International Journal of Computer Applications (0975 — 8887)
Volume 6- No.7, September 2010

Evaluation of the Capabilities of WireShark as a tool for
Intrusion Detection

Usha Banerjee
Department of Computer Science &
Engineering
College of Engineering Roorkee

ABSTRACT

This paper illustrates the functionality of Wireshark as a sniffing
tool in networks. This has been proven by an experimental setup
which depicts the efficiency of detection of a malicious packet in
any network. Testing has been achieved through experimentation
on a real time network analyzed by Wireshark. Inferences have
been made which clearly depict Wireshark’s capabilities
highlighting it as a strong candidate for future development into
a robust intrusion detection system. This paper highlights the
working of Wireshark as a network protocol analyzer and also
accentuates its flexibility as an open source utility to allow
developers to add possible functionalities of intrusion detection
devices in it.

Keywords
Data, Intrusion Detection, Sniffing, WireShark

1. INTRODUCTION

Recent years have witnessed a great surge in the usage of mobile
devices. Thus, research in the areas of mobile and ubiquitous
computing is of prime importance. Security is one of the primary
concerns of users of such devices [1]. In any typical network,
wired or otherwise, unlikely and unwanted entry of malicious
users and/or malicious data packets are a major concern as far as
the security of the network is concerned. Data packets are the
basic entities of all communication systems. Security of a
network thus implies security of the data packets. A data packet
is the most basic block of communication involving a streamlined
flow of its infinite other replicas in order to transmit information
from one device to another. A data packet is contained in data
segment that holds other information like the protocol being
used, the destination hardware address etc. In a nutshell, the
identity of any packet coming from any unreliable source can be
detected by studying its contents. This study of detecting and
only viewing the contents of a data segment and its packet is
termed as packet sniffing and when a log of this information is
prepared, the technique is called packet logging. A packet
analyzer is a computer software or hardware that can intercept
and log traffic passing through a digital network or part of a
network. As data streams flow across the network, the sniffer
captures each packet and eventually decodes and analyzes its
content according to the appropriate specification.

This paper analyzes the process of packet sniffing and packet
logging. Wireshark is a commonly available open source network
protocol analyzer. In this paper we use Wireshark to study the
functionality of a packet analyzer. Using Wireshark it becomes
very convenient to detect any suspicious packet entry from any

Ashutosh Vashishtha
Department of Information
Technology
College of Engineering Roorkee
Roorkee, India

Mukul Saxena
Department of Information
Technology
College of Engineering Roorkee

Roorkee, India

unreliable source. Any packet sniffer/logger with the added
functionality of detecting malicious entries in a network is
termed as an intrusion detection system (IDS) [2,3,4].
Furthermore, an IDS usually stores a database of known attack
signatures and can compare patterns of activity, traffic or
behavior it sees in the logs it is monitoring against those
signatures to recognize when a close match between a signature
and current or recent behavior occurs. At that point, the IDS can
issue alarms or alerts. A signature is a pattern that matches a
known malware. In this paper a testing problem has been
designed and on the basis of the results of the experiment,
appropriate conclusions have been draw indicating Wireshark’s
capabilities as a possible IDS.

2. A. Brief History of Packet Sniffers/Loggers

The goal of packet sniffing is to monitor network assets to detect
anomalous behavior and misuse. This concept has been around
for nearly twenty years but only recently has it seen a dramatic
rise in popularity and incorporation into the overall information
security infrastructure. Beginning in 1980, with James
Anderson’s paper [12], Computer Security Threat Monitoring
and Surveillance, the notion of intrusion detection was born.
James Anderson’s seminal paper, written for a government
organization, introduced the notion that audit trails contained
vital information that could be valuable in tracking misuse and
understanding user behavior. His work was the start of host-
based intrusion detection and IDS in general. In 1988, the
Haystack project [13] at Lawrence Livermore Labs released
another version of intrusion detection for the US Air Force. This
project produced an IDS that analyzed audit data by comparing it
with defined patterns. In a telephone interview with the author,
Crosby Marks, a former Haystack Project team member and
Haystack Labs employee said that, searching through this large
amount of data for one specific misuse was equivalent to looking
for a needle in a haystack.” In 1990, UC Davis’s Todd Heberlein
introduced the idea of network intrusion detection. Heberlein
[14] was the primary author and developer of Network Security
Monitor (NSM), the first network intrusion detection system.
Commercial development of intrusion detection technologies
began in the early 1990s. Haystack Labs was the first commercial
vendor of IDS tools, with its Stalker line of host-based products.
Nonetheless, commercial intrusion detection systems developed
slowly during these years and only truly blossomed towards the
latter half of the decade. The intrusion detection market began to
gain in popularity and truly generate revenues around 1997.
Gerald Combs started writing a program called Ethereal so that
he could have a tool to capture and analyze packets; he released

1

the first version around 1998. The name was subsequently
changed to Wireshark in May, 2006 owing to copyright issues.

3. WIRESHARK

Wireshark [2] is the world’s most popular network protocol
analyzer. It has a rich and powerful feature set and runs on most
computing platforms including Windows, OS X, Linux, and
UNIX. Network professionals, security experts, developers, and
educators around the world use it regularly. It is freely available
as open source, and is released under the GNU General Public
License version 2. It has been developed and maintained by a
global team of protocol experts, and it is an example of a
disruptive technology. Wireshark formerly used to be known as
Ethereal. Wireshark is a free packet sniffer computer application.
It is used for network troubleshooting, analysis, software and
communications protocol development, and education. In June
2006 the project was renamed from Ethereal due to trademark
issues. Wireshark has tools for capturing, viewing, and analysis
of data packets. Wireshark has sophisticated wireless protocol
analysis support to help administrators troubleshoot wireless
networks. With the appropriate driver support, Wireshark can
capture traffic ”from the air” and decode it into a format that
helps administrators track down issues that are causing poor
performance, intermittent connectivity, and other common
problems.

4. SNIFFING TOOLS

Traditional network sniffing on an Ethernet network is fairly
easy to set up. In a shared environment, an analysis workstation
running Wireshark starts a new packet capture, which configures
the card in promiscuous mode and waits until the desired amount
of traffic has been captured. A node can be connected to a
network through multitude of mechanisms, wired and wireless,
covering many topologies and making use of wide variety of
protocols. Wireshark provides users the capability of capturing
the packets traveling over the entire network on a particular
interface at a particular time. One of the primary tools is the
capture tool. The interface option as shown in figure 1 below
lists all available interfaces on the node and can enable capturing
for any of these nodes. Options tab provides more sophisticated
approach for each interface one at a time. The go menu items
provide the capabilities of going through packets in the capture
list. The View menu provides tools for listing packets, time
display formats and coloring rules.

i test. pcap - Wireshark

Flo at (ou [(GOYISETN enobee Sttt

Ba et |eaiReseoF e [EE Q.
Do [] 2 —

v b Ecression... Yailear o dpply

No. « Time: - Destination
1 0.000000

Protocol Info
Broadcast ARP who has 192.168.0.27 Gratuitous ;
S Mame query NBSTAT *<00> 00> <Q0> <O(

@l Caprure Fiker

lembershi
AEERRCTT

Figure 1. The Capture Tool

5. LOGGING TOOLS

Wireshark provides amazing flexibility over other IDS/IPS
devices in the field of log maintenance. Log files can be captured
at an hourly or weekly rate based on the requirement of the
network and the capability of handling devices. Thus, files can
be easily captured over a fast processing node and transferred to

International Journal of Computer Applications (0975 — 8887)
Volume 6- No.7, September 2010

a slower database. Another interesting aspect is the feature of
exporting the capture file into various other and more
understandable formats- the plain text, post script, the CSV etc.
based on the analyzer tool used.

i lest.pcap - Wireshark
Edt View Go Cophoe fndyze Qtatistis Hep

B gpen... ko T
Open Recent ,Dx%ﬂlﬂééwﬁ,{!\z}‘BQﬂ

erge...

v b Expression... ‘gullear ¥ Apoly

X Close el

] Destination Protocol | Info &

B save s, stftactries (0.2 Eroadcast ARP Who has 192.168.0.27 Gratuitous)
0.1 2.168.0.2 BST; 00> <00> <0

NBNS.

g Nane_gu
File Set » o OB

as "Plain Text" fle.

“PostScript” fi 3 ‘%Mi»i". 1 —
g Script” fle... estination por
& print... cmep | 22 b e
2 pri 5 081
25 "CSV" (Comma Separated Values packet summary) fie... R
00610<00>

aax CHQ | - e
- ~aas ~"PEIL” (packet summary) fle... 6 0
s LT e R 2 YML - "POML" (packet detalls) ile..., lar' Doy ot o0%sd

225 =q=0
1251022728250 1925 5731965 [SYN; JACK] SeqeQ Acks: v
< >

Figure 2. The Analyzer tool

5.1 Prefiltering and Analysis

Wireshark has two filtering languages: one used when capturing
packets, and one used when displaying packets. Display filters
allow to concentrate on the packets that the administrator is
interested in, while hiding the currently uninteresting ones.
Packets can be selected on the basis of protocol, the presence of a
field, the values of fields, comparison between fields etc. The
queries which can be entered inside the field or the expression
tab (figure 3) can be selected to provide with much advanced
definitions and listing all the protocols from wide range of
protocols in Wireshark. Although only simpler commands can be
used manually, few of these queries have been used in our
experiment. The important feature of these commands is the use
of operators, logical-and logical-or and negation operators are but

a few to
3 — -
il Wirashark: Filtar Expression =)
Field name Relation
TR ~ W <
1# 3COMXNS -
¥ 3GPPZ A1l 1=
[# 802.11 MGT >
1+ 802,11 Radictap <
® 802.3 Slow protacols S=
& 9P <=
AALL contains
AAL3M4 matches
& AARP
ACAP
ACP133
ACSE
[# ACtrace
* ADP
AFP v

P X concel

Figure 3. The expression tab

ho. + Time Source Destination Protocel Info

o 56
2 0.299128 192.168.0.1 192.168.0.2 NENS Name query NBSTAT <00 <00 <!
4 0.726445 _ 192.168.0.2 224.0.0.22 TaHP V3 p Reporc
6 0.00428¢ 192.168.0.2 239.255.255.250 SSOP M-SEARCH * wrri:/a.x
8 0.004269 192.168.0.1 192.166,0.2 SSDP HTTP/1.% 230 OK
9 0.026985 192.168.0.2 192.168.0.255 NENS Registration N8 NB10061D<00>

| i ; “d: PEORYE

4% 0.124211 192.168.0.2. 192.168.0.1 TCP 3196 > htts [SYN] Seqe0 Acke0 Wil
12 '0.001126 152.168.0.1 192.166.0.2 TCP http > 3195 [SYN, ACK] Seq=0 Ack
13 0.000043 192.168.0.2 192.168.0.1 TP 3196 > hexo [Seq=1 Ack=1 Wil
1% 0.000126 192.168.0.2 192.168.0.1 WTTP SUBSCRIBE /upnp/service/Layerifoi

15" 0.001858° 132.168.0.1 192.168-0.% TCR httgox 3195 [ACK] Seqel Ack=z5s)

1025 > 5000 [SYN] 5620 Atk=0 Wil
500051025 TSVN. . ACKI-Sea=0 Ack

>

Figure 4. Sample Screenshot of Wireshark in action

. test,peap - Wireshark

Ble Edt Yew Go Captwe FLUENEEN Rotistics Help

oo (|0 psplay Fiters...
B e e a

| Apply 2 Filter

: BB aa

» | tiok Select=d

Prepare a Fiker
®ewe: [T | FeemobAcLRues dgod Selactic e e
v o Selocted e s e o o8
~7% + Enabled Protocols... SHRFCHHR [ot ror Selocted

3% Decode 2¢..
3% User é
& 192,16 Eglow TCP Sream
6 1.048652 192,1

as 192,168.0.27 Gratuitous /
OO IR [oliery NBSTAT »<00> <00> <005 <0t

iy

1.025656 3 Membersmp Report
anZard query:

Expert Info
Expert Ifo Composite

5053 192.1

Figure 5. TCP Stream

name. Value comparisons filtering packets based on lengths
secure BSSIDs source and destination addresses can be done.
The menu provides tools for packet filtering and analysis
precapture and during the capture itself. It eases the use of filter
connectors and preparing filters. It also provides mechanisms for
decoding capture files into various modes, such as the ASCII.
This item can be also used to follow protocol streams of
particular dialogues on particular protocols.

6. POST SNIFFING ANALYSIS

In this section we explore that second type of filter: display
filters. The first one has already been dealt with”filtering while
capturing”. Display filters have applications ranging from error
detection to packet sniffing and pattern identification. Worth
mentioning here is a fact that Wireshark does not automatically
generate alarms and alerts like a normal IDS/IPS. Instead
activities that took place during a capture can be monitored and
analyzed later - manually or through the use of other
applications.

% Wireshark: 92 Expert Infos @_@

Errors: O | Wamnings: 2| [Nates: 12 | Chats: 2 | Datails
Group ¥ Protocol ¢ Summary 4 Count ¢
Sequence TCP Previous segment lost (common at capture start) 11

& Sequence TCP Fast retransmission (suspected) s

Figure 6. The Information Table

Ethernet: 1 | e e [| Tcp: 38| [uoe: 1]
TCP Conversations - Filter: http or dns
Address A |Port A Address B Port B Packets |Bytes Packets A->B | Bytes A->B | Packets A<-B ||
10.21155.3 60790 193.69.165.21 http 126 72615 63 22023 63
L0.21L.99.3 BU/BY 193.09.100.41 htep we ©4/91 B2 232330 £24
10.21155.3 41144 128.12150.122 http 18 9991 9 5794 s
10.21155.3 41145 128.12150.122 htp 18 8994 9 5885 °
10.21155.3 45168 193.69.16557 http & 3336 2 970 2 o
110211.55.3 51236 81.93.163177 === St Seme =
10.21155.3 45169 193.69.155.5| APPlY &s Filter *| Selected B As>B
10.211.55.3 50948 81.7,166.249| Prepare a Fiter * | Not Selected *A->B
10.211.55.3 41632 194.237.107.| find backet +| ... and Selected sla<-p
10.211.55.3 51305 193.69.165.2,
L4 B . - Iy
10,211,553 58101 80.76.145 17] COI0fza Conversation or Selected A<> AN
10.211.55.3 41623 206.85.141.96 http 4 1967 ~and not Selected | A-> ANY
10.21155.3 43305 62701143 http 2 165€ ... or not Selected v A< ANy
10.211.55.3 51201 193.69.165.26 http 2 1876 L S | e G|
| .l
ANY <. L
& Name resolution uimit to display fiter ANY --> B
| @eep | Ehcopy || Edclose

Figure 7. The Conversation Tool

International Journal of Computer Applications (0975 — 8887)
Volume 6- No.7, September 2010

A tool to support the mentioned arguments is the expert
information table shown below (figure 6), as it visibly marks for
checksum errors, redundancy checks and lost segment
accounting. Another tool for intrusion and filter analysis is the
menu item - statistics. Statistics of various kinds can be provided
for an already captured packet, its protocol and the conversation.
It can monitor conversation of nodes passing packets between
them in the captured file in the given direction. Other statistical
tools are the packet summary and protocol hierarchy tools. The
second major tool is the statistical 10 graph (figure 8). These
graphs can show flow of traffic over the network in entirety or for
certain protocols only. The tool also provides the option of
showing differently post filtered capture on the graph in various
colors to enable easy identification, thus making Wireshark not
only one of the most easily accessible sniffing software but also
one of the most user friendly and comprehensible utility. Time
can be set relative to the first packet or according to system
clock. Usage of system clock time is effective when we are
merging various capture files captured at different times. Another
statistic tool worth mentioning here is the timestamp, each
packet can be time stamped according to user’s requirements.
Even with the presence of the mentioned tools Wireshark is not
by definition an IDS/IPS device although with the help of a few
other utilities, like LUA and the Hex dump convertor.
¥ o =

I ke Jli3i)|
500
250
AN '/7\\-\
R e s o e Eiaan e el
0s 10s 20s 30s
Graphs X Axis
Graph llColor E}ﬁller: || Style:' Line S [Tick interval:(1sec :”
\Graph 2| Caler [Y]Ealler:“hltp Style:l Line 4| Piels per tick: ‘ 10+
— [View as time of day
h r lter: le: H
012 o (i | s L |
| Graph 4 | color | ¥ glter: || Style:| Line S| unt: Packets/Tick & }
WGraph 5| i Ejfiller:“ Style:l Line ¢ | Scale: \ Auto > ‘
\ e_b-_lelp | ‘ =k Copy l: \:§ave l aglose |
Figure 8. The 10 Graph tool
Switch \
EXTERNAL NODE

SERVER NODE

INTERNAL NODE

EXPERIMENTAL SETUP

Figure 9. Experimental Setup

7. TESTING PROBLEM

The aim of the experiment below is to test the presence of
unauthorized packet access to the server node i.e. the node on
which unauthorized access is denied; from external node(s) i.e.
experimental node, which represents a single or a group of
malicious nodes in the Real Time Scenario (RTS). In the current
experimental set up we have four nodes each depicting a possible
node or set of nodes in a real time situation (figure 10). We have
four nodes here connected by a switch (non-configurable). The
nodes are as follows:

1. ANALYSER: It is the computer with Wireshark installed
in it and running in promiscuous mode; IP ADDRESS:
10.0.0.12 Netmask 255.0.0.0

2. SERVER NODE: This is the node that we expect to protect
from an external intrusion(although in the IDS scenario we
will only be able to detect any intrusion on the server); IP
ADDRESS: 10.0.0.7 Netmask 255.0.0.0

3. INTERNAL NODE: These are the nodes that can operate
both on the server and connect to the outside network; IP
address: 10.0.0.9 Netmask:255.0.0.0

4. EXTERNAL NODE: This is the possible intruder and

under filtered mode we expect to see all possible intrusion
attempts by this node on the server; IP address:10.0.0.5

Netmask 255.0.0.0

INTIAL STATE (Unfiltered Capture):

In this state no filtering expression has been used so all the
traffic passing through the analyzer is being displayed here.

UDP traffic here flows from:

EXTERNAL NODE to SERVER NODE: 10.0.0.5 TO

10.0.0.7

EXTERNAL NODE to INTERNAL NODE: 10.0.0.5 TO

10.0.0.9

INTERNAL NODE to SERVER NODE : 10.0.0.9 TO

10.0.0.7

The following are the graphs obtained while observing the traffic
between the above mentioned nodes during the unfiltered capture

File Edit View Go Capture Analyze Statistics Help

) o 5 dewo=Fs EE QA FHE -
] ter: | v 4 Esprossion... { Clear o Apply
No.. Time Source Destination Protocol Lalo
41 5.025256 hw::zas7 fogcilded: floziic m Mmrv . IH‘IP."LI
26,3076 10.0.0.8 230 SP MOTIFY & HITR/L.1
&3 6.32278a fesniaesyiisacidear FEoaite SSOP NOTIFY = HITP/LL
46,4503 10.0.0.9 239.255.255.250 SSP NOTIFY * HITP/L.1
456451100 £090::2057:458c: 1cd; F0R:z¢ S0P ADTIFY * HTTR/1.1
& 5.590643 10.0.0.9 239.255.255.250 Ss0P NOTIFY * HTITP/L.1
47 6692865 £eB0::2457:§58c: 1004 F0R: e SP NOTIFY * HITR/L.1
27,1600 10.0,0.8 239255, SSOP NOTIRY ¢ HITP/I.1

& 7.sm7 fasorizeriiseciidea: fioa: STP NOTIFY * WOTR/LL
9.

MOTIFY * HITP/1:1

b Frane 1 (221 byl
b Ethernet 11, Sr
b Inter
b User Dat
b Netaros
b e
PW

Flgure 10 Graph Showing Short Capture During Heavy
Traffic Flow

Sharp peaksand dips

The presence of sharp peaks is due to UDP traffic flow.

International Journal of Computer Applications (0975 — 8887)
Volume 6- No.7, September 2010

File Eit View Go Capture Aamlyze Statistics Help
=Fe EE aQald @™

v | 4o Expression.. { Cleaar g/apply

e & = @

Destluativn Pkl | Wifu

1350 Dastinatice ports Lime
37 Destinatior ports: 1ime
<

NG

151 213,247
152 213,597 .? s ﬁ bk h f Hh "
i [JL‘II i 'Jl.('([i”x | ’UJ'
b Frame - (S2 b AR A A AL LA X_J b
1, T T T T T T T T T T T =
D Interiet Frol 1005 1258 1405 1608 185 2008 2208 |
b Usar dataq-an] <
5 BBI2S Nare {f Graphe x Azin
Graph 1| Celor [rinec | | smyter Lioe | v iateval 1sec
a3 | Gt [P pyriae || ayia) e o Mxslwper ks 8
[. Viewnstimefdoy

Gruph 3 | o (W Eler | | Siyle: Lios -
Figure 11. Graph Showing Captured Traffic during
Experimental Setup

The peaks (ticks) in this graph are lower compared to the
previous graphs because of lower traffic flow as the lesser data
flow.

FINAL SET UP:

Filter queries used:

1) IP.SRC ==10.0.0.5 and IP.DST ==10.0.0.9
2) IP.SRC ==10.0.0.9 and IP.DST ==10.0.0.7
3) UDP

Operators used:

Logical AND :- and

Logical Negation :- !

Logical OR: - or

Final Query: - udp and !(ip.src ==
10.0.0.9) and (ip.src == 10.0.0.9 and ip.dst ==

10.0.0.5 and ip.dst ==
10.0.0.7)

As a result this query would filter all the traffic from the external
node to the servers and will show that on the captured file rest all
data packets will go unmonitored. In case of unwanted access to
the server, the external node will be marked visible. Wireshark
alone will not be able to generate an alarm or take a security
action against the unauthorized access, it can only maintain track
of unauthorized accesses but with use of other utilities, alert
generation is also possible. For better understanding and
comprehensibility, we show a graph depicting the filtered flow as
shown in figure 12:

V]Elttrl‘(xpsc—]OGUSard 1. dst—lﬂDQ?l a }Bxpramn { Glear o deply

No Tme Soume Detiaation e S prtocal 1o
32378565 AsustekC 96:ccice Broadcast e Who has 10.0.0.77 Tell 10.0.0.9
42.378461 (uantaCo dd:c7:66 Broadcast P Who has 10.0.0.97 Tell 10.0.0.7
511508171 feR0::2457:158c:Tded: f£02::1:3 10PSuiifce: part: BUSEL Destination ports Llmr
611506207, 10.8.6.8 224.0,8.5% 0" Source port: 62636 Destination port: Hme
71617685 Fodd; BT iscded; F2: 1R L Surca part: 60561 Destination port: Llmr
a7l 10060 70N 7] (0P Source ports 62966 Destanatia port: lanr
9 11821736 10.0.0.9 10,285,255, 285 s Nang query MB WPAD<GQ>
10 12.365800 10.0.0.9 10.285.255. 55 S Mane query AB WPAD<CO>
11 13.350088 10.0.0.9 10,235,295, 255 BN Mg query AB WPAD<0Q>
214103 10.0.0.9 10,225,255 WS Nane query MB TALK.COIGLE, COM<g0>
1314873618 10.0,0.9 10,255,255, 255 1) Nafte query 3B TALK.GDICLE, (OMe00>
1415.637635 10.0.0.9 10,265,255, 255 s MM 1 ery M8 TALK,GONGLE, COMeC0>
i ol ey O

>

Flgure 12. Graph Depicting Filtered Flow

c

T T T °
20s 40s

W o (4

Graphs X Axis

Graph 1/ Color |[¥] Filter: | | style: Line < Tick interval: 1 sec

Style: Line 2| Pixels per tick: 5

3 T
Graph 2 Color | [Eilter: |udp

Figure 13. Graph Showing 3 Regions

The regions in the graph above (figure 13) are explained as
below:-

a. Region a: This is the region of beacon and control traffic flow
at the initiation of network and shows no sharp peaks.

b. Region b: Activity in the network is from the internal node

to the server and between external and internal node. So, capture
does not show any data at all.

¢. Region c¢: Malicious activity starts at this point of time and is
accompanied by UDP activity in the packet capture pane and the
sharp peaks in the I/O graph.

8. OBSERVATIONS

The experiment shows two scenarios, in the first scenario
Wireshark captures all traffic, this shows peaks of varying
heights in the 10 graph. This is the unguarded mode where
wireshark simply monitors activities and notifies users of the
basic errors in packet traversal. The second scenario makes use
of filtered capture on the basis of filters as mentioned above
(capture will not be shown for any ordinary activity) and we see
that 10 graph shows no activity for a certain time. Though, as
soon as the malicious node becomes active and starts sending
data to the critical server node capture begins and activity is
shown in the 10 graph.

9. CONCLUSION

The above experiment asserts the need of IDS/IPS devices in any
typical network. We have also highlighted the capabilities of
Wireshark in packet data interpretation and data handling too.
Wireshark, in this experiment has been used primarily in ACL
(Access Control List) filtering. Many other variations of filtering
are available in the Wireshark utility such as filtering based on
packet size, filtering based on protocols used, filtering of sub-
strings etc. Thus, with proper use of filtering commands and
complementing utilities, Wireshark can be developed into
comprehensive intrusion detection software.

10. FUTURE WORK

Wireshark as a Network Protocol Analyzer has already proven its
mettle in all necessary realms. However it still has scope of
improvement in it as far as alert generation and heuristic
development is concerned. We are working to introduce certain
utilities in the source code of Wireshark to overcome the above
shortcomings by making Wireshark capable of alert generations.

11. ACKNOWLEDGMENTS

This work is part of a WOS-A project (ref. no. : SR/IWOSA/ET-
20/2008) funded by the Department of Science and Technology,
Government of India.

International Journal of Computer Applications (0975 — 8887)
Volume 6- No.7, September 2010

12. REFERENCES

[1] Roesch M (1999) Snort - Lightweight Intrusion Detection
for Networks. In Proceedings of Thirteenth Systems
Administration Conference (LISA), pp 229-238.

[2] Stolze M, Pawlitzek R and Hild S (2003a) Task Support for
Network Security Monitoring. In ACM CHI Workshop on
System Administrators Are Users, Too: Designing
Workspaces for Managing Internet-Scale Systems.

[3] Lee W, Stolfo SJ and Mok KW (2000) Adaptive Intrusion
Detection: A Data Mining Approach. Artificial Intelligence
Review 14(6), 533-567.

[4] Stolze M, Pawlitzek R and Wespi A (2003b) Visual
Problem-Solving Support for New Event Triage in
Centralized Network Security Monitoring: Challenges,
Tools and Benefits. In GI-SIDAR conference IT-Incident
Management and IT-Forensics (IMF).

[5] Pinkas, B., Sander, T.: Securing passwords against
dictionary attacks Proceedings of the 9th ACM conference
on Computer and communications security Washington, DC,
USA (2002) 161-170

[6] Madsen, P., Koga, Y., Takahashi, K.: Federated identity
management for protecting users from ID theft Proceedings
of the 2005 workshop on Digital identity management
Fairfax, VA, USA (2005) 77-83

[7]1 Gouda, M.G., Liu, A.X., Leung, L.M., Alam, M.A.: Single
Password, Multiple Accounts. Proceedings of 3rd Applied
Cryptography and Network Security Conference (industry
track), New York City, New York (2005)

[8] Luo, H., Henry, P.. A common password method for
protection of multiple accounts. 14th IEEE International
Symposium on Personal, Indoor and Mobile Radio
Communications, Vol. 3 (2003) 2749 - 2754

[9] Gaw, S., Felten, E.W.: Password management strategies for
online accounts. Proceedings of the second symposium on
Usable privacy and security ACM Press, Pittsburgh,
Pennsylvania (2006) 44-55

[10] Riley, S.: Password Security: What Users Know and What
They Actually Do. Usability News, Vol. 2006. Software
Usability Research Laboratory, Department of Psychology,
Wichita State University, Wichita (2006)

[11] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.
Heberlein, C. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,
T. Grance, D. M. Teal and D. Mansur, DIDS (Distributed
Intrusion Detection System) Motivation, Architecture and
Early Prototype, Proceeding 14th National Computer
Security Conference, pg. 167 176, 1991

[12] S. James P. Anderson, Computer security threat monitoring
and surveillance” ,Technical report, Fort Washington, PA,
April 1980

[13] Stephen E. Smaha, “Haystack: An intrusion detection
system”, In Proceedings of the Fourth Aerospace Computer
Security Applications Conference, pages 37-44, December
1988.

[14] L. Todd Heberlein, Gihan V. Dias, Karl N. Levitt,
Biswanath Mukherjee, Jeff Wood, and David Wolber, A
network security monitor”, In Proceedings of the 1990 IEEE
Symposium on Research in Security and Privacy, pages 296-
304, May 1990.

