
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

1

Evaluation of the Capabilities of WireShark as a tool for

Intrusion Detection
Usha Banerjee

Department of Computer Science &
Engineering

College of Engineering Roorkee

Ashutosh Vashishtha

Department of Information
Technology

College of Engineering Roorkee
Roorkee, India

 Mukul Saxena
Department of Information

Technology
College of Engineering Roorkee

Roorkee, India

ABSTRACT

This paper illustrates the functionality of Wireshark as a sniffing

tool in networks. This has been proven by an experimental setup

which depicts the efficiency of detection of a malicious packet in

any network. Testing has been achieved through experimentation

on a real time network analyzed by Wireshark. Inferences have

been made which clearly depict Wireshark’s capabilities

highlighting it as a strong candidate for future development into

a robust intrusion detection system. This paper highlights the

working of Wireshark as a network protocol analyzer and also

accentuates its flexibility as an open source utility to allow

developers to add possible functionalities of intrusion detection

devices in it.

Keywords

Data, Intrusion Detection, Sniffing, WireShark

1. INTRODUCTION
Recent years have witnessed a great surge in the usage of mobile

devices. Thus, research in the areas of mobile and ubiquitous

computing is of prime importance. Security is one of the primary

concerns of users of such devices [1]. In any typical network,

wired or otherwise, unlikely and unwanted entry of malicious

users and/or malicious data packets are a major concern as far as

the security of the network is concerned. Data packets are the

basic entities of all communication systems. Security of a

network thus implies security of the data packets. A data packet

is the most basic block of communication involving a streamlined

flow of its infinite other replicas in order to transmit information

from one device to another. A data packet is contained in data

segment that holds other information like the protocol being

used, the destination hardware address etc. In a nutshell, the

identity of any packet coming from any unreliable source can be

detected by studying its contents. This study of detecting and

only viewing the contents of a data segment and its packet is

termed as packet sniffing and when a log of this information is

prepared, the technique is called packet logging. A packet

analyzer is a computer software or hardware that can intercept

and log traffic passing through a digital network or part of a

network. As data streams flow across the network, the sniffer

captures each packet and eventually decodes and analyzes its

content according to the appropriate specification.

This paper analyzes the process of packet sniffing and packet

logging. Wireshark is a commonly available open source network

protocol analyzer. In this paper we use Wireshark to study the

functionality of a packet analyzer. Using Wireshark it becomes

very convenient to detect any suspicious packet entry from any

unreliable source. Any packet sniffer/logger with the added

functionality of detecting malicious entries in a network is

termed as an intrusion detection system (IDS) [2,3,4].

Furthermore, an IDS usually stores a database of known attack

signatures and can compare patterns of activity, traffic or

behavior it sees in the logs it is monitoring against those

signatures to recognize when a close match between a signature

and current or recent behavior occurs. At that point, the IDS can

issue alarms or alerts. A signature is a pattern that matches a

known malware. In this paper a testing problem has been

designed and on the basis of the results of the experiment,

appropriate conclusions have been draw indicating Wireshark’s

capabilities as a possible IDS.

2. A. Brief History of Packet Sniffers/Loggers
The goal of packet sniffing is to monitor network assets to detect

anomalous behavior and misuse. This concept has been around

for nearly twenty years but only recently has it seen a dramatic

rise in popularity and incorporation into the overall information

security infrastructure. Beginning in 1980, with James

Anderson’s paper [12], Computer Security Threat Monitoring

and Surveillance, the notion of intrusion detection was born.

James Anderson’s seminal paper, written for a government

organization, introduced the notion that audit trails contained

vital information that could be valuable in tracking misuse and

understanding user behavior. His work was the start of host-

based intrusion detection and IDS in general. In 1988, the

Haystack project [13] at Lawrence Livermore Labs released

another version of intrusion detection for the US Air Force. This

project produced an IDS that analyzed audit data by comparing it

with defined patterns. In a telephone interview with the author,

Crosby Marks, a former Haystack Project team member and

Haystack Labs employee said that, ”searching through this large

amount of data for one specific misuse was equivalent to looking

for a needle in a haystack.” In 1990, UC Davis’s Todd Heberlein

introduced the idea of network intrusion detection. Heberlein

[14] was the primary author and developer of Network Security

Monitor (NSM), the first network intrusion detection system.

Commercial development of intrusion detection technologies

began in the early 1990s. Haystack Labs was the first commercial

vendor of IDS tools, with its Stalker line of host-based products.

Nonetheless, commercial intrusion detection systems developed

slowly during these years and only truly blossomed towards the

latter half of the decade. The intrusion detection market began to

gain in popularity and truly generate revenues around 1997.

Gerald Combs started writing a program called Ethereal so that

he could have a tool to capture and analyze packets; he released

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

2

the first version around 1998. The name was subsequently

changed to Wireshark in May, 2006 owing to copyright issues.

3. WIRESHARK
Wireshark [2] is the world’s most popular network protocol

analyzer. It has a rich and powerful feature set and runs on most

computing platforms including Windows, OS X, Linux, and

UNIX. Network professionals, security experts, developers, and

educators around the world use it regularly. It is freely available

as open source, and is released under the GNU General Public

License version 2. It has been developed and maintained by a

global team of protocol experts, and it is an example of a

disruptive technology. Wireshark formerly used to be known as

Ethereal. Wireshark is a free packet sniffer computer application.

It is used for network troubleshooting, analysis, software and

communications protocol development, and education. In June

2006 the project was renamed from Ethereal due to trademark

issues. Wireshark has tools for capturing, viewing, and analysis

of data packets. Wireshark has sophisticated wireless protocol

analysis support to help administrators troubleshoot wireless

networks. With the appropriate driver support, Wireshark can

capture traffic ”from the air” and decode it into a format that

helps administrators track down issues that are causing poor

performance, intermittent connectivity, and other common

problems.

4. SNIFFING TOOLS
Traditional network sniffing on an Ethernet network is fairly

easy to set up. In a shared environment, an analysis workstation

running Wireshark starts a new packet capture, which configures

the card in promiscuous mode and waits until the desired amount

of traffic has been captured. A node can be connected to a

network through multitude of mechanisms, wired and wireless,

covering many topologies and making use of wide variety of

protocols. Wireshark provides users the capability of capturing

the packets traveling over the entire network on a particular

interface at a particular time. One of the primary tools is the

capture tool. The interface option as shown in figure 1 below

lists all available interfaces on the node and can enable capturing

for any of these nodes. Options tab provides more sophisticated

approach for each interface one at a time. The go menu items

provide the capabilities of going through packets in the capture

list. The View menu provides tools for listing packets, time

display formats and coloring rules.

Figure 1. The Capture Tool

5. LOGGING TOOLS
Wireshark provides amazing flexibility over other IDS/IPS

devices in the field of log maintenance. Log files can be captured

at an hourly or weekly rate based on the requirement of the

network and the capability of handling devices. Thus, files can

be easily captured over a fast processing node and transferred to

a slower database. Another interesting aspect is the feature of

exporting the capture file into various other and more

understandable formats- the plain text, post script, the CSV etc.

based on the analyzer tool used.

Figure 2. The Analyzer tool

5.1 Prefiltering and Analysis
Wireshark has two filtering languages: one used when capturing

packets, and one used when displaying packets. Display filters

allow to concentrate on the packets that the administrator is

interested in, while hiding the currently uninteresting ones.

Packets can be selected on the basis of protocol, the presence of a

field, the values of fields, comparison between fields etc. The

queries which can be entered inside the field or the expression

tab (figure 3) can be selected to provide with much advanced

definitions and listing all the protocols from wide range of

protocols in Wireshark. Although only simpler commands can be

used manually, few of these queries have been used in our

experiment. The important feature of these commands is the use

of operators, logical-and logical-or and negation operators are but

a few to

Figure 3. The expression tab

Figure 4. Sample Screenshot of Wireshark in action

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

3

Figure 5. TCP Stream

name. Value comparisons filtering packets based on lengths

secure BSSIDs source and destination addresses can be done.

The menu provides tools for packet filtering and analysis

precapture and during the capture itself. It eases the use of filter

connectors and preparing filters. It also provides mechanisms for

decoding capture files into various modes, such as the ASCII.

This item can be also used to follow protocol streams of

particular dialogues on particular protocols.

6. POST SNIFFING ANALYSIS
In this section we explore that second type of filter: display

filters. The first one has already been dealt with”filtering while

capturing”. Display filters have applications ranging from error

detection to packet sniffing and pattern identification. Worth

mentioning here is a fact that Wireshark does not automatically

generate alarms and alerts like a normal IDS/IPS. Instead

activities that took place during a capture can be monitored and

analyzed later - manually or through the use of other

applications.

Figure 6. The Information Table

Figure 7. The Conversation Tool

A tool to support the mentioned arguments is the expert

information table shown below (figure 6), as it visibly marks for

checksum errors, redundancy checks and lost segment

accounting. Another tool for intrusion and filter analysis is the

menu item - statistics. Statistics of various kinds can be provided

for an already captured packet, its protocol and the conversation.

It can monitor conversation of nodes passing packets between

them in the captured file in the given direction. Other statistical

tools are the packet summary and protocol hierarchy tools. The

second major tool is the statistical IO graph (figure 8). These

graphs can show flow of traffic over the network in entirety or for

certain protocols only. The tool also provides the option of

showing differently post filtered capture on the graph in various

colors to enable easy identification, thus making Wireshark not

only one of the most easily accessible sniffing software but also

one of the most user friendly and comprehensible utility. Time

can be set relative to the first packet or according to system

clock. Usage of system clock time is effective when we are

merging various capture files captured at different times. Another

statistic tool worth mentioning here is the timestamp, each

packet can be time stamped according to user’s requirements.

Even with the presence of the mentioned tools Wireshark is not

by definition an IDS/IPS device although with the help of a few

other utilities, like LUA and the Hex dump convertor.

Figure 8. The IO Graph tool

Figure 9. Experimental Setup

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

4

7. TESTING PROBLEM
The aim of the experiment below is to test the presence of

unauthorized packet access to the server node i.e. the node on

which unauthorized access is denied; from external node(s) i.e.

experimental node, which represents a single or a group of

malicious nodes in the Real Time Scenario (RTS). In the current

experimental set up we have four nodes each depicting a possible

node or set of nodes in a real time situation (figure 10). We have

four nodes here connected by a switch (non-configurable). The

nodes are as follows:

1. ANALYSER: It is the computer with Wireshark installed

in it and running in promiscuous mode; IP ADDRESS:

10.0.0.12 Netmask 255.0.0.0

2. SERVER NODE: This is the node that we expect to protect

from an external intrusion(although in the IDS scenario we

will only be able to detect any intrusion on the server); IP

ADDRESS: 10.0.0.7 Netmask 255.0.0.0

3. INTERNAL NODE: These are the nodes that can operate

both on the server and connect to the outside network; IP

address: 10.0.0.9 Netmask:255.0.0.0

4. EXTERNAL NODE: This is the possible intruder and

under filtered mode we expect to see all possible intrusion

attempts by this node on the server; IP address:10.0.0.5

Netmask 255.0.0.0

INTIAL STATE (Unfiltered Capture):

In this state no filtering expression has been used so all the

traffic passing through the analyzer is being displayed here.

UDP traffic here flows from:

EXTERNAL NODE to SERVER NODE: 10.0.0.5 TO

10.0.0.7

EXTERNAL NODE to INTERNAL NODE: 10.0.0.5 TO

10.0.0.9

INTERNAL NODE to SERVER NODE : 10.0.0.9 TO

10.0.0.7

The following are the graphs obtained while observing the traffic

between the above mentioned nodes during the unfiltered capture

under the heavy and light capture respectively:-

Figure 10. Graph Showing Short Capture During Heavy

Traffic Flow

The presence of sharp peaks is due to UDP traffic flow.

Figure 11. Graph Showing Captured Traffic during

Experimental Setup

The peaks (ticks) in this graph are lower compared to the

previous graphs because of lower traffic flow as the lesser data

flow.

FINAL SET UP:

Filter queries used:

1) IP.SRC == 10.0.0.5 and IP.DST == 10.0.0.9

2) IP.SRC == 10.0.0.9 and IP.DST == 10.0.0.7

3) UDP

Operators used:

Logical AND :- and

Logical Negation :- !

Logical OR: - or

Final Query: - udp and !(ip.src == 10.0.0.5 and ip.dst ==

10.0.0.9) and (ip.src == 10.0.0.9 and ip.dst == 10.0.0.7)

As a result this query would filter all the traffic from the external

node to the servers and will show that on the captured file rest all

data packets will go unmonitored. In case of unwanted access to

the server, the external node will be marked visible. Wireshark

alone will not be able to generate an alarm or take a security

action against the unauthorized access, it can only maintain track

of unauthorized accesses but with use of other utilities, alert

generation is also possible. For better understanding and

comprehensibility, we show a graph depicting the filtered flow as

shown in figure 12:

Figure 12. Graph Depicting Filtered Flow

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.7, September 2010

5

Figure 13. Graph Showing 3 Regions

The regions in the graph above (figure 13) are explained as

below:-

a. Region a: This is the region of beacon and control traffic flow

at the initiation of network and shows no sharp peaks.

b. Region b: Activity in the network is from the internal node

to the server and between external and internal node. So, capture

does not show any data at all.

c. Region c: Malicious activity starts at this point of time and is

accompanied by UDP activity in the packet capture pane and the

sharp peaks in the I/O graph.

8. OBSERVATIONS
The experiment shows two scenarios, in the first scenario

Wireshark captures all traffic, this shows peaks of varying

heights in the IO graph. This is the unguarded mode where

wireshark simply monitors activities and notifies users of the

basic errors in packet traversal. The second scenario makes use

of filtered capture on the basis of filters as mentioned above

(capture will not be shown for any ordinary activity) and we see

that IO graph shows no activity for a certain time. Though, as

soon as the malicious node becomes active and starts sending

data to the critical server node capture begins and activity is

shown in the IO graph.

9. CONCLUSION
The above experiment asserts the need of IDS/IPS devices in any

typical network. We have also highlighted the capabilities of

Wireshark in packet data interpretation and data handling too.

Wireshark, in this experiment has been used primarily in ACL

(Access Control List) filtering. Many other variations of filtering

are available in the Wireshark utility such as filtering based on

packet size, filtering based on protocols used, filtering of sub-

strings etc. Thus, with proper use of filtering commands and

complementing utilities, Wireshark can be developed into

comprehensive intrusion detection software.

10. FUTURE WORK
Wireshark as a Network Protocol Analyzer has already proven its

mettle in all necessary realms. However it still has scope of

improvement in it as far as alert generation and heuristic

development is concerned. We are working to introduce certain

utilities in the source code of Wireshark to overcome the above

shortcomings by making Wireshark capable of alert generations.

11. ACKNOWLEDGMENTS
This work is part of a WOS-A project (ref. no. : SR/WOSA/ET-

20/2008) funded by the Department of Science and Technology,

Government of India.

12. REFERENCES
[1] Roesch M (1999) Snort - Lightweight Intrusion Detection

for Networks. In Proceedings of Thirteenth Systems

Administration Conference (LISA), pp 229-238.

[2] Stolze M, Pawlitzek R and Hild S (2003a) Task Support for

Network Security Monitoring. In ACM CHI Workshop on

System Administrators Are Users, Too: Designing

Workspaces for Managing Internet-Scale Systems.

[3] Lee W, Stolfo SJ and Mok KW (2000) Adaptive Intrusion

Detection: A Data Mining Approach. Artificial Intelligence

Review 14(6), 533-567.

[4] Stolze M, Pawlitzek R and Wespi A (2003b) Visual

Problem-Solving Support for New Event Triage in

Centralized Network Security Monitoring: Challenges,

Tools and Benefits. In GI-SIDAR conference IT-Incident

Management and IT-Forensics (IMF).

[5] Pinkas, B., Sander, T.: Securing passwords against

dictionary attacks Proceedings of the 9th ACM conference

on Computer and communications security Washington, DC,

USA (2002) 161-170

[6] Madsen, P., Koga, Y., Takahashi, K.: Federated identity

management for protecting users from ID theft Proceedings

of the 2005 workshop on Digital identity management

Fairfax, VA, USA (2005) 77-83

[7] Gouda, M.G., Liu, A.X., Leung, L.M., Alam, M.A.: Single

Password, Multiple Accounts. Proceedings of 3rd Applied

Cryptography and Network Security Conference (industry

track), New York City, New York (2005)

[8] Luo, H., Henry, P.: A common password method for

protection of multiple accounts. 14th IEEE International

Symposium on Personal, Indoor and Mobile Radio

Communications, Vol. 3 (2003) 2749 - 2754

[9] Gaw, S., Felten, E.W.: Password management strategies for

online accounts. Proceedings of the second symposium on

Usable privacy and security ACM Press, Pittsburgh,

Pennsylvania (2006) 44-55

[10] Riley, S.: Password Security: What Users Know and What

They Actually Do. Usability News, Vol. 2006. Software

Usability Research Laboratory, Department of Psychology,

Wichita State University, Wichita (2006)

[11] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.

Heberlein, C. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,

T. Grance, D. M. Teal and D. Mansur, DIDS (Distributed

Intrusion Detection System) Motivation, Architecture and

Early Prototype, Proceeding 14th National Computer

Security Conference, pg. 167 176, 1991

[12] S. James P. Anderson, Computer security threat monitoring

and surveillance” ,Technical report, Fort Washington, PA,

April 1980

[13] Stephen E. Smaha, ”Haystack: An intrusion detection

system”, In Proceedings of the Fourth Aerospace Computer

Security Applications Conference, pages 37-44, December

1988.

[14] L. Todd Heberlein, Gihan V. Dias, Karl N. Levitt,

Biswanath Mukherjee, Jeff Wood, and David Wolber, ”A

network security monitor”, In Proceedings of the 1990 IEEE

Symposium on Research in Security and Privacy, pages 296-

304, May 1990.

