
International Journal of Computer Applications (0975 – 8887)
Volume 6– No.6, September 2010

7

ABSTRACT

To create a car controlled by voice of humans is a innovative
concept. In this paper we use the concept of speech
recognition algorithm and algorithms that will worn on for the
command of the users. The switching concept is used initially,
the remote is provided with the button, when that button is
pressed after that the speech recognition process starts. Then
after user will command for opening window , the speech
recognition system will process accordingly and the respective

window will open. Accordingly the other commands will be
processed.

Keywords: Speaker Independent Speech Recognition,

Dragon Naturally Speaking Software.

1. INTRODUCTION

In this paper we introduced a new concept of voice recognition
in car which uses the concept of speech recognition algorithm.
The electrical and mechanical domains are used. The digital
image processing is also used. Voice recognition is coming to
remote control and car navigation system .The user will
command through microphone installed in the remote control

of car. The signal are commanded in analogue form which
needs to be converted into digital form. The car is installed
with the large database which consist of vocabulary[1] , that
compose of all keywords used for commanding the car. The
system is installed with fully computer system, the size of a
voice-recognition program's effective vocabulary is directly
related to the random access memory capacity of the computer
in which it is installed [2]. The car is installed with special

hardware that is display, which display the all the available
commands and the instructions to the users to make the
system user friendly .If users will input the incorrect
commands the display will generate error message and provide
the most related commands to the user available in the system
vocabulary and keywords on display to the users.

Automatic Speech Recognition (ASR) is a model of

voice recognition designed for dictation .This model is

installed in the car for dictation. our concept is totally based on
the concept on artificial intelligence and robotics. The paper is
organised as- section 2 describes general information about the

system, section 3 describes how the system works, section 4
describes how speech recognition works, in section 5 process
of transformation of pcm digital audio is presented, section 6
describes spoken phenomenon, in section 7 we describes how
to reduce computation and increase accuracy. Section 8
presents context free grammers. Section 9 and 10 describes
continuous dictation and adaptation respectively. Atlast in
section 11 the conclusion is given.

2. GENERAL INFORMATION

When used in conjunction with the Multi Function Steering
Wheel (available on many recent models), you can also
operate all principal functions and accessories. You can access
phone functions, including recalling stored numbers and
dialing, operate Navigation System functions, or take notes
through the built-in memo function.

Currently, the size of the non-speaker-dependent vocabulary
includes around 30 words, including numbers and commands.
Spoken sequences of commands of up to five words and
columns of numbers can be recognized with a high degree of
accuracy[3].

You can create a telephone book with up to 40 numbers.
Dialing is then simply a matter of speaking a name. Other

normal telephone functions, such as repeat dialing and call
hang-up are also voice activated[4].

3. HOW IT WORKS

Voice recognition uses a neural net to "learn" to recognize

your voice. As you speak, the voice recognition software
remembers the way you say each word. This customization
allows voice recognition, even though everyone speaks with
varying accents and inflection.

The voice commands you use in your car are chosen from a
fixed vocabulary and are passed on to the car telephone or
navigation system via the telephone interface. The system
gives acoustic feedback on everything recognized.

Figure1-How the system works.

Sarbjeet Singh
M.Tech. CSE(2

st
 Year)

Sri Sai College of Engg.
And Technology,

Pathankot

Sukhvinder Singh
M.Tech. CSE(2st Year)
Sri Sai College of Engg.

And Technology,
Pathankot

Mandeep Kour
M.Tech. CSE(2st Year)
Sri Sai College of Engg.

And Technology,
Pathankot

Sonia Manhas
M.Tech. CSE(2st Year)

Sri Sai College of
Engg. And Technology,

Pathankot

Voice Recognition in Automobiles

http://www.wisegeek.com/what-is-automatic-speech.htm
http://www.utoronto.ca/atrc/reference/tech/voicerecog.html

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.6, September 2010

8

The system requires no lengthy voice recognition protocol and
responds to a simple series of set voice commands that are not
sensitive to the accent or dialect of the speaker. The voice
control is a finite speech dialog system, which follows a
predefined structure. Faulty operation or error recognition can

easily be corrected by simply repeating the desired command.
The voice recognizer is resistant to stationary environmental
noise.

4. HOW SPEECH RECOGNITION

WORKS

You might have already used speech recognition in products,
and maybe even incorporated it into your own application, but
you still don’t know how it works. This document will give
you a technical overview of speech recognition so you can
understand how it works, and better understand some of the
capabilities and limitations of the technology.

Speech recognition fundamentally functions as a pipeline that
converts PCM (Pulse Code Modulation) digital audio from a
sound card into recognized speech. The elements of the
pipeline are:

1. Transform the PCM digital audio into a better

acoustic representation

2. Apply a "grammar" so the speech recognizer knows
what phonemes to expect. A grammar could be
anything from a context-free grammar to full-blown

English.

3. Figure out which phonemes are spoken.

4. Convert the phonemes into words.

I’ll cover each of these steps individually

5. TRANSFORM THE PCM DIGITAL

AUDIO

The first element of the pipeline converts digital audio coming
from the sound card into a format that’s more representative of
what a person hears. The digital audio is a stream of
amplitudes, sampled at about 16,000 times per second. If you
visualize the incoming data, it looks just like the output of an
oscilloscope. It’s a wavy line that periodically repeats while

the user is speaking.[5] While in this form, the data isn’t useful
to speech recognition because it’s too difficult to identify any
patterns that correlate to what was actually said.

To make pattern recognition easier, the PCM digital audio is
transformed into the "frequency domain." Transformations are
done using a windowed fast-Fourier transform.[6] The output
is similar to what a spectrograph produces. In frequency
domain, you can identify the frequency components of a
sound. From the frequency components, it’s possible to
approximate how the human ear perceives the sound.

The fast Fourier transform analyzes every 1/100th of a second
and converts the audio data into the frequency domain. Each
1/100th of a second results is a graph of the amplitudes of
frequency components, describing the sound heard for that

1/100th of a second. The speech recognizer has a database of
several thousand such graphs (called a codebook) that identify

different types of sounds the human voice can make. The
sound is "identified" by matching it to its closest entry in the
codebook, producing a number that describes the sound. This
number is called the "feature number." (Actually, there are
several feature numbers generated for every 1/100 the of a
second but the process is easier to explain assuming only one.)

The input to the speech recognizer began as a stream of 16,000

PCM values per second. By using fast Fourier transforms and
the codebook, it is boiled down into essential information,
producing 100 feature numbers per second.

6. SPOKEN PHENOMENAS

I’m going to jump out of order here. To make the recognition

process easier to understand, I’ll first explain how the
recognizer determines what phonemes were spoken and then
explain the grammars.

In an ideal world, you could match each feature number to a
phoneme. If a segment of audio resulted in feature #52, it
could always mean that the user made an "h" sound. Feature
#53 might be an "f" sound, etc. If this were true, it would be
easy to figure out what phonemes the user spoke.

Unfortunately, this doesn’t work because of a number of
reasons:

 Every time a user speaks a word it sounds different.

Users do not produce exactly the same sound for the

same phoneme.

 The background noise from the microphone and

user’s office sometimes causes the recognizer to

hear a different vector than it would have if the user

was in a quiet room with a high quality microphone.

 The sound of a phoneme changes depending on what

phonemes surround it. The "t" in "talk" sounds

different than the "t" in "attack" and "mist".

 The sound produced by a phoneme changes from the

beginning to the end of the phoneme, and is not

constant. The beginning of a "t" will produce

different feature numbers than the end of a "t".

The background noise and variability problems are solved by
allowing a feature number to be used by more than just one
phoneme, and using statistical models to figure out which
phoneme is spoken. This can be done because a phoneme lasts

for a relatively long time, 50 to 100 feature numbers, and it’s
likely that one or more sounds are predominant during that
time. Hence, it’s possible to predict what phoneme was
spoken.

Actually, the approximation is a bit more complex than this.
I’ll explain by starting at the origin of the process.[7] For the
speech recognition to learn how a phoneme sounds, a training
tool is passed hundreds of recordings of the phoneme. It
analyzes each 1/100 th of a second of these hundreds of
recordings and produces a feature number. From these it learns
statistics about how likely it is for a particular feature number

to appear in a specific phoneme. Hence, for the phoneme "h",
there might be a 55% chance of feature #52 appearing in any

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.6, September 2010

9

1/100 th of a second, 30% chance of feature #189 showing up,
and 15% chance of feature #53. Every 1/100 th of a second of
an "f" sound might have a 10% chance of feature #52, 10%
chance of feature #189, and 80% chance of feature #53[8].

The probability analysis done during training is used during
recognition. The 6 feature numbers that are heard during
recognition might be:

52, 52, 189, 53, 52, 52

The recognizer computes the probability of the sound being an
"h" and the probability of it being any other phoneme, such as
"f". The probability of "h" is:

80% * 80% * 30% * 15% * 80% * 80% = 1.84%

The probability of the sound being an "f" is:

10% * 10% * 10% * 80% * 10% * 10 % = 0.0008%

You can see that given the current data, "h" is a more likely
candidate. (For those of you that are mathematical sticklers,

you’ll notice that the "probabilities" are no longer probabilities
because they don’t sum to one. From now on I’ll call them
"scores" since they’re un-normalized probabilities.)

The speech recognizer needs to know when one phoneme ends
and the next begins. Speech recognition engines use a
mathematical technique called "Hidden Markov Models"
(HMMs) that figure this out. This article won’t get into the
mathematics of how HMM’s work, but here's an intuitive feel.
Lets assume that the recognizer heard a word with an "h"
phoneme followed by an "ee" phoneme. The "ee" phoneme
has a 75% chance of producing feature #82 every 1/100 th of a

second, 15% of chance feature #98, and a 10% chance of
feature #52. Notice that feature #52 also appears in "h". If you
saw a lineup of the data, it might look like this:

52, 52, 189, 53, 52, 52, 82, 52, 82, etc.

So where does the "h" end and the "ee" begin? From looking

at the features you can see that the 52’s are grouped at the
beginning, and the 82’s grouped at the end. The split occurs
someplace in-between. Humans can eye-ball this. Computers
use Hidden Markov Models.

By the way, the speech recognizer figures out when speech
starts and stops because it has a "silence" phoneme, and each
feature number has a probability of appearing in silence, just
like any other phoneme.

Now our recognizer can recognize what phoneme was spoken
if there’s background noise or the user’s voice had some
variation. However, there’s another problem. The sound of
phonemes changes depending upon what phoneme came
before and after. You can hear this with words such as "he"
and "how". You don’t speak a "h" followed by an "ee" or

"ow", but the vowels intrude into the "h", so the "h" in "he"
has a bit of "ee" in it, and the "h" in "how" as a bit of "ow" in
it.

Speech recognition engines solve the problem by creating "tri-
phones", which are phonemes in the context of surrounding
phonemes. Thus, there’s a tri-phone for "silence-h-ee" and one
for "silence-h-ow". Since there are roughly 50 phonemes in
English, you can calculate that there are 50*50*50 = 125,000
tri-phones. That’s just too many for current PCs to deal with so
similar sounding tri-phones are grouped together.

And now for our last issue. The sound of a phoneme is not
constant. A "t" sound is silent at first, then produces a sudden
burst high frequency of noise, which then fades to silence.
Speech recognizers solve this by splitting each phoneme into

several segments and generating a different senone for each
segment. The recognizer figures out where each segment

begins and ends in the same way it figures out where a
phoneme begins and ends.

After all this work, the speech recognizer has all the
mechanics necessary to recognize if a particular phoneme was
spoken. An important question still needs answering: How
does it determine which phoneme to look for?

A speech recognizer works by hypothesizing a number of
different "states" at once. Each state contains a phoneme with
a history of previous phonemes. The hypothesized state with
the highest score is used as the final recognition result.

When the speech recognizer starts listening it has one
hypothesized state. It assumes the user isn’t speaking and that
the recognizer is hearing the "silence" phoneme. Every 1/100

th of a second it hypothesizes that the user has started
speaking, and adds a new state per phoneme, creating 50 new
states, each with a score associated with it. After the first
1/100 th of a second the recognizer has 51 hypothesized
states.[9]

In 1/100 th of a second, another feature number comes in. The
scores of the existing states are recalculated with the new
feature. Then, each phoneme has a chance of transitioning to
yet another phoneme, so 51 * 50 = 2550 new states are
created. The score of each state is the score of the first 1/100 th
of a second times the score if the 2 nd 1/100 th of a second.

After 2/100 ths of a second the recognizer has 2601
hypothesized states.

This same process is repeated every 1/100 th of a second. The

score of each new hypothesis is the score of it’s parent
hypothesis times the score derived from the new 1/100 th of a
second. In the end, the hypothesis with the best score is what’s
used as the recognition result[10].

Of course, a few optimizations are introduced.

If the score of a hypothesis is much lower than the highest
score then the hypothesis is dropped. This is called pruning.
The optimization is intuitively obvious. If the recognizer is
millions of times more confident that it heard "h eh l oe" than
"z z z z," then there’s not much point in continuing the
hypothesis that the recognizer heard, "z z z z". However, if too
much is pruned then errors can be introduced since the
recognizer might make a mistake about which phoneme was
spoken.

Recognizers also optimize by not hypothesizing a transition to
a new phoneme ever 1/100 th of a second. To do this though,

the recognizer must limit what phonemes can follow other
phonemes.

7. REDUCING COMPUTATION AND

INCREASING ACCURACY

The speech recognizer can now identify what phonemes were
spoken. Figuring out what words were spoken should be an
easy task. If the user spoke the phonemes, "h eh l oe", then you
know they spoke "hello". The recognizer should only have to
do a comparison of all the phonemes against a lexicon of
pronunciations.

It’s not that simple.

1. The user might have pronounced "hello" as "h uh l
oe", which might not be in the lexicon.

2. The recognizer may have made a mistake and
recognized "hello" as "h uh l oe".

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.6, September 2010

10

3. Where does one word end and another begin?

4. Even with all these optimizations, the speech
recognition still requires too much CPU.

To reduce computation and increase accuracy, the recognizer
restricts acceptable inputs from the user. On the whole, this
isn’t a bad assumption because:

 It’s unlikely that the user will speak,

"zwickangagang" since it’s not a valid word.

 The user may limit him/her-self to a relatively small

grammar. There are millions of words, but most

people only use a few thousand of them a day, and

they may need even fewer words to communicate to

a computer.

 When people speak they have a specific grammar

that they use. After all, users say, "Open the

window," not "Window the open."

 Certain word sequences are more common than

others. "New York City" is more common than

"New York Aardvark."

8. CONTEXT FREE GRAMMERS

One of the techniques to reduce the computation and increase
accuracy is called a "Context Free Grammar" (CFG). CFG’s
work by limiting the vocabulary and syntax structure of speech
recognition to only those words and sentences that are
applicable to the application’s current state.

The speech recognition gets the phonemes for each word by
looking the word up in a lexicon. If the word isn’t in the
lexicon then it predicts the pronunciation; See the "How Text-

to-Speech Works" document for an explanation of
pronunciation prediction. Some words have more than one
pronunciation, such as "read" which can be pronounced like
"reed" or "red". The recognizer basically treats one word with
multiple pronunciations the same as two "words".

CFG’s slightly change the hypothesis portion of speech
recognition. Rather than hypothesizing the transition to all
phonemes, the recognizer merely hypothesizes the transition to
the next acceptable phonemes. From the initial "silence"
phoneme the recognizer hypothesizes the "s" in send, "k" in
"call", and "eh" in exit. If the recognizer hypothesizes

phoneme transitions from the "s" phoneme, it will only
hypothesis "eh", followed by "n", "d", "m", "ae", "l", etc.

You can see how this significantly reduces the computation.

Instead of increasing the number of hypotheses by a factor of
50 each time, the number of hypotheses stay constant within a
word, and only increase a little bit on word transitions. Given a
normal amount of pruning, there are no more than about 10
hypotheses around at a time.[11]

When the user has finished speaking, the recognizer returns
the hypothesis with the highest score, and the words that the
user spoke are returned to the application.

9. CONTINUOUS DICTATION

Continuous dictation allows the user to speak anything he/she
wants out of a large vocabulary[14]. This is more difficult than
discrete dictation because the speech recognition engine

doesn’t easily know where one word ends and the next begins.
For example: Speak out loud "recognize speech" and "wreck a
nice beach" quickly; They both sound similar.[15]

Continuous dictation works similar to discrete dictation except
the end of a word is not detected by silence. Rather, when a
hypothesis reaches the end of a word in continuous dictation, it
then produces thousands of new hypotheses and prunes those
out. The language model probability helps to prune the
hypothesis down a lot more in continuous dictation.[12]

Recognizers use a lot more optimizations to optimize
processing and memory in continuous dictation systems. The
article won’t cover those here because their description doesn’t
help explain the underlying technology[16].

10. ADAPTATION

Speech recognition system "adapt" to the user’s voice,
vocabulary, and speaking style to improve accuracy. A system
that has had time enough to adapt to an individual can have
one fourth the error rate of a speaker independent system.

Adaptation works because the speech recognition is often
informed (directly or indirectly) by the user if it’s recognition
was correct, and if not, what the correct recognition is.

The recognizer can adapt to the speaker’s voice and variations
of phoneme pronunciations in a number of ways. First, it can
gradually adapt the codebook vectors used to calculate the
acoustic feature number. Second, it can adapt the probability
that a feature number will appear in a phoneme. Both of these
are done by weighted averaging[13].

The language model can also be adapted in a number of ways.
The recognizer can learn new words, and slowly increase
probabilities of word sequences so that commonly used word
sequences are expected. Both these techniques are useful for
learning names.

11. CONCLUSION

This was a high level overview of how speech recognition
working in the cars. To use the voice concept is very complex
process in automobiles because some applications are more

complex to install and use .one can easily open the windows
by using the concept of voice recognition and close as well.
The other applications possible are , controlling the music
system, commanding over the power windows ,steering
locking .The voice recognition concept is very much
innovative and sensitive concept in the field of automobiles
and iti can be made more secure using the concept of finger
print analysis process..

12. REFERENCES

[1] W. Stokoe, D. Casterline, and C. Croneberg, A

Dictionary of American Sign Language on Linguistic
Principles, Gallaudet College Press, Washington D.C.,
USA, 1965.

[2] S. Ong and S. Ranganath, “Automatic sign language
analysis: A survey and the future beyond lexical

International Journal of Computer Applications (0975 – 8887)
Volume 6– No.6, September 2010

11

meaning,” IEEE Trans. PAMI, vol. 27, no. 6, pp. 873–
891, June 2005.

[3] T.S. Huang Y. Wu, “Vision-based gesture
recognition: a review,” in Gesture Workshop, Gif-sur-
Yvette, France, Mar. 1999, vol. 1739 of LNCS, pp. 103–
115.

[4] G. Yao, H. Yao, X. Liu, and F. Jiang, “Real time large
vocabulary continuous sign language recognition based
on op/viterbi algorithm,” in Intl. Conf. Pattern
Recognition, Hong Kong, Aug. 2006, vol. 3, pp. 312–
315.

[5] C. Vogler and D. Metaxas, “A framework for
recognizing the simultaneous aspects of american sign

language,” Computer Vision & Image Understanding,
vol. 81, no. 3, pp. 358–384, Mar. 2001.

[6] R. Bowden, D. Windridge, T. Kadir, A. Zisserman,

and M. Brady, “A linguistic feature vector for the visual
interpretation of sign language,” in European Conf.
Computer Vision, 2004, vol. 1, pp. 390–401.

[7] S. B. Wang, A. Quattoni, Louis-Philippe Morency,
David Demirdjian, and Trevor Darrell, “Hidden
conditional random fields for gesture recognition,” in
Computer Vision & Pattern Recognition, New York,
USA, June 2006, vol. 2, pp. 1521–1527.

[8] J. L¨o¨of, M. Bisani, C. Gollan, G. Heigold, B.
Hoffmeister, C. Plahl, R. Schluter, and H. Ney, “The
2006 RWTH parliamentary speeches transcription
system,” in ICSLP, Pittsburgh, PA, USA, Sept. 2006.

[9] D. Keysers, T. Deselaers, C. Gollan, and H. Ney,
“Deformation models for image recognition,” IEEE
Trans. PAMI, p. to appear, 2007.

[10] P. Dreuw, T. Deselaers, D. Rybach, D. Keysers, and
H. Ney, “Tracking using dynamic programming for
appearance-based sign language recognition,” in IEEE
Intl. Conf. on Automatic Face and Gesture Recognition,
Southampton, Apr. 2006, pp. 293–298.

[11] C. Neidle, J. Kegl, D. MacLaughlin, B. Bahan, and
R.G. Lee, The Syntax of American Sign Language, MIT
Press, 1999.

[12] T. K¨olsch, D. Keysers, H. Ney, and R. Paredes,
“Enhancements for local feature based image

classification,” in Intl. Conf. Pattern Recognition,
Cambridge, UK, Aug. 2004, vol. 1, pp. 248–251.

[13] A. Zolnay, R. Schl¨uter, and H. Ney, “Acoustic

feature combination for robust speech recognition,” in
ICASSP, Philadelphia, PA, Mar. 2005, vol. 1, pp. 457–
460.

[14] D. Klakow and J. Peters, “Testing the correlation of
word error rate and perplexity,” Speech Communication,
vol. 38, pp. 19–28, 2002.

[15] A. Agarwal and B. Triggs, “Recovering 3d human
pose from monocular images,” IEEE Trans. PAMI, vol.
28, no. 1, pp. 44–58, Jan. 2006.

[16] P. Dreuw, D. Stein, and H. Ney, “Enhancing a sign
language translation system with vision-based features,”
in Intl. Workshop on Gesture in HCI and Simulation
2007, Lisbon, Portugal, May 2007, p. to appear.

[17] Dillon, T.W., & Norcio, A. F. (1997, October). User
performance and acceptance of a speech-input interface
in a health assessment task. International Journal of
Human-Computer Studies, 47(4), 591-602.

