
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

19

Adaptive Zone-Aware Multi-bank on Chip Last Level L2

Cache Partitioning for Chip Multiprocessors
Nitin Chaturvedi

Electrical Electronics & Engineering
Birla Institute of Technology &
Science, Pilani, India-333031

Jithin P Thomas

Jithin P Thomas
Electrical Electronics & Engineering

Birla Institute of Technology &
Science, Pilani, India-333031

S Gurunarayanan

S Gurunarayanan
Electrical Electronics & Engineering

Birla Institute of Technology &
Science, Pilani, India-333031

ABSTRACT

This paper proposes a novel efficient Non-Uniform Cache

Architecture (NUCA) scheme for the Last-Level Cache (LLC) to

reduce the average on-chip access latency and improve core

isolation in Chip Multiprocessors (CMP). The architecture

proposed is expected to improve upon the various NUCA

schemes proposed so far such as S-NUCA, D-NUCA and SP-

NUCA[9][10][5] in terms of average access latency without a

significant reduction in the hit rate. The complete set of L2 banks

is divided into various zones. Each core belongs to one particular

zone which is the closest to it. Consequently, adjacent cores are

grouped into the same zone. Each zone individually follows the

SP-NUCA scheme [5] for maintaining core isolation and sharing

common blocks. However, blocks that need to be shared by cores

which belong to different zones are replicated. This scheme is

much more scalable than the SP-NUCA scheme and bounds the

maximum on-chip access latency to a lower value as the number

of cores increases.

This paper merely details the proposed scheme. The claims made

regarding the benefits of the scheme shall be substantiated

through simulations and a detailed comparative study in the

future. The intended simulation methodology and architectural

framework to be used in this regard have also been mentioned.

General Terms

Computer Architecture

Keywords
Chip Multiprocessor (CMP), Non-Uniform Cache Architecture

(NUCA) and Shared Last level Cache (LLC)

1.INTRODUCTION
Present sub-micron integrated circuit technologies have fueled

microprocessor performance growth. Each new process

technology increases the integration density thus allows for

higher clock rates and also offers new opportunities for micro-

architectural innovation. Both of these are required to maintain

microprocessor performance growth. Micro-architectural

innovations employed by recent microprocessors include multiple

instruction issue, dynamic scheduling, speculative execution,

instruction level parallelism and non-blocking caches. In the past,

we have seen the trend towards CPUs with wider instruction

issue and support for larger amounts of speculative execution but

due to fundamental circuit limitations and limited amounts of

instruction level parallelism, the superscalar execution model

provides diminishing returns in performance for increasing issue

width. Faced with this situation, building further a more complex

wide issue superscalar processor was not at all the efficient use

of silicon resources and a better utilization of silicon area. So

researchers came up with a new Novel architecture which was

constructed from simpler processors then superscalar and

multiple such processors are integrated on a single chip popularly

known as chip multiprocessor or multi-core processor.

Researchers faced two important challenges for next generation

microprocessors are the slow main memory and the limited off-

chip bandwidth. Efficient management of the last level on-chip

cache is therefore important in order to accommodate a larger

number of cores in future multi-core architectures. Previous

research has shown that a last-level multi-core cache can be

organized as private partitions for each core or having all cores

sharing the entire cache.

Figure 1. Chip Multiprocessor

Previous results show that the shared cache organization can be

utilized more flexibly by sharing data between cores. However, it

is slower than a private cache organization. In addition, private

caches do not suffer from being polluted by accesses from other

cores by which we mean that other cores displace blocks without

contributing to a higher hit rate. Non-uniform cache architectures

(NUCA) are a proposed hybrid private/shared cache organization

that aims at combining the best of the two extreme organizations

[1, 2, 3, 4, 6] by combining the low latency of small (private)

caches with the capacity of a larger (shared) cache. Typically,

frequently used data is moved to the shared cache portion that is

closest to the requesting core (processor); hence it can be

accessed faster. Recently, NUCA organizations have been

Nitin Chaturvedi
Electrical Electronics & Engineering

Birla Institute of Technology &
Science,

Pilani, India-333031

Jithin P Thomas
Electrical Electronics & Engineering

Birla Institute of Technology &
Science,

Pilani, India-333031

S Gurunarayanan
Electrical Electronics & Engineering

Birla Institute of Technology &
Science,

Pilani, India-333031

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

20

studied in the context of multi-core systems as a replacement for

a private last-level cache organization [3, 4]. The cache is

statically organized into private partitions but a partition attached

to one core can also keep blocks requested by other cores. When

a block is installed in a certain partition, a replaced block from

that partition will be installed in a neighbor’s partition, picked by

random. As a result, on a miss in one partition, all other

partitions are first checked before accessing main memory. While

this hybrid scheme provides fast access to most blocks, it can

suffer from pollution because of the uncontrolled way by which

partitions are shared among cores.

This paper provides a novel NUCA design for multi-cores based

on private partitioning zones in which the sizes of the core-local

partitions that are shared are chosen adaptively to maximize the

overall performance. We will show that our adaptive scheme

outperforms the uncontrolled sharing of blocks in private zones

with reduced latency.

The rest of the paper is organized as follows: Related work is

described in Section 2, Section 3 described the motivations for

this work and section 4 provides proposed implementation

details and explains the novel adaptive partitioning scheme

SPR_NUCA with Architecture and Coherency protocol to

improve performance limits of CMP. Section 5 provides

Simulation methodology. Section 6 discusses the Benchmark

Suite to be used and Section 7 concludes.

2. RELATED WORK
Kim et al. [4] introduced the concept of Non-Uniform Cache

Architecture (NUCA). They observed that increasing wire delays

would mean that cache access times were no longer constant.

Instead, latency would become a linear- function of the line’s

physical location within the cache. On the basis of this

observation, they designed several NUCA architectures by

partitioning the cache into multiple banks and using a switched

network to connect these banks. Two main alternatives have been

proposed: Static NUCA (S-NUCA) and Dynamic NUCA (D-

NUCA). Both designs organize the multiple banks into a two-

dimensional switched network. The difference between the two

architectures is the Placement Policy they manage. While in S-

NUCA architecture, data are statically placed in one of the banks

and always in the same bank, in D-NUCA architecture data can

be promoted to be placed in closer and master banks. Although

this promotion allows D-NUCA to potentially outperform S-

NUCA, the D-NUCA benefit is significantly diminished by the

quality of the bank-searching algorithm within the cache. Two

alternative bank replacement policies are proposed: zero-copy

and one-copy.

CMPs present additional challenges for on-chip cache

management. First, a cache on a CMP requires multiple ports to

provide appropriate bandwidth. Secondly, multiple threads mean

multiple working sets, which compete for limited on-chip

storage. Finally, sharing code and data interfere with block

migration, since one processor’s low latency bank is other

processor’s high latency bank. Beckmann and Wood [1] gathered

the current proposals for managing wire delays and combined

them with Chip Multiprocessors. They demonstrated that block

migration is less effective for CMP because 40-60% of hits in

commercial workloads were satisfied in the central banks. Block

migration effectively reduced wire delays in uni-processor

caches. However, to improve CMP performance, the capability of

block migration relied on a smart search mechanism that was

difficult to implement.Huh et al. [9] introduced the concept of the

sharing degree in a NUCA bank. The sharing degree is the

number of cores that share a specific bank, so a sharing degree of

one signifies a private cache. Larger sharing degrees reduce the

number of misses, thus optimizing the cache capacity usage.

Unfortunately, smaller sharing degrees reduce hit latencies. An

ideal design would capture the benefits of both reduced misses

and reduced hit latencies. Although D-NUCA performance

potential dramatically outperforms that of other mechanisms, the

benefits currently offered by D-NUCA organization do not justify

the complexity of the design. They also concluded that the

simplest design– an S-NUCA organization with a small sharing

degree–was probably the best. Muralimanohar and

Balasubramonian [15] proposed a different approach in NUCA

architectures. These authors proposed the use of two different

physical wires to build NUCA architectures. One of these wires

provided lower latency and the other higher provided bandwidth.

They then proposed two different bank searching algorithms

Chishti et al. [11] proposed an alternative to NUCA architecture

named Non-uniform access with Replacement and Placement

using Distance associativity (NuRAPID). This architecture is

based on decoupling data and tag placement. NuRAPID stores

tags in a bank close to the processor, optimizing tag searches.

Whereas NUCA searches tag and data in parallel, NuRAPID and

D-NUCA achieve similar results, although NuRAPID heavily

outperforms DNUCA in power efficiency. The NuRAPID version

for CMP is known as CMP-NuRAPID and was also proposed by

Chishti et al. [2]. This proposal mitigates some of the effects

described by Beckmann and Wood [1].Our work is inspired by

earlier work on dynamic partitioning of the resources in shared

caches among cores [3, 6, 7]. In the NUCA setting, the new issue

becomes how to select the size of the shared partition which is

not addressed in the earlier work. We combine and extend

several existing mechanisms intended for solving problems in

other contexts. The contribution of this paper is the unique

combination and usage of these mechanisms and the novel

architecture for the last-level cache. In our organization, hits to

the private partitions are fast, while hits to neighboring partitions

are slower.

Figure 2. Relative Performance of the two schemes [7]

The size of the private partition is dynamically controlled and

balanced against the other cores. A NUCA proposed by Dybdahl

[7] works better than the hybrid scheme based on CMPs with

private caches given by Sohi [16] except in cases where cores are

competing for cache resources. They provide comparable

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

21

performance for many applications that do not use the last level

cache.

3. MOTIVATIONS
With the evolution of technology, the number of cores that can be

incorporated onto a single chip is constantly on the rise.

However, the growth in off-chip bandwidth is progressing at a

much a slower pace. Consequently, the pressure on the on-chip

memory hierarchy to satisfy as many memory requests as

possible is mounting. This is especially true at the last-level

cache (L2/L3) where there is a strong contention between the

various cores. Hence, an optimal dynamic partitioning scheme is

required which would dynamically partition the cache according

to the activity level of each core such that there is an overall

reduction in the miss rate. An additional problem that arises with

the increase in the number of cores is a corresponding increase in

the size and associativity of the last level cache. A high

associativity would directly translate into an increased latency

per cache access. A multi banked cache would be a better option

in this regard in comparison to a monolithic high associativity

cache.

Figure 3. Multi-banked shared LLC

Thus, frequently accessed blocks could be placed in those banks

closest to the processors that use them. However, this could also

lead to these blocks ping-ponging between banks. Thus, blocks

which are actively used by two or more cores should be placed in

an optimally positioned bank such that the average access latency

for the concerned cores is minimized. This is the primary aim of

Non-Uniform Cache Architecture (NUCA) schemes such as S-

NUCA, D-NUCA and SP-NUCA [10][11][4]. However, these

schemes do not support the replication of shared blocks. Thus,

scalability is limited in terms of the average access latency. For

example, consider a system with 16 cores. Now, if two cores

placed at two extreme ends in the cache layout were to share a

block, optimally it would have to be placed in one of the centrally

positioned banks. But it would still take a considerable number

of cycles for each of those cores to access the block from the

central bank. If, however, replication is allowed, the block could

be replicated and each core could keep a copy in a bank close to

it. This is what SPR-NUCA attempts to do. It is based on the SP-

NUCA scheme and improves its scalability by allowing the

replication of blocks when necessary. It considers the distance

between the cores sharing a particular block. If it exceeds a

certain limit, then the block is replicated and each core keeps a

copy in one of the banks closest to it.

4. SPR_NUCA Architecture and Coherency

Protocol
In this section, we presented the details of the proposed SPR-

NUCA scheme for the Last-Level Cache (LLC). The LLC is

organized in a multi-banked manner. The total set of banks is

divided into various zones. Each zone comprises of a set of banks

which are adjacent to each other. Similarly, each core also

belongs to the zone closest to it. The number of cores that would

comprise a zone has to be decided through simulations. However,

four cores per zone seem to be an optimal option.

Figure 4. Layout of Chip Multiprocessor

 The blocks in the LLC can be grouped into three types:

private, shared and replicated. Private blocks are those which are

used only by a single core. They are hence placed in one of the

banks closest to that particular core. Both shared as well as

replicated blocks are frequently used by two or more cores.

However, shared blocks are used by processors which belong to

the same zone. Replicated blocks, on the other hand, are accessed

by cores belonging to different zones, ie, cores which are farther

apart. Each bank can hold blocks of any of these three types. It is

to be noted that within a single zone, a block can have only one

copy. Replicas, if present, can reside only in different zones.

Remember that a replicated block simply means that the block

has more than one copy in the entire LLC. However, with respect

to a particular zone, it could be either in the private bank of one

of the cores or in the shared bank of that zone.

Since replication is also supported in SPR-NUCA, we

intend to use a directory-based coherence protocol for keeping

track of the zones which contain a copy of the block. The

directory could either be a centralized or a distributed one. To

reduce the directory width, the locations of the different copies of

a block would be marked in terms of zones instead of individual

banks. Once a request arrives at the LLC, a request is sent to the

corresponding private bank of the requesting core as we. If this

does not result in a hit, the request is forwarded to the remaining

private banks in the zone as well as to the shared bank in which

that block could reside in that particular zone. In case of a hit,

there are two possibilities. If the block is found in the shared

bank, the data is sent to the requestor. Else if it is found in one of

the private banks, it is moved to the shared bank. In case of a

miss, the directory entry of the requested block is searched. If it

turns out that no zone contains the block, then it is an LLC miss

and the request is forwarded to the main memory, following

which, the block is brought into the private bank of the requestor.

Else, the request is then forwarded to the nearest zone which

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

22

contains a copy of the block. Within that zone, the block is

searched in all the private banks in which it can reside and also

the corresponding shared bank in parallel. The block is then

replicated into the private bank of the requestor. In addition to

this, the bit corresponding to the requestor’s zone in the directory

entry of the block is set to one. When a block arrives from

memory, it is placed in one of the private banks of the requesting

core depending on the address. The block remains there as long

as no other core in its own zone requests it. Even if cores from

other zones access the block it is merely replicated and not

removed from the current bank.

Figure 5. Search Algorithm

 Hence, future accesses by the same core to the block would

be faster. SPR-NUCA has a much better scalability than the other

NUCA schemes such as S-NUCA, D-NUCA and SP-NUCA

which do not support replication. In SP-NUCA [4], any block

which is utilized by two or more cores is placed in a particular

fixed shared bank. This does not cause a problem in terms of

access latency if the number of cores is small (4 to 8). However,

as the number of cores increases, the distance of each core to the

bank farthest from it will keep increasing. Hence, such a block

could be placed in a bank which is quite far away from the cores

accessing it. This is why SPR-NUCA divides the LLC into small-

sized zones. This ensures that a block frequently used by a

particular core is not placed beyond a certain distance from the

core. This limit remains the same as long as the size of the zone

is a constant and does not change as the number of cores in the

system increases, implying scalability.

Consider a system with 2n banks per zone and 2p cores per

zone. Thus each core has 2n-p private banks. Note that any of

these 2n banks can hold shared/replicated blocks. To interleave

the addresses across the chip, the bank number is mapped using

the lower bits of the address. The interpretation of an address is

done in the same manner as in SP-NUCA. As shown in the

figure, the address is divided as follows: The lowest B bits are

used to select the byte in the cache block. Then, we use the n-p

bits to select the private bank or the n bits to select the shared

bank in that zone depending on whether it is a private or a shared

request. The next i bits, the index, are used to select the

corresponding set in the bank and the rest of the address is the

tag. It is important to note from the figure that the address

remains the same for both private and shared blocks. However,

they are interpreted differently as shown. The private tag is p bits

bigger than the shared one, but as they are to be stored in the

same tag array, it must have the size of the private tag, increasing

slightly the required area of LLC banks by p bits per line. In

order to differentiate between private and shared blocks, an extra

private/shared bit is also to added to the block. This bit would be

present in the cache requests as well.

Figure 6. Address interpretation for private and shared requests

Replacement policy: Merino et al.[4] proposed three different

LRU replacement policies for the SP-NUCA scheme – “always

steal”, “shadow-tag” based policy and a global LRU replacement

policy – to partition each bank into shared and private portions in

an optimal manner. However, simulation results showed that the

global LRU policy gave the best overall performance. However,

as pointed out by Kedzierski et al.[6], true LRU imposes

extraordinary complexity and area overheads when implemented

on high associativity caches. Thus, we intend to use a pseudo-

LRU policy such as the Not Recently Used (NRU) policy to

attain an LRU-like behavior without much degradation in

performance.

5. SIMULATION METHODOLOGY
For evaluating the performance of the CMP requires a way of

simulating the environment in which we would expect these

architectures to be used in real systems. We will use Virtutech

Simics [9] full system functional simulator extended with Multi-

facet GEMS which is popularly used in the research community.

The heart of GEMS is the Ruby memory simulator. The Ruby

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.1, September 2010

23

Cycle is our basic metric of simulated time used in the Ruby

module of the GEMS simulator. The Ruby module is the basic

module for the memory system configuration and interconnection

network design The Ruby cycles are the recommended

performance metric in GEMS. The base line configuration to be

used is given below

Figure 7. Base line Configuration

6. PARSEC BENCHMARK SUITE
The Princeton Application Repository for Shared-Memory

Computers (PARSEC) has been recently released [10]. This

benchmark suite includes emerging applications and commercial

programs that cover a wide area of working sets and allow

current Chip Multiprocessor technologies to be studied more

effectively. In this paper we will evaluate a subset of the

PARSEC benchmark suite. We also consider the simlarge inputs

of PARSEC benchmarks in our simulations. We will fill the

cache by executing 100 million instructions and finally we collect

the statistics for the following 500 million instructions

7. CONCLUSIONS
The current advanced submicron integrated circuit technologies

require us to look for new ways for designing novel

microprocessors architectures and non-uniform cache

architectures to utilize large numbers of gates and mitigate the

effects of high interconnect delays. In this paper, we have

discussed a novel dynamic partitioning scheme known as

Adaptive Block Pinning which attempts to partition the last-level

shared cache in a judicious and optimal manner thereby

increasing overall system performance. Future work could be

directed at modifying this scheme to work for multi-banked

caches. It could also aim at reducing the latency penalties by

attempting to place each cache block nearest to the core that most

frequently uses it.

8. REFERENCES
[1] B. M. Beckmann and D. A. Wood. Managing wire delay in

large chip-multiprocessor caches. In 37th International

Symposium on Microarchitecture, 2004.

[2] J.Chang and G.S.Sohi, “Cooperative Caching for Chip

Multiprocessors”, ISCA,2006.

[3] E.Herrero, J.Gonzalez and R.Canal, “Distributed Cooperative

Caching”, PACT,2008.

[4] H. Dybdahl and P. Stenstrom. An Adaptive Shared/Private

NUCA Cache Partitioning Scheme for Chip Multiprocessors. In

Proceedings of the 13th Annual International Symposium on

High Performance Computer Architecture, 2007.

[5] J.Merino, V.Puente, P.Prieto and J.A.Gregorio, “SP-NUCA:

A Cost Effective Dynamic Non-Uniform Cache Architecture”,

ACM SIGARCH Computer Architecture News, Vol. 36, No.2,

May,2008

[6] B.M. Beckmann, M.R. Marty, D.A. Wood, “ASR: Adaptive

Selective Replication for CMP Caches”, MICRO 2006.

[7] K.Kedzierski, M.Moreto, F.J.Cazorla, M.Valero, “Adpating

Cache Partitioing Algorithms to Pseudo-LRU Replacement

Policies”, IPDPS,2010

[8] M.K.Qureshi and Y.N.Patt, “Utility-based cache partitioning:

A low-overhead, high-performance, runtime mechanism to

partition shared caches”, MICRO, 2006

[9] M.Zhang and Krste Asanovic, “Victim Replication:

Maximizing Capacity while Hiding Wire Delay in Tiled Chip

Multiprocessors”, ISCA, 2005

[10] J.Huh, C.Kim, H.Shafi and L.Zhang, “A NUCA Substrate

for Flexible CMP Cache Sharing”, ICS, 2005

[11] C. Kim, D. Burger and, S. W. Keckler, “An Adaptive, non-

uniform cache structure for wire-delay dominated on-chip

caches”. ASPLOS X, pp. 211-222, October 2002.

 [12] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance

associativity for high-performance energy-efficient non-uniform

cache architectures. In 36th International Symposium on

Microarchitecture,2003.

[13] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.

Keckler. A nuca substrate for flexible cmp cache sharing. In 19th

ACM International Conference on Supercomputing, 2005.

[14] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-

uniform cache structure for wire-delay dominated on-chip caches.

In 10th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2002.

[15] N. Muralimanohar and R. Balasubramonian. Interconnect

design considerations for large nuca caches. In 34th International

Symposium on Computer Architecture, 2007.

[16] J. Chang and G. S. Sohi. Cooperative caching for chip

multiprocessors. In 33rd International Symposium on Computer

Architecture, 2006

[17] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A

quantitative comparison of two multithreaded benchmark suites

on chip-multiprocessors. In Procs. Of the IEEE International

Symposium on Workload Characterization, IISWC 2008.

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec

benchmark suite: Characterization and architectural implications.

In International Conference on Parallel Architectures and

Compilation Techniques, 2008.

[19] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B.

Werner. Simics: A Full System Simulator Platform, volume 35-2,

pages 50–58. Computer, 2002.

