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ABSTRACT 

A novel design of an adaptive neuro fuzzy inference strategy 

(ANFIS) for controlling some of the parameters, such as speed, 

torque, flux, voltage, current, etc. of the induction motor is 

presented in this paper.  Induction motors are characterized by 

highly non-linear, complex and time-varying dynamics and 

inaccessibility of some of the states and outputs for 

measurements.  Hence it can be considered as a challenging 

engineering problem in the industrial sector. Various advanced 

control techniques has been devised by various researchers across 

the world.  Some of them are based on the fuzzy techniques.  

Fuzzy logic based controllers are considered as potential 

candidates for such an application.  Fuzzy based controllers 

develop a control signal which yields on the firing of the rule 

base, which is written on the previous experiences & these rules 

are fired which is random in nature.  As a result of which, the 

outcome of the controller is also random & optimal results may 

not be obtained.  Selection of the proper rule base depending 

upon the situation can be achieved by the use of an ANFIS 

controller, which becomes an integrated method of approach for 

the control purposes & yields excellent results, which is the 

highlight of this paper.  In the designed ANFIS scheme, neural 

network techniques are used to select a proper rule base, which is 

achieved using the back propagation algorithm. This integrated 

approach improves the system performance, cost-effectiveness, 

efficiency, dynamism, reliability of the designed controller.  The 

simulation results presented in this paper show the effectiveness 

of the method developed & has got faster response time or settling 

times.  Further, the method developed has got a wide number of 

advantages in the industrial sector & can be converted into a real 

time application using some interfacing cards.  

General Terms 
Controller design, Damping, Oscillations. 

Keywords 
ANFIS, Fuzzy Logic, Membership functions, ANN, Controller, 

Simulink, Matlab, Induction motor, Closed loop, Parameter. 

1.  INTRODUCTION 
Intelligent, self-learning or self-organizing controls using expert 

systems, artificial intelligence, fuzzy logic, neural networks, 

hybrid networks, etc have been recently recognized as the 

important tools to improve the performance of the power 

electronics based drive systems in the industrial sectors. 

Combination of this intelligent control with the adaptiveness 

appears today as the most promising research area in the practical 

implementation & control of electrical drives.  The design and 

implementation of industrial control systems often relies on 

quantitative mathematical models of the plants (say, induction 

motors, generators, DC motors, etc), the controllers, etc. At times, 

however, we encounter problems for which controller design 

becomes very difficult and expensive to obtain. In such cases, it is 

often necessary to observe human experts or experienced 

operators of the plants or processes and discover rules governing 

their actions for automatic control [33].  In this context, the fuzzy 

logic concepts coupled with artificial neural networks play a very 

important role in developing the controllers for the plant. 

Induction motors play a vital role in the industrial sector 

especially in the field of electric drives & control.  Without proper 

controlling of the speed, it is virtually impossible to achieve the 

desired task for a specific application.  AC motors, particularly the 

squirrel-cage induction motors (SCIM), enjoy several inherent 

advantages like simplicity, reliability, low cost and virtually 

maintenance-free electrical drives. However, for high dynamic 

performance industrial applications, their control remains a 

challenging problem because they exhibit significant non-

linearities and many of the parameters, mainly the rotor resistance, 

vary with the operating conditions [42]. Field orientation control 

(FOC) or vector control [53] of an induction machine achieves 

decoupled torque and flux dynamics leading to independent 

control of the torque and flux as for a separately excited DC 

motor. FOC methods are attractive, but suffer from one major 

disadvantage, viz., they are sensitive to motor parametric 

variations such as the rotor time constant and an incorrect flux 

measurement or estimation at low speeds [52].  

Consequently, performance deteriorates and a conventional 

controller such as a PID is unable to maintain satisfactory 

performance under these conditions.  Recently, there has been 

observed an increasing interest in combining artificial intelligent 

control tools with classical control techniques [42]. The principal 

motivations for such a hybrid implementation is that with fuzzy 

logic, neural networks & rough sets issues, such as uncertainty or 

unknown variations in plant parameters and structure can be dealt 

with more effectively, hence improving the robustness of the 

control system. Conventional controls have on their side well-

established theoretical backgrounds on stability and allow 
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different design objectives such as steady state and transient 

characteristics of the closed loop system to be specified. Several 

works were contributed to the design of such hybrid control 

schemes which was shown by various researchers in [12], [48].  

Classical control systems like PI, PID control have been used, 

together with vector control methods, for the speed control of 

induction machines by various researchers [6]. The main 

drawbacks of the linear control approaches were the sensitivity in 

performance to the system parameters variations and inadequate 

rejection of external perturbations and load changes [8]. 

Induction motors are widely used in various industries as prime 

work-horses to produce rotational motions and forces. Generally, 

variable-speed drives for induction motors require both wide 

operating range of speed and fast torque response, regardless of 

load variations.  Usually, the classical control is used in majority 

of the electrical motor drives. Conventional control makes use of 

the mathematical model for the controlling of the system. When 

there are system parametric variations or environmental 

disturbance (say noise), behavior of system is not satisfactory & 

deviates from the desired performance [11].   

In addition, usual computation of system mathematical model is 

difficult or impossible.  To obtain the exact mathematic model of 

the system, then one has to do some identification techniques such 

as the system identification & obtain the plant model.  Moreover, 

the design and tuning of conventional controller increases the 

implementation cost and adds additional complexity in the control 

system & thus, may reduce the reliability of the control system. 

Hence, the fuzzy based techniques are used to overcome this kind 

of problems.  Efficient torque control of induction motor drives in 

combination with resonant DC-link input filters can lead to a type 

of stability problem that is known as negative impedance 

instability.  To overcome this, Henrik et.al., proposed a solution 

to the above problem by using the concept of non-linear system 

stabilizing controller in [29] with the plant. 

Recent years have witnessed rapidly growing popularity of fuzzy 

control systems in engineering applications. The numerous 

successful applications of fuzzy control have sparked a flurry of 

activities in the analysis and design of fuzzy control systems [34].  

Fuzzy logic based flexible multi-bus voltage control of power 

systems was developed by Ashok et.al. in [32].  In the last few 

years, fuzzy logic has met a growing interest in many motor 

control applications due to its non-linearities handling features 

and independence of the plant modeling. The fuzzy controller 

(FLC) operates in a knowledge-based way, and its knowledge 

relies on a set of linguistic if-then rules, like a human operator.   

Ashok et.al. [5] developed a novel design of a Takagi-Sugeno 

fuzzy strategy for induction motor speed control, which yielded 

excellent results, especially in the settling times of the various 

responses.  Ramon et.al. [46] presented a rule-based fuzzy logic 

controller applied to a scalar closed loop induction motor control 

with slip regulation & they also compared their results with those 

of a PI controller. They used a new linguistic rule table in FLC to 

adjust the motor control speed.  A fuzzy controller of the type of 

the Takagi-Sugeno model was investigated in [15] by Chen & 

Wong.  AI based design of a fuzzy logic scheme for speed control 

of induction motors using SVPWM technique was proposed by 

the authors Ashok et.al. in [3]. 

There are a number of significant control methods available for 

induction motors including scalar control, vector or field-oriented 

control, direct torque and flux control, sliding mode control, and 

the adaptive control [11]. Scalar control is aimed at controlling 

the induction machine to operate at the steady state, by varying 

the amplitude and frequency of the fundamental supply voltage 

[13]. A method to use of an improved V/f control for high voltage 

induction motors & its stability was proposed in [9]. The scalar 

controlled drive, in contrast to vector or field-oriented controlled 

one, is easy to implement, but provides somewhat inferior 

performance. This control method provides limited speed 

accuracy especially in the low speed range and poor dynamic 

torque response.   

T-S fuzzy model-based impulsive control of chaotic systems with 

exponential decay rate was discussed by X. Liu, and S. Zhong in 

[37].  In their paper, they presented a new approach for stability 

analysis of the fuzzy impulsive controllers in which the fuzzy 

system was presented by Takagi-Sugeno model.  Further, Ashok 

et.al. [5] used the TS model to develop a hybrid control scheme to 

control the speed of the IM, which yielded excellent results. 

Zhang & Jiang proposed an efficient approach for indirect field-

oriented control of induction machines based on the synergetic 

control method, taking speed control of an induction motor by 

using an example in [56].   

Space Vector Pulse Width Modulation (SVPWM) method is one 

of the advanced, computation-intensive PWM method and 

possibly the best among all the PWM techniques for variable 

frequency drive applications. Because of its superior performance 

characteristics, it has been finding widespread applications in 

recent years.  Satean, et.al., presented a novel control technique of 

control of the induction motors using space vector pulse width 

modulation method in [47]. They even developed an excellent 3-

φ  bridge inverter which was used to apply a balanced 3φ  

voltages to the SCIM.  In due course, fuzzy logic concept was 

introduced by Lotfi Zadeh in 1965.  Many researchers used this 

FLC concept developed by Zadeh to develop controllers for their 

applications, which had yielded good results.  Thus, this FLC 

concept remained as a popular control scheme in the control 

world even today. Arulmozhiyal & Baskaran [45] described in 

brief a number of fuzzy control logic applications on various 

plants in their paper.  They even devised a new control strategy to 

control the speed of IMs using FLC technique.   

Fuzzy Logic control (FLC) has proven effective for complex, non-

linear and imprecisely defined processes for which standard 

model based control techniques are impractical or impossible 

[19].  Fuzzy Logic, deals with problems that have vagueness, 

uncertainty and use membership functions with values varying 

between 0 and 1 [18]. This means that if the reliable data is not 

available or if the controlled system is too complex to derive the 

required decision rules, development of a fuzzy logic controller 

become quite difficult.  In this case, the expert knowledge can be 

made use of for framing the proper  rules which can be further 

used to tune the controller for obtaining better results [57]. 

Furthermore, an optimal fuzzy logic controller cannot be achieved 

by trial-and-error. These drawbacks have limited the application 

of fuzzy logic control [28].  

Some efforts have been made to solve these problems and 

simplify the task of tuning parameters and developing rules for the 

controller [40]. These approaches mainly use adaptation or 

learning techniques drawn from artificial intelligence or neural 

network theories. Application of fuzzy logic control for the 
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control a speed induction motor using space vector pulse width 

modulation is not quite new [44]. However, there is no systematic 

method for designing and tuning the fuzzy logic controller & one 

has to design using some trail & error using the IF, ELSE, THEN 

rules.  Neuro fuzzy robust controllers for AC drive systems using 

predictive controller was developed by Yashuhiko et.al. [55] 

which reduced the plant & the observation noise. 

Consoli et.al. presented an adaptive vector based control of IM 

drives based on neuro fuzzy approach in their paper in [20].  They 

performed an experimental realization of an MRAC speed 

controller for the indirect field oriented IM drives based on fuzzy 

laws for the adaptive process & a neuro-fuzzy procedure to 

optimize the fuzzy rules.  A model reference adaptive flux 

observer based adaptive neuro-fuzzy control (ANFIS) of IM 

drives was presented by Nasir Uddin & Hao Wen in [43].  The 

observer model was developed based on a reference flux model & 

a closed loop gopinath flux observer, which combines current & 

voltage model flux observes.  They investigated the performance 

of the designed drive at different dynamic operating conditions.   

A simple DTC neuro-fuzzy control of PWM inverter fed IM drive 

was proposed by Grabowski, Marian & Bose in [25].  They 

applied an adaptive neuro fuzzy inference system to achieve high-

performance decoupled flux & torque control using an 

experimental approach coupled with DSP TMS320C31 card.  

Aware et.al. [7] proposed a new type of adaptive neuro-fuzzy 

controller (ANFIS) for voltage source inverted fed IMs.  In this 

paper, they replaced the conventional PI / PID controller by the 

fuzzy controller in speed controller loop & implemented using 

DSP interfacing card.  ANFIS which tunes the fuzzy inference 

system with a back propagation algorithm based on a collection of 

input-output data is implemented here.   

Mihoub et.al. [39] proposed a ANFIS controller to obtain a high 

dynamic performance in AC machines.  In their work, they used 

fuzzy controller first & then the neuro-fuzzy controller.  Finally, 

they proved that the latter one is better than the former one in 

terms of the dynamism.  An excellent sensorless speed control of 

IM drives using a robust & adaptive neuro fuzzy based intelligent 

controller was formulated by Farzan Rashidi [23].  An ANN was 

adopted to estimate the motor speed & to provide a sensorless 

speed estimator system by evaluating for a wide range of 

operating conditions such as start ups, step changes in the 

reference speeds, unknown load torque with parameter variations. 

An IM spindle motor drive using synchronous PWM & dead time 

compensatory techniques with an ANFIS controller was proposed 

by Faa & Rong for advanced spindle motor applications by 

performing an real time experiment [22].  Since the control 

characteristics & motor parameters for the high speed IM drive 

were time varying, they proposed an ANFIS scheme to control the 

rotor speed.  The plant here was identified by a fuzzy NN 

identifier to provide the sensitivity info of the drive system to the 

adaptive controller using a back propagation algo to train the 

network online.   Mokhtar & Sofiane [41] developed an adaptive 

speed control of an hybrid fuzzy-neural network for a high 

performance IM drive to improve the performance & robustness 

of the IM drive under non-linear loads & parametric variations.  

Many researchers had worked on the fuzzy logic based on-line 

efficiency control for an indirect vector controlled IM drive.  

Bimal Bose et.al. [10] extended the same control technique to a 

stator flux oriented electric vehicle IM drive & then implemented 

the fuzzy controller by a dynamic back propagation algorithm 

using an ANFIS controller.  They further verified the simulated 

results using an DSP based hardware.  Haider et.al.  [27] 

presented the design and implementation of Fuzzy-SMC-PI 

methodology to control the flux and speed of an induction motor. 

The Fuzzy-SMC-PI was basically a combination of Sliding Mode 

Control (SMC) and PI control methodologies through fuzzy logic, 

but the drawback being the chattering during the time of 

switching.   

In [16] & [36], the researchers implemented a fuzzy logic 

controller to adjust the boundary layer width according to the 

speed error. The drawback of their controller is that it depends on 

the equivalent control & on the system parameters.  Two 

researchers, Takagi & Sugeno developed a excellent control 

scheme for control of various applications in the industrial sector.  

This controller had many advantages over the other methods 

discussed so far.  Many researchers started using their models for 

their applications.  Zie, Ling & Jhang [54] presented a TS model 

identification method by which a great number of systems whose 

parameters vary dramatically with working states can be identified 

via Fuzzy Neural Networks (FNN). The suggested method could 

overcome the drawbacks of traditional linear system identification 

methods which are only effective under certain narrow working 

states and provide global dynamic description based on which 

further control of such systems may be carried out.   

In the above mentioned papers, there were a lot of drawbacks & 

disadvantages, one of the parameter being the settling time of the 

responses & the proper selection of the rule base.  The responses 

had taken a lot of time to reach the final steady state value.  In this 

paper, a sincere attempt is made to reduce the settling time of the 

responses & make the speed of response very fast by designing an 

efficient controller using ANFIS control strategy.  The proper rule 

base is selected using an intelligently developed back propagation 

algo.  Here, we have formulated this complex control strategy for 

the speed control of IM, which has yielded excellent results 

compared to the others mentioned in the literature survey above.  

The results of our work have showed a very low transient 

response and a non-oscillating steady state response with 

excellent stabilization.  

The structure of the research work (flow / organization of the 

paper) presented in this paper is organized in the following 

sequence.  A brief review of the literature survey of the related 

work was presented in the previous paragraphs in the introductory 

section.  Section 2 presents the mathematical modelling of the 

induction motor.  Review about the adaptive neuro fuzzy 

inference scheme used in the design of the controller is presented 

in section 3.  The design of the ANFIS controller is presented in 

section 4.  The section 5 shows the development of the simulink 

model for the speed control of the induction motor.  The 

simulation results & the discussion on it are presented in the 

section 6.  This is followed by the conclusions in the concluding 

section, the nomenclatures, abbreviations, references & the author 

biographies. 

2.  MODELLING OF INDUCTION MOTOR 
 

In the control of any power electronics drive system (say a motor); 

to start with, a mathematical model of the plant is required.  This 

mathematical model is required further to design any type of 

controller to control the process of the plant.  The mathematical 

model can be obtained by various methods, viz., from first 
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principles, system identification methods, etc.  This mathematical 

model may be a linear / non-linear differential equation or a 

transfer function (in s or z-domain) or in state space form.  In this 

section, we present the mathematical model of the induction 

motor.  The mathematical model of the SCIM system used in our 

work consists of space vector PWM voltage source inverter, 

induction motor, direct flux and the torque control [56].   

The drawback of the coupling effect in the control of SCIMs is 

that, it gives sluggish response and the system is easily prone to 

instability because of a high-order system effect. This problem can 

be solved by making use of either vector control or field-oriented 

control.  When this type of control strategy is adopted, it can 

make an induction motor to be controlled like a separately excited 

DC motor.  Of course, the control of AC drives can exhibit better 

performance.  Thus, due to the above mentioned reasons, an 

induction motor model was established using a rotating (d, q) 

field reference (without saturation) concept [56].  The power 

circuit of the 3-φ  induction motor is shown in the Fig. 1.    

 

Fig. 1 : Power circuit connection diagram for the IM 

The equivalent circuit used for obtaining the mathematical model 

of the induction motor is shown in the Fig. 2.   

Rs
ω λd sq Lls Llr

ω λdA rq Rr

Lm
Vsd Vrd

λsd
d
dt

λrd
d
dt

 

(a) d-axis 

Rs
ω λd sd Lls Llr

ω λdA rd Rr

Lm
Vsq Vrq

λsq
d
dt

λrq
d
dt

 

(b) q-axis 

Fig. 2 : Equivalent circuit of induction motor in d - q frame 

An induction motor model is then used to predict the voltage 

required to drive the flux, torque & the speed to the demanded 

values.  This calculated voltage is then synthesized using the 

space vector modulation. The stator & rotor voltage equations are 

given by [56] 

sd s sd sd d sq

d
V R i

dt
λ ω λ= + − ,      (1) 

sddsqsqssq λωλ
dt

d
iRV ++= ,    (2) 

rqdArdrdrrd λωλ
dt

d
iRV −+=  (3) 

rddArqrqrrq λωλ
dt

d
iRV ++= ,    (4) 

where Vsd and Vsq, Vrd and Vrq are the direct axes & quadrature 

axes stator and rotor voltages [56].  
 

The squirrel-cage induction motor considered for the simulation 

study in this paper, has the d and q-axis components of the rotor 

voltage zero. The flux linkages to the currents are related by the 

Eq. (5) as 

0 0

0 0
;
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The electrical part of an induction motor can thus be described by 

a fourth-order state space model which is given in Eq. (6), by 

combining equations (1) - (5) as [56] 
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where s is the laplacian operator.  By superposition, i.e., adding 

the torques acting on the d-axis and the q-axis of the rotor 

windings, the instantaneous torque produced in the 

electromechanical interaction is given by 

( )rqrdrdrqem iλiλ
P

T −






=
22

3
. (8) 

The electromagnetic torque expressed in terms of inductances is 

given by  

( )rqsdrdsqmem iiiiL
P

T −






=
22

3
.   (9) 

The mechanical part of the motor is modeled by the equation [56]. 

( )
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Mech
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TiiiiL
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dt

d
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=
−

=ω
22

3

,  (10) 

where, 

=eqJ Equivalent Moment of Inertia,  

,msslipdA ωωωω −==  

mrlrmsls LLLLLL +=+= , . 
 

This IMs mathematical model is further used to design a adaptive 

controller using ANFIS control strategy in the next but next 

section.  The induction motor can be observed as a system of 

electric and magnetic circuits, which are coupled magnetically and 

electrically.   A 3-Phase balanced sinusoidal voltages given by 

[56]. 
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are applied to the IM using the equation 

[ ]CnBnAn vaavv 2

3

2
++=V     (14) 

through the 3-Phase bridge inverter shown in the Fig. 1 which has 

got 8 permissible switching states.  This 8 permissible switching 

states can be graphically represented as shown in the Fig. 3. The 

table I gives the summary of the switching states and the 

corresponding phase-to-neutral voltages of the isolated neutral 

induction machine [47].    
 

Vi 
a b c AnV  nBV  nCV  

0V  0 0 0 0 0 0 

1V  1 0 0 2 / 3DCV  / 3DCV−  / 3DCV−  

2V  1 1 0 / 3DCV  / 3DCV  2 / 3DCV−  

3V  0 1 0 / 3DCV−  2 / 3DCV  / 3DCV−  

4V  0 1 1 2 / 3DCV−  / 3DCV  / 3DCV  

5V  0 0 1 / 3DCV−  / 3DCV−  2 / 3DCV  

6V  1 0 1 / 3DCV  2 / 3DCV−  / 3DCV  

7V  1 1 1 0 0 0 

 

Table  I :  The inverter switching states 

 

 

3. Review of Adaptive Neuro Fuzzy Inference 

Scheme  
 

In this section, a brief review of the ANFIS concepts to control 

various system parameters of the plant is presented.  The concept 

of neural networks started in the late-1800s as an effort to 

describe how the human mind performed in the olden days. As 

years rolled by, these neural networks started playing a very 

important role in the various engineering applications.  Neural 

networks have been applied successfully to speech recognition, 

image analysis and adaptive control, in order to construct software 

agents or autonomous robots & in the control of machines.  ANNs 

are a family of intelligent algorithms which can be used for time 

series prediction, classification, and control and identification 

purposes. Neural networks have an ability to train with various 

parameter of induction motor. As a non-linear function, they can 

be used for identifying the extremely nonlinear system parameters 

with high accuracy. Recently, the use of neural networks, to 

identify and control nonlinear dynamic systems has been proposed 

because they can approximate a wide range of non-linear 

functions to any desired degree of accuracy. Moreover, they have 

the advantages of extremely fast parallel computation and fault 

tolerance characteristics. Also there have been some 

investigations into the application of NNs to power electronics 

and ac drives, including speed estimation. This technique gives a 

fairly good estimate of the speed and is robust to parameter 

variation. However, the neural network speed estimator should be 

trained sufficiently with various patterns to get good performance 

[23]. 

Sector  1

Sector  2

Sector  3

Sector  4

Sector  5

Sector  6 Vs1

Vs2
Vs3

Vs4

Vs5 Vs6

(100)

(110)
(010)

(011)

(001) (101)

d-axis

q-axis

Vs7

Vs0

 

Fig. 3  : Diagrammatic representation of the sequence of the space 

vectors 

Fuzzy logic is one of the successful applications in the control 

engineering field which can be used to control various parameters 

of the real time systems.  This logic combined with neural 

networks yields very significant results. Neural networks can learn 

from data. However, understanding the knowledge learned by 

neural networks has been difficult. To be more specific, it is 

usually difficult to develop an insight about the meaning 

associated with each neuron and each weight.  In contrast, fuzzy 

rule based models are easy to be understood because it uses 

linguistic terms and the structure of IF-THEN rules. Unlike neural 

networks, however, fuzzy logic by itself can not learn. The 

learning and identification of fuzzy logic systems need to adopt 

techniques from other areas, such as statistics, system 

identification. Since neural networks can learn, it is natural to 

merge these two techniques. This merged technique of the 

learning power of the NNs with the knowledge representation of 

FL has created a new hybrid technique, called as the term ‘neuro 

fuzzy networks’ [23]. 

Since ANFIS design starts with a pre-structured system, DOF for 

learning is limited, i.e., the MF of input & output variables 

contain more information that NN has to drive from sampled data 

sets.  Knowledge regarding the systems under design can be used 

right from the start.  Part of the system can be excluded from the 

training.  Hence, this ANFIS process is more efficient.  The rules 

are in the linguistic forms and so intermediate results can be 

analyzed and interpreted easily.  The modification of rules is 

possible during the training and optimization can be done 

manually.  Further the ANFIS strategy supports the TS based 

systems.  To start the ANFIS learning; first, a training data set that 

contains the desired input / output data pairs of target systems to 

be modeled is to be required.  The design parameters required for 

any ANFIS controller are viz., Number of data pairs, Training 

data set & checking data sets, Fuzzy inference systems for 

training, Number of epochs to be chosen to start the training, 

Learning results to be verified after mentioning the step size [7].   
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In this context, the general ANFIS control structure for the control 

of any plant is presented here as follows [25], [43].  This structure 

contains the same components as the FIS, expect for the NN 

block.  The structure of the network is composed of a set of units 

(and connections) arranged into five connected network layers, 

viz., l1 to l5 as shown in the Fig. 18. 

Layer 1 :  This layer consists of input variables (membership 

functions), viz., input 1 & input 2.  Here, triangular 

or bell shaped MF can be used.  This layer just 

supplies the input values ix  to the next layer, where i 

= 1 to n.    

Layer 2 :  This layer (membership layer) checks for the weights 

of each MFs.  It receives the input values ix from the 

1st layer and act as MFs to represent the fuzzy sets of 

the respective input variables.  Further, it computes 

the membership values which specify the degree to 

which the input value ix belongs to the fuzzy set, 

which acts as the inputs to the next layer.  

Layer 3 : This layer is called as the rule layer.  Each node (each 

neuron) in this layer performs the pre-condition 

matching of the fuzzy rules, i.e., they compute the 

activation level of each rule, the number of layers 

being equal to the number of fuzzy rules.  Each node 

of these layers calculates the weights which are 

normalized.  

Layer 4 : This layer is called as the defuzzification layer & 

provides the output values y resulting from the 

inference of rules.  Connections between the layers l3 

& l4 are weighted by the fuzzy singletons that 

represent another set of parameters for the neuro 

fuzzy network.  

Layer 5 :  This layer is called as the output layer which sums up 

all the inputs coming from the layer 4 and transforms 

the fuzzy classification results into a crisp (binary).  

The ANFIS structure is tuned automatically by least-square-

estimation & the back propagation algorithm.  The algorithm 

shown above is used in the next section to develop the ANFIS 

controller to control the various parameters of the induction 

motor.   Because of its flexibility, the ANFIS strategy can be used 

for a wide range of control applications.  

4. Controller design 
 

A controller is a device which controls each & every operation in 

the system making decisions.  From the control system point of 

view, it is bringing stability to the system when there is a 

disturbance, thus safeguarding the equipment from further 

damages.  It may be hardware based controller or a software based 

controller or a combination of both.  In this section, the 

development of the control strategy for control of various 

parameters of the induction machine such as the speed, flux, 

torque, and voltage, current is presented using the concepts of 

ANFIS control scheme, the block diagram of which is shown in 

the Fig. 4. 

To start with, we design the controller using the ANFIS scheme.  

Fuzzy logic is one of the successful applications of fuzzy set in 

which the variables are linguistic rather than the numeric 

variables.  Linguistic variables, defined as variables whose values 

are sentences in a natural language (such as large or small), may 

be represented by the fuzzy sets.  Fuzzy set is an extension of a 

‘crisp’ set where an element can only belong to a set (full 

membership) or not belong at all (no membership). Fuzzy sets 

allow partial membership, which means that an element may 

partially belong to more than one set. 
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Fig. 4 : Block diagram of the ANFIS control scheme for the speed 

control of the IM 

A fuzzy set A of a universe of discourse X is represented by a 

collection of ordered pairs of generic element   and its 

membership function  µ : X → [ 0   1], which associates a number  

µA(x) : X → [ 0   1], to each element x of X.  A fuzzy logic 

controller is based on a set of control rules called as the fuzzy 

rules among the linguistic variables. These rules are expressed in 

the form of conditional statements. 

Our basic structure of the developed ANFIS coordination 

controller to control the speed of the IM consists of 4 important 

parts, viz., fuzzification, knowledge base, neural network and the 

de-fuzzification blocks, which are explained in brief in further 

paragraphs. 

The inputs to the ANFIS controller, i.e., the error & the change in 

error is modeled using the Eq. (20) as 

,)1()()(

,)(

−−=∆

−=

kekeke

ke rref ωω
 (20) 

where refω is the reference speed, rω is the actual rotor speed, is 

the e(k) error and ∆e(k) is the change in error. The fuzzification 
unit converts the crisp data into linguistic variables, which is 

given as inputs to the rule based block.  The set of 49 rules are 

written on the basis of previous knowledge / experiences in the 

rule based block. 

The rule base block is connected to the neural network block.   

Back propagation algorithm is used to train the neural network to 

select the proper set of rule base.   For developing the control 

signal, the training is a very important step in the selection of the 

proper rule base.  Once the proper rules are selected & fired, the 

control signal required to obtain the optimal outputs is generated. 

The output of the NN unit is given as input to the de-fuzzification 

unit and the linguistic variables are converted back into the 

numeric form of data in the crisp form. 

In the fuzzification process, i.e., in the first stage, the crisp 

variables, the speed error & the change in error are converted into 

fuzzy variables or the linguistics variables.  The fuzzification 

maps the 2 input variables to linguistic labels of the fuzzy sets. 

The fuzzy coordinated controller uses the linguistic labels. Each 

fuzzy label has an associated membership function. The 

membership function of triangular type is used in our work & is 

shown in the Fig. 8.  The inputs are fuzzified using the fuzzy sets 

& are given as input to ANFIS controller.   The rule base for 
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selection of proper rules using the back propagation algorithm is 

written as shown in the table II. 

E 

∆E 
NB NM NS ZE PS PM PB 

NB NB NB NB NB NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NS NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PS PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PB PB PB PB 
 

Table II : Rule base for controlling the speed. 

The developed fuzzy rules ( ) 4977 =×  included in the ANFIS 

controller is given below in the form of an algorithm as follows : 

1. If (speederror is NB) and (changeinerror is NB) then (output1 is NS) (1)  

2. If (speederror is NB) and (changeinerror is NM) then (output1 is NS) (1)  

3. If (speederror is NB) and (changeinerror is NS) then (output1 is NS) (1)  

4. If (speederror is NB) and (changeinerror is NS) then (output1 is NS) (1)  

5. If (speederror is NB) and (changeinerror is PS) then (output1 is NM) (1)  

6. If (speederror is NB) and (changeinerror is PM) then (output1 is NS) (1)  

7. If (speederror is NB) and (changeinerror is PB) then (output1 is Z) (1)  

8. If (speederror is NM) and (changeinerror is NB) then (output1 is NS) (1)  

9. If (speederror is NM) and (changeinerror is NM) then (output1 is NS) (1)  

10. If (speederror is NM) and (changeinerror is NS) then (output1 is NB) (1)  

11. If (speederror is NM) and (changeinerror is Z) then (output1 is NM) (1)  

12. If (speederror is NM) and (changeinerror is PS) then (output1 is NS) (1)  

13. If (speederror is NM) and (changeinerror is PM) then (output1 is Z) (1)  

14. If (speederror is NM) and (changeinerror is PB) then (output1 is PS) (1)  

15. If (speederror is NS) and (changeinerror is NB) then (output1 is NS) (1)  

16. If (speederror is NS) and (changeinerror is NM) then (output1 is NB) (1)  

17. If (speederror is NS) and (changeinerror is NS) then (output1 is NM) (1)  

18. If (speederror is NS) and (changeinerror is Z) then (output1 is NS) (1)  

19. If (speederror is NS) and (changeinerror is PS) then (output1 is Z) (1)  

20. If (speederror is NS) and (changeinerror is PM) then (output1 is PS) (1)  

21. If (speederror is NS) and (changeinerror is PB) then (output1 is PM) (1)  

22. If (speederror is Z) and (changeinerror is NB) then (output1 is NB) (1)  

23. If (speederror is Z) and (changeinerror is NM) then (output1 is NM) (1)  

24. If (speederror is Z) and (changeinerror is NS) then (output1 is NS) (1)  

25. If (speederror is Z) and (changeinerror is PB) then (output1 is PB) (1)  

26. If (speederror is Z) and (changeinerror is Z) then (output1 is Z) (1)  

27. If (speederror is Z) and (changeinerror is PS) then (output1 is PS) (1)  

28. If (speederror is Z) and (changeinerror is PM) then (output1 is PM) (1)  

29. If (speederror is PS) and (changeinerror is NB) then (output1 is NM) (1)  

30. If (speederror is PS) and (changeinerror is NM) then (output1 is NS) (1)  

31. If (speederror is PS) and (changeinerror is NS) then (output1 is Z) (1)  

32. If (speederror is PS) and (changeinerror is Z) then (output1 is PS) (1)  

33. If (speederror is PS) and (changeinerror is PS) then (output1 is PM) (1)  

34. If (speederror is PS) and (changeinerror is PM) then (output1 is PB) (1)  

35. If (speederror is PS) and (changeinerror is PB) then (output1 is PS) (1)  

36. If (speederror is PM) and (changeinerror is NB) then (output1 is NS) (1)  

37. If (speederror is PM) and (changeinerror is NM) then (output1 is Z) (1)  

38. If (speederror is PM) and (changeinerror is NS) then (output1 is PS) (1)  

39. If (speederror is PM) and (changeinerror is Z) then (output1 is PM) (1)  

40. If (speederror is PM) and (changeinerror is PS) then (output1 is PB) (1)  

41. If (speederror is PM) and (changeinerror is PM) then (output1 is PS) (1)  

42. If (speederror is PM) and (changeinerror is PB) then (output1 is PB) (1)  

43. If (speederror is PB) and (changeinerror is NB) then (output1 is Z) (1)  

44. If (speederror is PB) and (changeinerror is NM) then (output1 is PS) (1)  

45. If (speederror is PB) and (changeinerror is NS) then (output1 is PM) (1)  

46. If (speederror is PB) and (changeinerror is Z) then (output1 is PB) (1)  

47. If (speederror is PB) and (changeinerror is PS) then (output1 is PB) (1)  

48. If (speederror is PB) and (changeinerror is PM) then (output1 is PB) (1)  

49. If (speederror is PB) and (changeinerror is PB) then (output1 is PB) (1) 

 

The control decisions are made based on the fuzzified variables in 

the Table II. The inference involves a set of rules for determining 

the output decisions.  As there are 2 input variables & 7 fuzzified 

variables, the controller has a set of 49 rules for the ANFIS 

controller.  Out of these 49 rules [Fig. 9], the proper rules are 

selected by the training of  the  neural  network  with  the help of 

back propagation algorithm & these selected rules are fired.    

Further, it has to be converted into numerical output, i.e., they 

have to be de-fuzzified.  This process is what is called as de-

fuzzification, which is the process of producing a quantifiable 

result in fuzzy logic. 

The defuzzifcation transforms fuzzy set information into numeric 

data information. There are so many methods to perform the 

defuzzifcation, viz., centre of gravity method, centre of singleton 

method, maximum methods, the marginal properties of the 

centroid methods & so on.  In our work, we use the centre of 

gravity method.  The output of the defuzzification unit will 

generate the control commands which in turn is given as input 

(called as the crisp input) to the plant through the inverter.  If 

there is any deviation in the controlled output (crisp output), this 

is fed back & compared with the set value & the error signal is 

generated which is given as input to the ANFIS controller which 

in turn brings back the output to the normal value, thus 

maintaining stability in the system.  Finally, the controlled output 

signal, i.e.,  y is given by Eq. (21) as 
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= =
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.   (21) 

This controlled output y is nothing but the final output of the 

controller and is the weighted average of the proper rule based 

outputs, which are selected by the back propagation algorithm. 

5. DEVELOPMENT OF SIMULINK MODEL 
 

Simulink model for the control of various parameters of the 

induction motor was developed in Matlab 7.  This simulink model 

with the ANFIS controller was developed using the various 

toolboxes available in the simulink library such as the power 

system, power electronics, control system, signal processing 

toolboxes & from its basic functions. The entire system modeled 

in Simulink is a closed loop feedback control system consisting of 

the plants, controllers, samplers, comparators, feedback systems, 

constants, buses, the mux, de-mux,  summers, adders, gain blocks, 

multipliers, constant blocks, CT & DT blocks, ANFIS editor 

blocks, clocks, sub-systems, integrators, state-space models, the 

output sinks (scopes), the input sources, work-space blocks, etc.  

The developed simulink model for the control of various 

parameters of the SCIM is shown in the Fig. 5.  The specifications 

of the SCIM used for simulation purposes are given in the 

appendix. 
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SIMULINK MODEL FOR CONTROL OF SPEED OF INDUCTION MOTOR USING ANFIS STRATEGY
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Fig. 5 : The developed simulink model for the speed control of 

IM’s using neuro-fuzzy scheme (ANFIS) 

6. SIMULATION RESULTS & DISCUSSIONS 
 

Simulink model with the neuro-fuzzy controller for the speed 

control of IM was developed in Matlab 7 as shown in the Fig. 5 

above.  In order to start the simulations, the 49 fuzzy rule set has 

to be invoked first from the command window in the Matlab.  

Initially, the fuzzy file where the rules are written with the 

incorporation of the T-S control strategy is opened in the Matlab 

command window, after which the fuzzy editor (FIS) dialogue 

box opens as shown in the Fig. 6.  The .fis file 

(sugenosevenrules2.fis) is imported using the command window 

from the source & then opened in the fuzzy editor dialog box 

using the file open command. Once the file is opened, the TS-

fuzzy rules file gets activated as shown in the Fig. 7.  Further, the 

data is exported to the workspace & the simulations are run for a 

specific amount of time (say 3 secs).  The fuzzy membership 

function editor is then obtained using the view membership 

command from the menu bar and this is shown in the Fig. 8.   The 

written TS-fuzzy rules also can be viewed from the rule view 

command, which is presented in the Fig. 9.   The rule viewer for 

the 2 inputs and 1 output can be observed pictorially in the Fig. 

10.    Now, after performing all the preliminary operations, the 

simulations are run for a period of 3 seconds in Matlab 7 with a 

reference speed of 100 rads / sec  
( ){ }π260100 i.e., ×

 = 955 rpm 

& with a load torque of 2 N-m.  Once, the simulation is run, the 

various parameters such as speed, flux, torque, currents, slip, 

voltage, etc. gets stored in the workspace. 

After running the Takagi-Sugeno model, we get the error (x1), 

change in error (x2) & an intermediate parameter (y).   These 3 

parameters, viz., x1, x2 & y are stored in a variable in the 

command window.  The ‘anfis’ editor is opened in the command 

window (Fig. 11).  These variables which are in the form of data 

in the workspace are loaded into the ‘anfis’ editor (Figs. 12 & 13).  

The .fis file is generated next in the ‘anfis’ editor by loading the 

data from the workspace (Fig. 14).   Once the .fis file is generated, 

the ‘anfis’ has to be trained properly (Fig. 15) by selecting a 

proper algorithm with suitable number of epochs.  In our work, 

we have used the back-propagation algorithm with a suitable 

number of epochs being used for training the rules.  This is done 

by selecting these 2 items in the ‘train window’ of the ‘anfis’ 

editor & training the neural network for proper selection of the 

rule base.  The trained data is further exported to the workspace 

using the file-export command.  The surface plot for the error 

speed & change in error with the output is shown in the Fig. 16.  

Also, the contour plot of the same is depicted in the Fig. 17. 

The developed ANFIS model structure with 2 input neurons & 1 

output neuron along with 4 hidden layers (input membership 

function, rule base, membership function, and aggregated output) 

are shown in the Fig. 18.  The training of the neural network by 

using the fuzzy rule base for the selection of the proper & optimal 

rule is taken care of by the designed ANFIS controller.  Note that 

7 by 7 rules are used in the hidden layers.  The neuron 1 is 

connected to 7 fuzzy rules & the neuron 2 is also connected to the 

7 fuzzy rules.  The hidden layers contains 49-49 neurons to deal 

the problem (for selection of the proper rule base, because the rule 

base are written randomly in fuzzy, the neural network selects the 

right optimal rule base to fire).  The 2 input neurons, viz., the 

error, change in error is given as input to the 1st hidden layer of 

the ANN as shown in the Fig. 18.  This 1st hidden layer deals with 

various input membership functions.  In the 2nd & 3rd hidden 

layer, the set of 49 fuzzy rules are properly identified by training 

& the set of optimal rules are selected.  These set of optimum 

rules are available at the 4th hidden layer.   Out of the 49 rules, the 

optimal rules are fired here & the de-fuzzified output is obtained 

as the output neuron.  The de-fuzzified output is further used to 

generate the firing pulse to be applied to the inverter bridge, 

which is further used to control the speed of the IM drive. 

 

Fig. 6 : FIS editor with 1 input 
 

 

Fig. 7 : FIS editor with 2 inputs & 1 output ; Importing of the .fis 

file from the source 
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Fig. 8 : Membership function editor 
 

After the simulation is run, the performance characteristics are 

observed on the respective scopes.  The response curves of flux, 

load, torque, terminal voltage, speed, rotor angle, stator currents, 

slip, id, iq, rotor currents (3φ abc & d-q) v/s time, slip vs. speed for 

a reference speed of 100 rads / sec  (955 rpm) & with a load 

torque of 2 N-m are observed & are shown in the Figs. 19 -  30 

respectively. 
 

 

Fig. 9 : Rule editor window 
 

 

 

Fig. 10 : Rule viewer window 
 

 

Fig. 11  : ANFIS editor window 
 

 

Fig. 12 : ANFIS editor : Loading the data from the workspace 
 

 

Fig. 13  : ANFIS editor : Loaded data from the workspace onto the 

editor 
 

 

Fig. 14  : ANFIS editor : Generate the FIS file from the data in the 

workspace 
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From the simulation results shown in the Figs. 19 to 30, it is 

observed that the stator current does not exhibit any overshoots 

nor undershoots.  The response of the flux, slip, torque, terminal 

voltage, speed, currents, etc. takes lesser time to settle & reach the 

desired value compared to the results presented in [3], [4], [5]. 

 
 

 

Fig. 15 : ANFIS editor : Training the rules using back-

propagation algorithm 
 

 

Fig. 16 : Surface plot of the 3 parameters (2 inputs : change in 

error, speed error & 1 output) 
 

 

Fig. 17 : Contour plot of the 3 parameters (2 inputs : change in 

error, speed error & 1 output) 
 

It was observed from the simulation results that by using the 

neuro-fuzzy (ANFIS) control, for the set speed of 100 r / s & for 

the 49 rules, the speed reaches its desired set value at 0.44 

seconds.  This shows the effectiveness of the designed neuro-

fuzzy controller & the designed neuro-fuzzy controller tries to 

speed up the performance of the drive, thus showing faster 

dynamism.  It is also observed that with the designed neuro-fuzzy 

controller, the response characteristics curves take less time to 

settle & reach the final steady state value compared to that in [3], 

[4], [5].  The motor speed increases like a linear curve upto the set 

speed of 955 rpm (100 r / s) in 0.44 secs as shown in Fig. 30.  

Further, it can also be observed that using the ANFIS control, the 

system stabilizes in a very less time compared to the other 

methods because of the training process of the ANN involved & 

the proper selection of the rule base. 

 

Fig. 18 : ANFIS model structure with 2 inputs & 1 output 

showing all the 5 layers in the ANN architecture 
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Fig. 19 : Plot of flux vs. time 
 

From the variation of flux with time as shown in the Fig. 19, it 

can be observed that when the motor speed is increasing (during 

the transient period), more stator current is required to develop the 

requisite flux in the air gap. Hence, the flux also starts increasing 

during the transient period (0 to 0.4 sec) exponentially.  Once, the 

motor attains the set rated speed, the flux required to develop the 

torque almost remains constant after ≥ 0.4 secs.  Once, the flux in 

the air gap remains constant, the variation of the load torque and 

speed will not disturb the flux curve.  Hence, the IM will be 

operating at a constant flux.   
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Fig. 20 : Plot of torque vs. time 

Torque characteristics for a set reference speed of 100 r/s (955 

rpm) is shown in the Fig. 20.  From this figure, we arrive at a 

conclusion that when the motor is operating at lower speeds, the 

slip is more.  Hence, the machine requires more torque to attain 

the set speed.  Once the machine reaches the set speed of 955 rpm 

the average torque of the machine becomes nearly zero after 0.44 

s, which is justified from the simulation result in Fig. 21.  The 

terminal voltage of the IM is shown in Figs. 21 (a) & (b) 

respectively.    
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 (a)  Plot of voltage vs. time (normal)   (b) Plot of voltage vs. time 

(zoomed) between t = 0.42 s to 0.45 s 

Fig. 21 : Plot of voltage vs. time (normal & zoomed) 

The variation of the φ3  stator currents (is) with time is shown in 

the Fig. 22.  It can be clearly observed from this figure, that at 

lower speeds, the slip is more, the flux required to develop the 

suitable torque is also more.  Also, the torque required to reach 

the set speed is also more.  Hence, the magnitude of the stator 

currents will also be more during the transient periods (starting 

periods) of the induction motor.  When the speed is reaching the 

set value from zero, the φ3  stator currents decreases 

exponentially. Once, it attains the set speed at 0.44 secs, it 

requires a nominal stator current to drive the IM system.    
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Fig. 22 : Plot of φ3 stator current vs. time 

The Fig. 23 shows the variation of slip vs. time characteristics for 

a speed of 100 r/s (955 rpm).  From this simulation result, we 

infer that the IM attains the set reference speed of 955 rpm in 0.44 

secs using the ANFIS (neuro-fuzzy) controller.  At that instant, 

the slip being 46.0
1800

9551800
=

−
=

−

s

s

N

NN
, can be verified from 

the result shown.  Note that the slip decreases from 1.0 to 0.46 

linearly in a time span of just 0.44 secs. 
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Fig. 23 : Plot of slip vs. time 
 

The slip-speed characteristics is shown in the Fig. 24.  It can be 

noted that when the speed is varied from 0 to the rated speed, the 

slip decreases, i.e., the slip is inversely proportional to the speed, 

which is the property of the IM. When the speed is zero, the slip is 

100 %, while the IM is operating at near the rated speed (180 r/s), 

the slip is very very low. 
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Fig. 24 : Plot of slip vs. speed 

The plots of the direct axes (id) & quadrature axes currents (iq) 

versus time is shown in the Figs. 25 & 26    respectively.  From 

these figures, it can be inferred that the machine reaches the set 

reference speed of 955 rpm in a time interval of 0.44 secs. 
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Fig. 25 : Plot of id vs. time 
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Fig. 26 : Plot of iq vs. time 

The variation of the φ3 rotor currents (ir - abc) with time is 

shown in the Fig. 27.  It can be inferred that at lower speeds, the 

slip is more, the flux required to develop the suitable torque is 

also more.  Also, the torque required to reach the set speed is also 

more.  Hence, the magnitude of the rotor currents will also be 

more during the transient periods (starting periods) of the 

induction motor.  When the speed is reaching the set value from 

zero, the φ3 rotor currents decreases exponentially upto 0.44 

secs, thereafter it is maintained constant.  
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Fig. 27 : Plot of rotor current ir abc vs. time 

The φ3  rotor currents (ir - abc) is transformed to direct axes & 

quadrature axes currents using the d - q transformation techniques 

and the variation of the transformed currents with time is shown 

in the Fig. 28.  Here, only two phases (d & q axes) of the currents 

can be observed in the characteristic curve.  In this case, also, 

once the motor achieves the the set speed at 0.44 secs, it requires 

a nominal current to drive the IM system.   The plot of rotor angle 

vs. time is shown in the Fig. 29.  
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Fig. 28 : Plot of rotor current ir dq vs. time 
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Fig. 29 : Plot of rotor angle vs. time 
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Fig. 30 : Plot of speed vs. time 

To sum up, the steps required for the simulation purposes can be 

shown in the form of an data flow diagram (DFD) as follows :  

(1) Start 

(2) Invoke the fuzzy editor 

(3) Load the .fis file  

(4) Export the .fis file to WS 

(5) Run the TS model 

(6) Stop the TS simulation 

(7) Select variables x1, x2, y 

(8) Open anfis editor 

(9) Load variables from WS 

(10) Generate .fis file from WS 

(11) Train using BP algo method 

(12) Select suitable no. of epochs 

(13) Train the ANN 

(14) Export the data to WS 

(15) Run the ANFIS model 

(16) Stop the ANFIS simulation 

(17) Observe performance characteristics 

(18) Stop 

 

7. CONCLUSIONS 
 

A systematic approach of achieving the speed control of an 

induction motor drive by means of adaptive neuro fuzzy inference 

control strategy has been investigated in this paper.  Simulink 

model was developed in Matlab 7 with the ANFIS controller for 

the speed control of IM.  The control strategy was also developed 

by writing a set of 49 fuzzy rules according to the ANFIS control 

strategy with the back propagation algorithm in the back end.  The 

main advantage of designing the ANFIS coordination scheme is to 

control the speed of the IM & to increase the dynamic 

performance & to provide good stabilization.  Simulations were 

run in Matlab 7 & the results were observed on the corresponding 
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scopes.  The characteristic curves of speed, torque, current, flux, 

slip, load, etc. vs. time were observed.  The outputs take less time 

to stabilize, which can be observed from the simulation results.  

Due to the incorporation of the ANFIS controller in loop with the 

plant, it was observed that the motor reaches the rated speed very 

quickly in a lesser time compared to the Mamdani method [3]. 

The main advantages of the ANFIS scheme being, it is 

computationally efficient, works well with linear techniques, 

optimization & adaptive techniques. The developed control 

strategy is not only simple, but also reliable and may be easy to 

implement in real time applications using some interfacing cards 

like the dSPACE, data acquisition cards, TMSDSP cards, NI 

cards, etc. for control of various parameters.   This can also be 

combined with expert systems & rough sets for other applications.   

The ANFIS also can be used with systems handling more complex 

parameters. Another advantage of the ANFIS being the speed of 

operation of ANFIS is much faster than the other control 

strategies; the tedious task of training of membership functions is 

done in ANFIS.  Collectively, these results show that the ANFIS 

controller provides faster settling times, has very good dynamic 

response & good stabilization compared to the Mamdani-fuzzy 

control scheme [3]. 
 

Abbreviations 

AC Alternating Current 

AI Artificial Intelligence 

ANFIS Adaptive Neuro Fuzzy Inference System 

ANN Artificial Neural Networks 

BP Back Propagation 

DC Direct Current 

DSP Digital Signal Processor 

DTC Direct Torque Control 

DOF Degree Of Freedom 

FIS Fuzzy Inference System 

FLC Fuzzy Logic Controller 

FNN Fuzzy Neural Networks 

FOC Field Oriented Control 

IM Induction Motor 

IEEE Inst. of Elect. & Electronics Engg. 

MRAC Model Reference Adaptive Control 

MF Membership Function 

Matlab Matrix Laboratory 

NN Neural Network 

NI National Instruments 

PI Proportional Integrator 

PD Proportional Derivative 

PID Proportional Integral Derivative 

PWM Pulse Width Modulation 

SCIM Squirrel Cage Induction Motor 

SMC Sliding Mode Control 

SVPWM Space Vector Pulse Width Modulation 

TS Takagi Sugeno 

 

Nomenclatures & Symbols 

φ  Phase 

s Laplace domain 

z Discrete domain 

d Direct axis variable 

q Quadrature axis variable 

Vsd Direct axis stator voltage  

Vsq Quadrature axis stator voltage 

Vrd Direct axis rotor voltage 

Vrq Quadrature axis rotor voltage 

isd Direct axis stator current 

isq Quadrature axis stator current 

ird Direct axis rotor current 

irq Quadrature axis rotor current 

sdφ  Direct axis stator flux linkages  

rdφ  Quadrature axis stator flux linkages 

sdφ  Direct axis rotor flux linkages 

sdφ  Quadrature axis rotor flux linkages 

t Time 

Lr Rotor inductance 

Ls Stator inductance 

Lm Mutual inductance 

ω  Angular frequency 

Tem Electromagnetic torque 

P Power 

TL Load torque 

Jeq Equivalent Moment of Inertia 

Vm Maximum value of AC voltage 

VAn Voltage of phase-A to neutral 

VBn Voltage of phase-B to neutral 

VCn Voltage of phase-C to neutral 

VDC DC voltage 

 

Appendix 

A1.  Squirrel Cage Induction Motor (SCIM) specs :  

50 HP, 1800 rpm, 460 V, 60 Hz., 3-Phase 

2 pair of poles, Squirrel Cage type IM 

H108.0,087.0 3−×=Ω= ss LR  

mH 8.0,228.0 =Ω= rr LR   

mH7.34=mL  
2.662.1 mkgJ =  
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