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ABSTRACT 

To create a car controlled by voice of humans is a innovative 
concept. In this paper we use the concept of speech 
recognition algorithm and algorithms that will worn on for the 
command of the users. The switching concept is used initially, 
the remote is provided with the button, when that button is 
pressed  after that the speech recognition process starts. Then 
after user will command for opening window , the speech  
recognition system will process accordingly and the respective 

window will  open. Accordingly  the other commands will be 
processed. 

Keywords: Speaker Independent Speech Recognition, 

Dragon Naturally Speaking Software. 

1. INTRODUCTION 

In this paper we introduced a new concept of voice recognition 
in car which uses the concept of speech recognition algorithm. 
The electrical and mechanical domains are used. The digital 
image processing is also used. Voice recognition is coming to 
remote control and car navigation system .The user will 
command through microphone installed in the remote control 

of car. The signal are commanded in analogue form which 
needs to be converted into digital form. The  car is installed 
with the large database  which consist of  vocabulary[1] , that 
compose of  all keywords used for  commanding the car. The 
system is installed with fully computer system, the size of a 
voice-recognition program's effective vocabulary is directly 
related to the random access memory capacity of the computer 
in which it is installed [2]. The car is installed with special 

hardware that is display, which display the all the available 
commands and the instructions to the users  to make the 
system user friendly .If users will input the incorrect 
commands the display will generate error message and provide 
the most related commands to the user available in the system 
vocabulary and keywords  on display to the users. 

Automatic Speech Recognition (ASR) is a model of 

voice recognition designed for dictation .This model is 

installed in the car for dictation. our concept is totally based on 
the concept  on artificial intelligence and robotics. The paper is 
organised as- section 2 describes general information about the 

system, section 3 describes how the system works, section 4 
describes how speech recognition works, in section 5 process 
of transformation of pcm digital audio is presented, section 6 
describes spoken phenomenon, in section 7 we describes how 
to reduce computation and increase accuracy. Section 8 
presents context free grammers. Section 9 and 10 describes 
continuous dictation and adaptation respectively. Atlast in 
section 11 the conclusion is given. 

 

 

2. GENERAL INFORMATION 

When used in conjunction with the Multi Function Steering 
Wheel (available on many recent models), you can also 
operate all principal functions and accessories. You can access 
phone functions, including recalling stored numbers and 
dialing, operate Navigation System functions, or take notes 
through the built-in memo function. 

Currently, the size of the non-speaker-dependent vocabulary 
includes around 30 words, including numbers and commands. 
Spoken sequences of commands of up to five words and 
columns of numbers can be recognized with a high degree of 
accuracy[3]. 

You can create a telephone book with up to 40 numbers. 
Dialing is then simply a matter of speaking a name. Other 

normal telephone functions, such as repeat dialing and call 
hang-up are also voice activated[4]. 

 

3.     HOW IT WORKS 

Voice recognition uses a neural net to "learn" to recognize 

your voice. As you speak, the voice recognition software 
remembers the way you say each word. This customization 
allows voice recognition, even though everyone speaks with 
varying accents and inflection. 

The voice commands you use in your car are chosen from a 
fixed vocabulary and are passed on to the car telephone or 
navigation system via the telephone interface. The system 
gives acoustic feedback on everything recognized. 

 

Figure1-How the system works. 
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The system requires no lengthy voice recognition protocol and 
responds to a simple series of set voice commands that are not 
sensitive to the accent or dialect of the speaker. The voice 
control is a finite speech dialog system, which follows a 
predefined structure. Faulty operation or error recognition can 

easily be corrected by simply repeating the desired command. 
The voice recognizer is resistant to stationary environmental 
noise. 

4. HOW SPEECH RECOGNITION 

WORKS 

You might have already used speech recognition in products, 
and maybe even incorporated it into your own application, but 
you still don’t know how it works. This document will give 
you a technical overview of speech recognition so you can 
understand how it works, and better understand some of the 
capabilities and limitations of the technology. 

Speech recognition fundamentally functions as a pipeline that 
converts PCM (Pulse Code Modulation) digital audio from a 
sound card into recognized speech. The elements of the 
pipeline are: 

1. Transform the PCM digital audio into a better 

acoustic representation 

2. Apply a "grammar" so the speech recognizer knows 
what phonemes to expect. A grammar could be 
anything from a context-free grammar to full-blown 

English. 

3. Figure out which phonemes are spoken. 

4. Convert the phonemes into words. 

I’ll cover each of these steps individually 

5. TRANSFORM THE PCM DIGITAL 

AUDIO 

The first element of the pipeline converts digital audio coming 
from the sound card into a format that’s more representative of 
what a person hears. The digital audio is a stream of 
amplitudes, sampled at about 16,000 times per second. If you 
visualize the incoming data, it looks just like the output of an 
oscilloscope. It’s a wavy line that periodically repeats while 

the user is speaking.[5] While in this form, the data isn’t useful 
to speech recognition because it’s too difficult to identify any 
patterns that correlate to what was actually said. 

To make pattern recognition easier, the PCM digital audio is 
transformed into the "frequency domain." Transformations are 
done using a windowed fast-Fourier transform.[6] The output 
is similar to what a spectrograph produces. In frequency 
domain, you can identify the frequency components of a 
sound. From the frequency components, it’s possible to 
approximate how the human ear perceives the sound. 

The fast Fourier transform analyzes every 1/100th of a second 
and converts the audio data into the frequency domain. Each 
1/100th of a second results is a graph of the amplitudes of 
frequency components, describing the sound heard for that 

1/100th of a second. The speech recognizer has a database of 
several thousand such graphs (called a codebook) that identify 

different types of sounds the human voice can make. The 
sound is "identified" by matching it to its closest entry in the 
codebook, producing a number that describes the sound. This 
number is called the "feature number." (Actually, there are 
several feature numbers generated for every 1/100 the of a 
second but the process is easier to explain assuming only one.) 

The input to the speech recognizer began as a stream of 16,000 

PCM values per second. By using fast Fourier transforms and 
the codebook, it is boiled down into essential information, 
producing 100 feature numbers per second. 

6. SPOKEN PHENOMENAS 

I’m going to jump out of order here. To make the recognition 

process easier to understand, I’ll first explain how the 
recognizer determines what phonemes were spoken and then 
explain the grammars. 

In an ideal world, you could match each feature number to a 
phoneme. If a segment of audio resulted in feature #52, it 
could always mean that the user made an "h" sound. Feature 
#53 might be an "f" sound, etc. If this were true, it would be 
easy to figure out what phonemes the user spoke. 

Unfortunately, this doesn’t work because of a number of 
reasons: 

  Every time a user speaks a word it sounds different. 

Users do not produce exactly the same sound for the 

same phoneme. 

  The background noise from the microphone and 

user’s office sometimes causes the recognizer to 

hear a different vector than it would have if the user 

was in a quiet room with a high quality microphone. 

  The sound of a phoneme changes depending on what 

phonemes surround it. The "t" in "talk" sounds 

different than the "t" in "attack" and "mist". 

  The sound produced by a phoneme changes from the 

beginning to the end of the phoneme, and is not 

constant. The beginning of a "t" will produce 

different feature numbers than the end of a "t". 

The background noise and variability problems are solved by 
allowing a feature number to be used by more than just one 
phoneme, and using statistical models to figure out which 
phoneme is spoken. This can be done because a phoneme lasts 

for a relatively long time, 50 to 100 feature numbers, and it’s 
likely that one or more sounds are predominant during that 
time. Hence, it’s possible to predict what phoneme was 
spoken. 

Actually, the approximation is a bit more complex than this. 
I’ll explain by starting at the origin of the process.[7] For the 
speech recognition to learn how a phoneme sounds, a training 
tool is passed hundreds of recordings of the phoneme. It 
analyzes each 1/100 th of a second of these hundreds of 
recordings and produces a feature number. From these it learns 
statistics about how likely it is for a particular feature number 

to appear in a specific phoneme. Hence, for the phoneme "h", 
there might be a 55% chance of feature #52 appearing in any 
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1/100 th of a second, 30% chance of feature #189 showing up, 
and 15% chance of feature #53. Every 1/100 th of a second of 
an "f" sound might have a 10% chance of feature #52, 10% 
chance of feature #189, and 80% chance of feature #53[8]. 

The probability analysis done during training is used during 
recognition. The 6 feature numbers that are heard during 
recognition might be: 

52, 52, 189, 53, 52, 52 

The recognizer computes the probability of the sound being an 
"h" and the probability of it being any other phoneme, such as 
"f". The probability of "h" is: 

80% * 80% * 30% * 15% * 80% * 80% = 1.84% 

The probability of the sound being an "f" is: 

10% * 10% * 10% * 80% * 10% * 10 % = 0.0008% 

You can see that given the current data, "h" is a more likely 
candidate. (For those of you that are mathematical sticklers, 

you’ll notice that the "probabilities" are no longer probabilities 
because they don’t sum to one. From now on I’ll call them 
"scores" since they’re un-normalized probabilities.) 

The speech recognizer needs to know when one phoneme ends 
and the next begins. Speech recognition engines use a 
mathematical technique called "Hidden Markov Models" 
(HMMs) that figure this out. This article won’t get into the 
mathematics of how HMM’s work, but here's an intuitive feel. 
Lets assume that the recognizer heard a word with an "h" 
phoneme followed by an "ee" phoneme. The "ee" phoneme 
has a 75% chance of producing feature #82 every 1/100 th of a 

second, 15% of chance feature #98, and a 10% chance of 
feature #52. Notice that feature #52 also appears in "h". If you 
saw a lineup of the data, it might look like this: 

52, 52, 189, 53, 52, 52, 82, 52, 82, etc. 

So where does the "h" end and the "ee" begin? From looking 

at the features you can see that the 52’s are grouped at the 
beginning, and the 82’s grouped at the end. The split occurs 
someplace in-between. Humans can eye-ball this. Computers 
use Hidden Markov Models. 

By the way, the speech recognizer figures out when speech 
starts and stops because it has a "silence" phoneme, and each 
feature number has a probability of appearing in silence, just 
like any other phoneme. 

Now our recognizer can recognize what phoneme was spoken 
if there’s background noise or the user’s voice had some 
variation. However, there’s another problem. The sound of 
phonemes changes depending upon what phoneme came 
before and after. You can hear this with words such as "he" 
and "how". You don’t speak a "h" followed by an "ee" or 

"ow", but the vowels intrude into the "h", so the "h" in "he" 
has a bit of "ee" in it, and the "h" in "how" as a bit of "ow" in 
it. 

Speech recognition engines solve the problem by creating "tri-
phones", which are phonemes in the context of surrounding 
phonemes. Thus, there’s a tri-phone for "silence-h-ee" and one 
for "silence-h-ow". Since there are roughly 50 phonemes in 
English, you can calculate that there are 50*50*50 = 125,000 
tri-phones. That’s just too many for current PCs to deal with so 
similar sounding tri-phones are grouped together. 

And now for our last issue. The sound of a phoneme is not 
constant. A "t" sound is silent at first, then produces a sudden 
burst high frequency of noise, which then fades to silence. 
Speech recognizers solve this by splitting each phoneme into 

several segments and generating a different senone for each 
segment. The recognizer figures out where each segment 

begins and ends in the same way it figures out where a 
phoneme begins and ends. 

After all this work, the speech recognizer has all the 
mechanics necessary to recognize if a particular phoneme was 
spoken. An important question still needs answering: How 
does it determine which phoneme to look for? 

A speech recognizer works by hypothesizing a number of 
different "states" at once. Each state contains a phoneme with 
a history of previous phonemes. The hypothesized state with 
the highest score is used as the final recognition result. 

When the speech recognizer starts listening it has one 
hypothesized state. It assumes the user isn’t speaking and that 
the recognizer is hearing the "silence" phoneme. Every 1/100 

th of a second it hypothesizes that the user has started 
speaking, and adds a new state per phoneme, creating 50 new 
states, each with a score associated with it. After the first 
1/100 th of a second the recognizer has 51 hypothesized 
states.[9] 

In 1/100 th of a second, another feature number comes in. The 
scores of the existing states are recalculated with the new 
feature. Then, each phoneme has a chance of transitioning to 
yet another phoneme, so 51 * 50 = 2550 new states are 
created. The score of each state is the score of the first 1/100 th 
of a second times the score if the 2 nd 1/100 th of a second. 

After 2/100 ths of a second the recognizer has 2601 
hypothesized states. 

This same process is repeated every 1/100 th of a second. The 

score of each new hypothesis is the score of it’s parent 
hypothesis times the score derived from the new 1/100 th of a 
second. In the end, the hypothesis with the best score is what’s 
used as the recognition result[10]. 

Of course, a few optimizations are introduced. 

If the score of a hypothesis is much lower than the highest 
score then the hypothesis is dropped. This is called pruning. 
The optimization is intuitively obvious. If the recognizer is 
millions of times more confident that it heard "h eh l oe" than 
"z z z z," then there’s not much point in continuing the 
hypothesis that the recognizer heard, "z z z z". However, if too 
much is pruned then errors can be introduced since the 
recognizer might make a mistake about which phoneme was 
spoken. 

Recognizers also optimize by not hypothesizing a transition to 
a new phoneme ever 1/100 th of a second. To do this though, 

the recognizer must limit what phonemes can follow other 
phonemes. 

7. REDUCING COMPUTATION AND 

INCREASING ACCURACY 

The speech recognizer can now identify what phonemes were 
spoken. Figuring out what words were spoken should be an 
easy task. If the user spoke the phonemes, "h eh l oe", then you 
know they spoke "hello". The recognizer should only have to 
do a comparison of all the phonemes against a lexicon of 
pronunciations. 

It’s not that simple. 

1. The user might have pronounced "hello" as "h uh l 
oe", which might not be in the lexicon. 

2. The recognizer may have made a mistake and 
recognized "hello" as "h uh l oe". 
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3. Where does one word end and another begin? 

4. Even with all these optimizations, the speech 
recognition still requires too much CPU. 

To reduce computation and increase accuracy, the recognizer 
restricts acceptable inputs from the user. On the whole, this 
isn’t a bad assumption because: 

  It’s unlikely that the user will speak, 

"zwickangagang" since it’s not a valid word. 

  The user may limit him/her-self to a relatively small 

grammar. There are millions of words, but most 

people only use a few thousand of them a day, and 

they may need even fewer words to communicate to 

a computer. 

  When people speak they have a specific grammar 

that they use. After all, users say, "Open the 

window," not "Window the open." 

  Certain word sequences are more common than 

others. "New York City" is more common than 

"New York Aardvark." 

8. CONTEXT FREE GRAMMERS 

One of the techniques to reduce the computation and increase 
accuracy is called a "Context Free Grammar" (CFG). CFG’s 
work by limiting the vocabulary and syntax structure of speech 
recognition to only those words and sentences that are 
applicable to the application’s current state. 

The speech recognition gets the phonemes for each word by 
looking the word up in a lexicon. If the word isn’t in the 
lexicon then it predicts the pronunciation; See the "How Text-

to-Speech Works" document for an explanation of 
pronunciation prediction. Some words have more than one 
pronunciation, such as "read" which can be pronounced like 
"reed" or "red". The recognizer basically treats one word with 
multiple pronunciations the same as two "words". 

CFG’s slightly change the hypothesis portion of speech 
recognition. Rather than hypothesizing the transition to all 
phonemes, the recognizer merely hypothesizes the transition to 
the next acceptable phonemes. From the initial "silence" 
phoneme the recognizer hypothesizes the "s" in send, "k" in 
"call", and "eh" in exit. If the recognizer hypothesizes 

phoneme transitions from the "s" phoneme, it will only 
hypothesis "eh", followed by "n", "d", "m", "ae", "l", etc. 

You can see how this significantly reduces the computation. 

Instead of increasing the number of hypotheses by a factor of 
50 each time, the number of hypotheses stay constant within a 
word, and only increase a little bit on word transitions. Given a 
normal amount of pruning, there are no more than about 10 
hypotheses around at a time.[11] 

When the user has finished speaking, the recognizer returns 
the hypothesis with the highest score, and the words that the 
user spoke are returned to the application. 

 

9. CONTINUOUS DICTATION 

Continuous dictation allows the user to speak anything he/she 
wants out of a large vocabulary[14]. This is more difficult than 
discrete dictation because the speech recognition engine 

doesn’t easily know where one word ends and the next begins. 
For example: Speak out loud "recognize speech" and "wreck a 
nice beach" quickly; They both sound similar.[15] 

Continuous dictation works similar to discrete dictation except 
the end of a word is not detected by silence. Rather, when a 
hypothesis reaches the end of a word in continuous dictation, it 
then produces thousands of new hypotheses and prunes those 
out. The language model probability helps to prune the 
hypothesis down a lot more in continuous dictation.[12] 

Recognizers use a lot more optimizations to optimize 
processing and memory in continuous dictation systems. The 
article won’t cover those here because their description doesn’t 
help explain the underlying technology[16]. 

10. ADAPTATION 

Speech recognition system "adapt" to the user’s voice, 
vocabulary, and speaking style to improve accuracy. A system 
that has had time enough to adapt to an individual can have 
one fourth the error rate of a speaker independent system. 

Adaptation works because the speech recognition is often 
informed (directly or indirectly) by the user if it’s recognition 
was correct, and if not, what the correct recognition is. 

The recognizer can adapt to the speaker’s voice and variations 
of phoneme pronunciations in a number of ways. First, it can 
gradually adapt the codebook vectors used to calculate the 
acoustic feature number. Second, it can adapt the probability 
that a feature number will appear in a phoneme. Both of these 
are done by weighted averaging[13]. 

The language model can also be adapted in a number of ways. 
The recognizer can learn new words, and slowly increase 
probabilities of word sequences so that commonly used word 
sequences are expected. Both these techniques are useful for 
learning names. 

11. CONCLUSION 

This was a high level overview of how speech recognition 
working in  the cars. To use the voice concept is very complex 
process in automobiles because some applications are more 

complex to install and use .one can easily open the windows 
by using the concept of voice recognition and  close as well. 
The other applications possible are , controlling the music 
system, commanding over the power windows ,steering 
locking .The voice recognition concept is very much 
innovative and sensitive concept  in  the field of automobiles 
and iti can be made more secure using the concept of finger 
print analysis process.. 
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