to result in systems which handle 

multiple variables with several candidate solutions in the 

presence of high degrees of non linearity. 

Computational Intelligence (CI) is an emerging derivative of 

Artificial Intelligence which has recently gained the much 

deserved attention from varied fields of science, technology and 

management. It is  a well proven meta heuristic optimization 

technique inspired from natural evolution, observation of 

behavior of biological, and neurobiological systems. 

Computational Intelligence spans the following listed stochastic 

techniques 

1. Artificial Immune System [1,2] 

       2.    Artificial Neural Network [3] 

     3.    Fuzzy Logic [4] 

      4.    Evolutionary Computation (EC) / Evolutionary 

Algorithm (EA) [5] 

 Evolutionary Strategies [6,7] 

 Evolutionary Programming [8] 

 Genetic Algorithm [9]  

 Genetic Programming [10] 

 

5.    Swarm Intelligence (SI)  [11]   

 Particle Swarm Optimization(PSO) 

 Ant Colony Optimization(ACO) 

 

The concept of SI is derived from the social interaction of 

organisms with their dynamic environment by a biological 
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process termed as stigmergy. Research is ongoing to harness the 

potential of bio inspired computing as computational tools in the 

solution of hard problems. These intelligent agents cooperate in a 

synchronized manner amongst each other by implicit rules of 

cohesion, separation and alignment focusing to solve a problem 

which is guided by a decision metric known as fitness. This is a 

heuristic measure which is the objective function that is to be 

maximized or minimized depending on the problem domain.  

SI addresses the problem of global optimization(GO) by studying 

the adaptive systems which facilitate intelligent behavior in 

complex and dynamic environments where a number of 

intelligent organisms known as ―Agents‖ are launched to solve 

the optimization problem at hand. Fig 2 shows the methodology 

of problem solving in the search domain of a meta heuristic 

population based algorithm where these intelligent agents are 

traversing the various sub optimas in order to reach the global 

optima as represented in Fig 3. 

 
Figure 2: Multi Agent Optimization in continuous space : 

Randomly Initialized Agents  Performing multi-agent stochastic 

parallel search 

 

 

Figure 3: Multi Agents after converging at a global optima 

The method was originally proposed by J. Kennedy [12] as a 

simulation of social behavior, and initially introduced as an 

optimization option in 1995. A swarm is the cluster of many 

homogeneous individuals which exhibit intelligent behavior by 

self organizing themselves based on the exchange of information 

among the neighboring individuals. This branch of artificial 

intelligence has proved to solve many optimization problem. PSO 

and ACO are two popular categories belonging to the nature 

inspired GO techniques. Fig 4 -6 [13,14,15] captures the amazing 

choreography exhibited by the schools of fish, bees and flocks of 

birds and even micro organisms like bacteria demonstrate such 

an emergent behaviour. Their synchronized non collision 

movement is an outcome of the members of the swarm 

maintaining an optimum distance from their neighboring 

individuals. The idea behind formulation of PSO was the popular 

belief that social sharing of information among the individuals of 

a population, their flexibility and adaptability towards changes in 

their environment , may provide an evolutionary advantage. PSO 

has been proved to be an efficient method for many GO problems 

and in some cases it does not suffer the difficulties encountered 

by other EC techniques [11,16]. 

 

 

Figure 4: Swarming by Shoal of fishes – a requisite for Foraging 

or nesting activity  

 

 

Figure 5: Swarming by Colonies of bees for bee keeping activity 
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Figure 6: Swarming by flock of Birds  

The manuscript applies an effective cooperating multiple swarm 

particle swarm optimization technique injected with chaotic 

sequences obtained from the Lorenz system [17]. A hyperchaotic 

Finance model is investigated with numerical and analytical 

simulations. Rest of the paper  is arranged as follows : Section 2 

presents a background of PSO.  Section 3 discusses the 

motivation and purpose for applying Swarm Intelligence followed 

by the algorithm for our  methodology. In Section 4, a new 

autonomous hyperchaotic finance system is investigated with the  

experimental result. This section shows the application in global 

optimization and demonstrates the effectiveness of our scheme 

from the generic PSO followed by a conclusion. 

 

2. PARTICLE SWARM OPTIMIZATION 
The members of the swarm  known as particles i fly in a d 

dimensional search space during their search for optimal 

solutions by adjusting their positions Xi     = { x i1, x i 2 ,….,x i d} 

and velocities Vi= {v  i 1, v i 2 ,..., v i d }. The equation of motion 

which governs the flight of the particles are given by 

 

Vi (t+1) = ω Vi (t) + c1 r1  (P L i (t) - Xi (t)) +  

                c2 r2  (PG (t) - Xi (t ))   and   (1) 

Xi (t+1) = Xi (t) + Vi (t+1)                           (2)                                                       

Where 

Vi (t) and Xi (t) represent the velocity and position of particle i in 

the solution space at t th generation respectively. P L i (t) = {p i1 , 

p i2 ,…, p id } denotes the previous local position found by i within 

t iterations, also known as the local best position. PG (t) = {pg1, 

pg2,...,pgd} denotes the global best position found among all the 

particles through the objective function. ω represents the inertia 

weight which provides a balance between global and local 

search. c1 and c2 stands for the cognitive (individual) and social 

(group) learning rates, respectively. r1 and r2 denote the 

uniformly distributed random numbers in the range (0,1). The 

parameters c1, c2 denote the relative importance of the memory 

(position) of the particle itself to the memory (position) of the 

swarm. Each particle flies in the search space by tuning their 

local position dictated by eq (1) and eq (2) to reach the goal 

indicated by the knowledge of the global position. A pictorial 

representation is shown in Fig 7.  

 

Fig 7: Particle Swarm Optimization 

 

Their motion is decided by a heuristic metric known as fitness. 

The next section gives an overview of the random numbers used 

in general PSO scheme. 

2.1 Random Number Generator System for 

Particle Swarm Optimization 
Here we describe the system used for random number generation 

for the generic PSO with extremely long periods and low 

correlation which passed through most statistical tests. 

We consider a combined multiple recursive generator [18]. The 

sequence can be expressed as, 

zn = (xn - yn)  mod  m1                                (3) 

where xn and yn are the two underlying generators with the 

formula,  

xn = (a1*xn-1 + a2* xn-2 + a3* xn-3 ) mod m1  (4) 

yn = (b1* yn-1 + b2* yn-2 + b3* yn-3) mod m2    (5) 

with coefficients a1= 0, a2= 63308, a3= -183326, b1= 86098, b2= 

0, b3= -539608, and moduli m1= 2^31 - 1 = 2147483647 and m2= 

2145483479. In our scheme we have used the Lorenz system 

which serves as the random number generator R1= {R1 1, 

R12,..,R1 i} and R2 = {R2 1, R2 2,...,R2 i} for  every particle i in a 
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swarm. Thus the particles are scattered in the search space 

ergodically achieving enhanced population diversification but 

they follow an implicit trajectory which is structurally similar 

due to the orderly fashion of the chaotic sequences. Subsequent 

section elaborates on the usage of the chaotic sequences in our 

scheme 

3. MOTIVATION AND PURPOSE 
It is well established that PSO gets better results in a faster, 

cheaper way compared with other methods of global 

optimizations. Recent developments in such advanced 

computational methods, such as neural network and evolutionary 

computation have opened new doors in computational finance. In 

[19], the authors had effectively applied PSO to select active 

portfolios under a constraint on tracking error volatility. Their 

work considers the task of forming a portfolio of assets that 

outperforms a benchmark index, while imposing a constraint on 

the tracking error volatility. Recently Computational finance has 

deeply benefited from Swarm Intelligence. In 2009 the authors 

[20] used an interesting approach for financial classification by 

tapping the potential advantages of both ACO and PSO. Their 

mechanism assisted in the automated feature selection problem 

providing the decision makers with a scope to explore efficiently 

the solution space. The performance of their model was tested on 

credit risk assessment and audit qualifications financial 

classification problem. The proposed  model was based on hybrid 

EA- PSO which was applied on portfolio optimization and time 

series forecasting. The authors also generalized the non linear 

fractional knapsack problem based on the observation of 

structural similarity present in portfolio optimization and time 

series forecasting problem which they implemented as the 

preliminary test platform for the proposed EA-PSO hybrid 

model. Then the authors in [21] applied PSO in the problem of 

single variate option pricing and compared their experimental 

result with standard classical Black-Scholes model for simple 

European options to prove the effectiveness of their scheme. 

With immense development in the area of nonlinear science, the 

study on the complex properties of a chaotic system is becoming 

more intriguing and many interesting productions in nature and 

engineering field are yielded. In recent years, this research has 

been extended to complicated economy and finance systems. It is 

well known that economy and financial systems are very 

complicated nonlinear systems which are concerned with real life 

entities and decision making containing several complex factors. 

It is the developmental direction of economics to utilize the 

nonlinear dynamics, especially the bifurcation and chaos theory 

to study the internal complexity of economy and finance systems. 

Multi-purpose parameter estimation methods play an 

increasingly important role in financial as well as insurance 

mathematics. Over the last few years various new derivative 

instruments have emerged in financial markets leading to a 

demand for versatile estimation methods for relevant model 

parameters. Typical examples include volatility, covariance and 

correlations. Moreover, questions of estimation concerning such 

extremal events have become vital in financial and insurance 

mathematics, for a recent detailed treatment of extreme value 

theory. Estimation of unknown parameters in a general is a 

diffusion process which  is discussed in many research articles. 

For continuously observed processes, a classical theory of 

maximum likelihood estimation has been developed including 

properties like consistency and asymptotic normality. In the case 

of discrete observations, the maximum likelihood estimator 

retains all the ’good’ properties if the transition densities of the 

process are known in an explicit form. However, in most cases 

relevant for finance, we do not have explicit expressions for the 

underlying transition densities apriori, and the use of 

approximate likelihood functions leads to inconsistent estimators 

when the time between observations is bounded away from zero. 

There are some alternative estimation methods, especially 

martingale estimating functions proposed by Bibby–Sorensen 

[22], leading to consistent and asymptotically normal estimators. 

 

3.1  Problem Statement:- Global 

Optimization and Parameter Estimation of a 

Hyperchaotic Finance System by Chaotic 

Multi-Swarm Particle Swarm Optimization 
The control of nonlinear chaotic system and the estimation of 

parameters is a daunting task till date. Studies on parameter 

estimation for chaotic systems have been investigated recently 

[23,24]. However, a major pitfall of most global optimization 

problem is its tendency to get stuck in a non optimal solution. 

This motivated to develop efficient strategies to overcome this 

problem. In 2005, the authors in [25] developed a dynamic multi-

swarm particle swarm optimizer (PSO) having swarms of small 

size and proved the effectiveness by applying it on a set of 

shifted rotated benchmark function. Recently, in 2010, the 

authors J. Sun et al [26], presented a novel Drift Particle Swarm 

Optimization (DPSO) algorithm, and applied it in estimating the 

unknown parameters of Lorenz and Chen system. Then another 

modified version of PSO was demonstrated by  the authors [27], 

in the form of a   parallel multi-swarm optimization (PMSO) 

algorithm with the aim of enhancing the search ability of  the 

generic single-swarm PSO for global optimization of very large-

scale multimodal functions.  

 

In this manuscript, we adopt the chaotic sequences obtained from 

Lorenz system instead of random sequences, described in eq (3)- 

eq (5), as a powerful mechanism to diversify the population and 

improve the performance of generic PSO in preventing premature 

convergence to local minima. Considering a chaotic n-

dimensional system given by 

 x = f(x 1, x 2,.., x n, ) 

Where  = {  1, 2,…, d }are the system parameters. 

To estimate the parameters we construct an estimated 

system described as 

y = F(y 1, y 2,.., y n,  ) 

where y is the n dimensional state vector and = { 1, 2 .. . 

,  d } is a set of estimated parameters. 

The multi-objective formula J for the chaotic system  is given by 



International Journal of Computer Applications (0975 – 8887)  

Volume 6– No.10, September 2010 

35 

 

J= 
n

1
 

2

1

|||| yx k

n

k
k

    (6) 

Our task is to minimize J by searching suitable parameters which 

estimates . The modified eq (7)-(8) represents the governing 

equations for coordinates of i th particle in the current iteration t 

Vi (t+1) = ω Vi (t) + c1 R1 i (P L i (t) - i (t)) + 

c2 R2 i (PG (t) - i (t))    (7) 

i  (t+1) = i (t)+ Vi (t+1)             (8) 

(a). Multi Swarm PSO (MS-PSO):-   

The task of parameter estimation is converted into a global multi 

optimization problem. In nature, organisms split themselves into 

sub groups and share information about the food location or 

about the predator. But the sub groups have non conflicting 

interest. This is especially observed in the foraging behavior of 

bee keeping (Fig 8) with the collective goal of all swarms being 

to accumulate good quality honey. 

 
 

 

 Figure 8: From Multi Swarm Foraging Technique to Multi 

Swarm PSO (MS-PSO) 

 

CMS-PSO estimates more than a parameter simultaneously 

inspired from ecological behavior. In nature, various individuals 

of species co-exist and social sharing of information among the 

individuals of a population, may provide an evolutionary 

advantage. The task of global optimization of a d multi 

dimensional system is subdivided by d number of swarms for 

every parameter appearing in an n dimension state vector. Thus 

we have at our disposal a novel Chaotic Multi Swarm Particle 

Swarm Optimization (CMS-PSO) which spawns d multiple 

clusters of swarm S. Each swarm Sp, present in a fitness function 

Jp, handles p  (p ε d), parameter and communicates values of 

every member in its swarm to the other swarm which represents 

another unknown parameter also present in the same state vector. 

Thus there is a load balancing effect for evaluating the MOO. A 

parameter p is said to be optimized if every particle in Sp 

converges to the optimal value by tuning its local best position 

towards the global best value and the particles of the remaining 

(Sd - Sp) present in Jp would also stop moving in the solution 

space. So, the behavior of a swarm is governed by the estimated 

result of the neighboring swarm appearing in the same objective 

function as observed in natural case of co habitation within the 

same environment. Each d number of swarm is delegated with 

the task of optimizing the objective function. Thus a 

commensalism relationship is formed in which two organisms of 

different species biologically interact where one individual 

derives a fitness benefit and the other remains unaffected. This 

ecological facilitation achieves load balancing for the task of 

global optimization is delegated to swarms which are split to 

handle a parameter by exchanging literally information about the 

estimated values at every iteration. This further leads to faster 

computation with a scalability factor. 

The multi-objective formula J for all parameters p, is said to be 

optimized when  

Minimize  J p      (9) 

where  is an infinitesimal small positive number. 

 (b). Chaos and MS- PSO = CMS-PSO :-  

The area for improvement has been identified by replacing the 

random number generator for every particle in a swarm with a 

chaotic sequence obtained from the Lorenz system. This has 

resulted in faster convergence and subtle escape from local 

optima. The ergodicity and mixing plays a vital role in 

communication as pointed out by Shannon [28]. Moreover, the 

dynamics of chaotic systems have been applied in various 

engineering applications [29,30], have demonstrated significant 

improvement in efficiency. The stochastic properties of chaotic 

systems have been effectively employed in this work  also. The 

modified eq (7) shows that each particle in a swarm has a 

different random number with it obtained from the non linear 

Lorenz system. The individuals in a swarm have different 

learning schemes influenced by their different cognitive and 

social learning behavior. We adhere to the linearly decreasing 

inertia weight suggested by Shi [31] as  

ω = ωmax- (ωmax - ωmin) / tmax  * t                       (10)   

 

  So, the ergodicity and randomness of the chaotic sequences 

transforms the search mechanism of yet another dynamic system 

into a stochastic process achieving exploitation and exploration 

of the search space.  

 

We present the algorithm for the described process. Each particle 

in a swarm is heuristically initialized at first with similar velocity 

and system parameters within a range according to the problem, 

such that all the particles initially "fly" in the same trajectory. 

The random chaotic sequences are assigned to each particle in all 

the swarm. As a result, the particles are diversified in the search 

space preventing premature convergence to a local optima. Every 
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swarm estimates one kind of parameter and the knowledge or 

output of this swarm is learnt by another swarm of particles 

which have the task of estimating another parameter. Each 

particle can keep track of its own solution, which resulted in the 

best fitness, as well as keep track of the best performing 

candidate solution in the neighborhood of its own swarm. With 

this mechanism, the cluster of swarm mutually co exist in a 

dynamical environment with each other and share information. A 

schematic representation of our scheme is illustrated in Fig 9. 

 

 
Figure 9 : Schematic Diagram of the Principle of CMS-PSO 

3.2 Algorithm 
1. Initialization of vectors:- The  d  swarms with fixed 

number of predefined particles i evolving for t number 

of generations are initialized randomly with velocity in 

the range [Vmin, Vmax] and random numbers from 

Lorenz system. Generate the initial population of d 

number of swarms  S
d

 for every  randomly. 

Predetermine which cluster of swarms will co-exist 

depending upon the system to be optimized.  

2. Fitness evaluation :- Evaluate the objective function 

values corresponding to the particles from eq (6). 

3. Find the velocities and position of particles from eq (7) 

and (8) respectively. All particles will be moving to the 

optimal point with a velocity. Set the iteration number 

as t = 1. 

4. Update CMS-PSO :- In the t th iteration, find the 

following two important parameters used by a typical 

particle i : 

(a) The historical best value of  i (t) is P Li (t), for 

Swarm S with the optimal value of the objective 

function, J[  i (t)], encountered by particle i in 

all the previous iterations. The historical best 

value of  i (t) (coordinates of all particles up to 

that iteration t) is PG, with the minimal value of 

the objective function J[  i (t) ], encountered in 

all the previous iterations by any of the i particles 

for the swarm . 

(b) Find the velocity of particle i in the t th iteration 

from eq (7).The values of c1 and c2 are usually 

assumed to be 2 so that c1 R1 i  and c1 R2 i  ensure 

that the particles would overfly the target about 

half the time. 

(c) Find the position or coordinate of the i th particle 

in tth iteration from eq (8). Evaluate the objective 

function values corresponding to the particles. 

 

5. Termination :- The process is continued until all 

particles converge to the optimum solution for all 

swarms i.e J .If the convergence criterion is not 

satisfied, step 4 is repeated by incrementing the 

iteration, and by computing the new values of P Li and 

PG. 

4. THE SYSTEM AND ITS CHAOTIC 

PROPERTIES 
In apropos to the above discussions, in the analysis presented, we 

study a mathematical model of a Finance system where the 

variables are the interest rate x1, the investment demand x2, the 

price index x3 and a state feedback controller x4. This is a 

hyperchaotic finance system consisting of three differential 

equations with a feedback control developed in  [32,33,34,35]. 

The task is to estimate and optimize its unknown parameters by 

CMS-PSO. 

The system goes period doubling route towards the hyperchaotic 

and chaotic state for different combinations of parameter values. 

The nonlinear properties are studied with the help of time series 

of the chaotic data sets. The hyperchaotic nature is examined by 

the variation of the Lyapunov exponents of the system. It is 

observed that the system has more than one positive Lyapunov 

exponents for different sets of parameters. Some statistical 

investigations are also observed with the data output of the 

system.  

The system (eq 9-12) is a set of four ordinary differential 

equations that produces hyperchaos (a chaotic attractor with more 

than one positive Lyapunov exponents) for a particular set of 

parameter values expressed as  

1x = ),,,( 4321 xxxxf  = - a(x1 + x2) + x4                                          (9) 

2x = ),,,( 4321 xxxxf  = - x2 - a x1 x3                                               (10)  

3x = ),,,( 4321 xxxxf  =  b + a x1 x2                                                   (11)  

4x = ),,,( 4321 xxxxf  = - c x1 x3 - d x4                                          (12) 

 

In the above equations, x1, x2, x3, x4 are the state variables and a 

,b ,c, d are the system parameters. Now to estimate the unknown 
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parameters we choose a = 3, b = 15, c = 0.2 and d= 0.12 which 

represents the hyperchaotic mode of the system. Fig 10 

represents the phase portraits of the system.  

 

Figure 10 : Phase Space Diagram  of  the chaotic attractor for  

a=3, b= 15, c=0.2 and d= 0.12 parameters 

 

In the context of multivariable optimization, the swarm is 

assumed to be of specified or fixed size with each particle 

located initially at random locations in the multidimensional 

design space. Each particle is assumed to have two 

characteristics: a position and a velocity. Each particle wanders 

around in the design space and remembers the best position (in 

terms of the food source or objective function value) it has 

discovered. 

4.1 Result 
For the sake of simplicity, parameter estimation of a two-

dimensional system has been attempted. Suppose we estimate 

and optimize the parameters c and d. 

The searching range of parameters is set as 0.01 c  0.5 and 

0.01 d  0.15 with a population of 10 particles evolving in 

maximum iteration t max = 200 generations. The original system 

firstly evolves freely from a random initial state. After a period of 

transient process, a state is selected as the initial state y0 for 

parameter estimation. The parameters of  CMS-PSO like velocity 

are set the same randomly in the range [V min ,V max] = [0,10] and 

[ωmin , ωmax,]= [ 0.4,0.9] for both the swarms for the estimated 

system. 

If we estimate parameter c and d form  eq 12 of the original 

system then the estimated system is expressed by eq   12.1  

4y = F(y1, y2, y3, y4) = - c  y1 y3 - d  y4      (12.1) 

 

Figure 11: Comparison of convergence of CMS-PSO with PSO 

during estimation of parameter c 

 

Figure 12: Comparison of convergence of CMS-PSO with PSO 

during estimation of parameter d 

Fig. 11 and Fig 12 shows the search process during the 

estimation of parameter c and d respectively. Both figures 

highlight that the particles in PSO have a rugged gradient as 

compared to the proposed CMS-PSO. Also CMS-PSO converges 

faster and smoothly at 94 and 80 iterations for parameter c  and 

d respectively. In contrast, the particle in PSO which converges 

first is only at iteration 190 and 195 for parameter c (Fig 11) 

and d  (Fig 12) respectively with the same system setting. 
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Figure 13: Search  process of Swarm c 

 

Figure 14: Search  process of Swarm d 

 

Figure 15: Search process of particles in PSO during estimating 

parameter c 

 

Figure 16: Search process of particles in PSO during estimating 

parameter d 

 

Figure 17: Velocity of Swarm c and swarm d in CMS-PSO 

 

Figure 18: : Global Fitness fitness in estimating c and d 

parameter 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 6– No.10, September 2010 

39 

 

It is observed from Fig.13 and Fig.14 that all the particles of the 

swarm delegated to estimate the parameters follow more or less 

the same pattern of searching process, converging successfully at,   

c   = 0.200000 and d = 0.120000. The red line shows the path 

of the particle which converged first at the global position. All 

the particles communicate with each other, tuning their velocity 

to attain the optima. On closer examination, it is observed  that  

when the global optimum is reached, then the  particles stop 

moving in the search space as shown in Fig 17 with velocity 

gradually tending to zero. Another striking observation is the 

spatial symmetry in the searching pattern of the swarms. The 

similar pattern obtained can be attributed to the chaotic 

sequences which has substituted the random number generator. 

The chaotic sequences although being disordered follow an 

orderly fashion bringing faster convergence with the optimized 

result. This can be validated from the highly fluctuating and 

disordered trajectory exhibited by the PSO in Fig 15 and Fig. 16. 

Moreover, all the particles do not converge faster in comparison 

to CMS-PSO. This highlights the fact that concurrently running 

and cooperating cluster of particles can infact govern the 

behavior of the dependent swarm. This is akin to a master-slave 

relationship wherein the behavior and system parameters of the 

response system are dependent on the behavior of the driving 

system. 

Fitness of the particles is reflected from Fig 18 which shows that 

the composite fitness of the swarms when estimating c and d 

approaches ε gradually, which is zero in our result. 

4.2 Application in Global Optimization and 

conclusion 
Let us consider a system 

kx = f( x k, ) where k=1,2,3,…,n 

where x k are the state variables and  = (θ1, θ2, . . . θ d) are the 

systems parameters. The estimated system is 

ky = F( y k, ) where k =1,2,3,. . . n 

To estimate the parameters simultaneously we need to construct 

the fitness functions corresponding to every parameters. We now 

explain this process step wise. 

 

Step -1: For any arbitrary parameter say p being estimated, 

CMS-PSO dynamically forms a swarm S
p

where p =1,2,. . . 

,d. The corresponding fitness function J
p

depends upon the 

equations containing the parameter p . 

Case-A: If there is exactly one equation say [
m

x = fm(x, )] 

where m ε n, that contains the parameter p  only, together 

with other (  − p  ) parameters, then the corresponding 

J p
is of the form 

J p
= absolute [ fm(x, ) − 

m
y ] 

Case-B: If there are k equations containing the parameter p , 

then the corresponding J p
 is of the form 

J p
= )||),(),([||( 2

1
pg

k

g
g

yFxf   

Step-2 : After constructing all the fitness function J p
, 

p=1,2,. . . ,d, we will run  CMS-PSO to estimate all the 

parameters together using eq (7) and (8). The searching process 

can be archived if all the fitness functions are minimized with a 

desired accuracy. 

Note-1.It may occur that two fitness function J p
  and 

J q
are are same (p,q =1,2,. . . ,d) 

Note-2. At first step all the parameters will take the values from 

the initial choice. From the next iterations, the objective law will 

be updated through our modified PSO algorithm and the swarms 

evolve to reach the steady state. 

We now illustrate the above constructs with a small example. 

To estimate the parameters a, b, c, d. There are 3 instances of 

parameter a appearing in eq 9, 10 and 11 and eq (12) whereas 

parameter b appears in only one equation (eq 11). Parameter c 

and d also appear in one equation 12. So four swarms are formed 

dynamically for the four estimated parameters viz Sa
 , 

Sb
, Sc

 and Sd
 .The corresponding estimated system 

would take the form 

1y = ),,,( 4321 yyyyF = Sa
( y1 +  y2 ) + y4             

(9.1) (9.1) 

2y = ),,,( 4321 yyyyF = −  y2  −    Sa
 y1 y3          

(10.1)  (10.1) 

3y = ),,,( 4321 yyyyF = Sb
+ Sa

 y1 y2            

(11.1) (11.1) 

4y = ),,,( 4321 yyyyF = Sc
 y1 y3 − Sd

 y4       (12.1) (12.1) 

   

For each particle i=1,2,. . . ,s at some instant t, the CMS-PSO 

evolves after an initial state y0 with the initial random values of 

velocity and random values of  ,a  ,b ,c d  in the desired 

range. The corresponding fitness function are constructed as 

J a
[i] =  

2

33

2

22

2

11 ])[][(])[][(])[][( iFifiFifiFif
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][iJ c
= ][iJ d

= ])[][(
44

iFifabsolute  

From above, the values of i th particle at t instant in the swarm 

Sb
are purged into Sa

. Similarly estimated values by 

particles in Sc
are used by Sd

to estimate d. Global 

optimization occurs when summation of all individual objective 

function J is less then  i.e 

p

J
n

1
 

Thus the actual parameters are fully identified and the objective 

function converges to zero.  

 

The proposed CMS-PSO is a robust and decentralized option for 

dynamical system, easily implemented in a computationally 

inexpensive manner, since its memory and CPU speed 

requirements are low. It requires only the values of the gradient 

and no  gradient information of the objective function is needed 

to obtain the pareto optimal solution. The multiple swarms 

handle the optimization task which communicate and co-exist 

with the other swarms governed by rules of mutual co-existence 

similar to ecological systems. CMS-PSO addresses the problem 

of premature convergence and enhances the scope of navigation 

in an orderly fashion due to the distinct inherent properties of 

chaotic sequence. CMS-PSO dynamically spawns swarms in 

accordance to the global optimization problem domain. The 

different cluster of swarms for every state vector cooperate and 

co-exist to balance the global optimization task by dividing the 

objective function into sub-parts and delegating each swarm to 

yield the precise optimal result for each parameter. In effect we 

are dealing with a dynamical system for multi objective 

parameter optimization. 

 

The results are useful from the perspective of management for 

prediction and estimation of different parameters from a chaotic/ 

hyperchaotic economic models from its time series.  In the area 

of finance, stocks and social economics, due to the interaction 

between nonlinear factors, with the evolution process from low 

dimensions to high dimensions, there exists extremely 

complicated phenomenon and external characteristics in such a 

kind of system. Our system is a mathematical model of Finance, 

so it has become imperative to make a systematic and deep study 

of the internal structural characteristics of the nonlinear system.  

A detailed analysis of the nature of the system has been 

attempted by numerical simulations of the model and its data 

series analysis. CMS-PSO can be applied in control  theory since 

a system which is chaotic in nature can revert back to a steady 

state.  
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