A Note on Acyclic Coloring of Central Graphs

Dr. K. Thilagavathi Associate Professor Department of mathematics Kongunadu Arts and Science College Coimbatore Tamilnadu-641029, India.

ABSTRACT

In this paper, we discuss the acyclic vertex colouring and acyclic chromatic number of central graph of Dutch-windmill graph and Sunlet graph and acyclic colouring of some other graphs.

General Terms

Central graph of Dutch-windmill graph and Sunlet graph are denoted by $C(D_3^m)$ and $C(S_n)$ respectively. The Crown graph is denoted by S_n^0

Keywords

Central graph, Dutch-windmill graph, Sunlet graph, Crown graph, acyclic colouring, acyclic chromatic number.

1. INTRODUCTION

Let *G* be a finite undirected graph with no loops and multiple edges. The central graph [17] of a graph *G*, *C*(*G*) is obtained by subdividing each edge of *G* exactly once and joining all the non-adjacent vertices of *G*. By the definition $p_{cG} = p + q$. For any

p,q graph there exist exactly p vertices of degree p-1 and q vertices of degree 2 in C(G).

The Dutch-Windmill graph [11,14], denoted D_3^m , also called a friendship graph, is a graph obtained by taking *m*-copies of the cycle C_3 with a vertex in common.

The *n*-sunlet graph S_n [12] is the graph on 2n vertices obtained by attaching *n* pendent edges to the cycle graph C_n .

The Crown graph S_n^0 [5] for an integer n > 2 is the graph with the vertex set $\{u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, v_n\}$ and edge set $\{(u_i, v_i): 1 \le i, j \le n, i \ne j\}$.

A proper vertex colouring of a graph is acyclic if every cycle uses at least three colours [13]. The acyclic chromatic number of G, denoted by a G, is the minimum k such that G admits an acyclic k-colouring.

Mr. P. Shanas Babu Research Scholar Department of mathematics Kongunadu Arts and Science College Coimbatore Tamilnadu-641029, India.

2. ACYCLIC COLOURING OF $C(D_3^m)$

2.1 Theorem

For the Dutch-windmill graph D_3^m , $a[C(D_3^m)] = 2m = \Delta$ where Δ is the maximum degree of G.

Proof

Consider the Dutch-Windmill graph D_3^m formed by *m* -copies of the cycle C_3 with vertices $v_1^i, v_2^i, v_3^i, i = 1, 2, 3, \dots, m$, named in counter clockwise direction in which $v_1^1 = v_1^2 = v_1^3 = \dots = v_1^m$ is the common vertex. Let $v_{h,k}^{i}$ represents the newly introduced vertex in the edge connecting v_h^{i} and v_k^{i} for i=1,2...mand x, y = 1, 2, 3. Now assign a proper colouring to these vertices as follows. Consider a colour class $C = c_1, c_2, c_3, \dots, c_{2m}$ and let the pair $c_h c_k$ represents an edge whose end points are coloured as c_k and c_k . Assign the color c_1 to the common vertex v_1^i , i = 1, 2, ...m and the color c_{2k-1} to the vertex v_3^k for k = 1, 2, ...m. Next assign the colour c_{2k} to the vertex v_2^{k+1} for k = 2, 3, 4...m - 1 if m > 2 and c_{2m} , c_3 to the vertices v_2^{-1} and v_2^{-2} respectively. Such a colouring excludes the newly introduced vertices. Assign the colour c_2 to the newly introduced 3mvertices $v_{h,k}^{i}$ for i = 1, 2, 3, ...m and x, y = 1, 2, 3. Now we prove that the above said colouring is acyclic. That is it does not contain any bichromatic cycles. It is obvious that to form a 2chromatic cycle both colours should occur at least twice. So in the above said colouring, the color classes $c_k, 4 \le k \le 2m$ never induce a 2-chromatic cycle. Now we need to examine the subgraphs induced by $\langle c_i, c_j \rangle$ for i = 1, 2 and j = 2, 3 with $i \neq j$

whether they induce a 2-chromatic cycle or not.

Case 1. If i = 1 and j = 2, then subgraph induced by $\langle c_1, c_2 \rangle$ is the union of a path tree with $\Delta - 2$ pendent vertices and m-1 isolated vertices, which is clearly a forest.

Case 2. If i = 1 and j = 3, then subgraph induced by $\langle c_1, c_3 \rangle$ is the union of a path P_2 and a single isolated vertex, which is a forest.

Case 3. If i = 2 and j = 3, then subgraph induced by $\langle c_2, c_3 \rangle$ is the union of a path P_4 and 3(m-1) isolated vertices, which also forms a forest.

OR In each case we can easily verify the result $\varepsilon = \upsilon - \omega$, which is the necessary and sufficient condition for a forest.

Thus any pair of the colour class will never induce a 2-

chromatic cycle in the graph. By the very construction the colouring is minimum.

Therefore, $a \left[C(D_3^m) \right] = 2m = \Delta$.

Example

Figure 1 $a\left[C(D_3^4)\right] = 8$

3. ACYCLIC COLOURING OF $C(S_n)$

3.1 Theorem

For the sunlet graph S_n , the acyclic chromatic number $a[C(S_n)] = 2n - 2$

Proof

Let S_n be the the *n*-sunlet graph having 2n vertices formed by attaching *n* pendent edges to the cycle graph C_n . Let $V(C_n) = \{u_1, u_2, u_3, ..., u_n\}$. The pendent edge connected to the vertex u_i be $u_i v_i$, i = 1, 2, 3...n. That is $v_1, v_2, v_3, ..., v_n$ are the pendent vertices. Now consider $C(S_n)$, let the vertex introduced in the edge joining u_i and u_j be $u_{i,j}$, i = 1, 2, 3...n, j = 2, 3, 4...n and vertex in the edge joining u_i and v_j be v_{ij} . Now in $C(S_n)$, $[v_1, v_2, v_3, ..., v_n]$ is a complete graph on *n* vertices. Assign a colouring to $C(S_n)$ as follows. Colour the vertex v_i as c_i for i = 1, 2, 3...n. Next the vertex u_i is assigned the colour c_i for i = 1, 2 and c_{n+i-2} for $3 \le i \le n$. Such a colouring excludes the newly introduced vertices. Assign the colour c_{2n-2} to $v_{1,1}$ and $u_{1,2}$. Now c_{n+1} to $v_{2,2}$ and c_2 to $u_{n,1}$. All the remaining vertices are coloured c_1 . Then clearly the above said colouring is acyclic, also the colouring is minimum. Because if we replace any colour which is minimum in number by a colour already used, the resulting colouring will be improper or cyclic.

Therefore $a[C(S_n)] = 2n - 2$.

Example

Figure 2 $a[C(S_5)] = 8$

4. ACYCLIC COLOURING OF S_n^o

4.1 Theorem

The acyclic chromatic number for the Crown graph is $a[(S_n^o)] = n$ for every n = 3, 4, 5...

Proof

Cosider a crown graph $G = S_n^o$ having 2n vertices.Let the vertices be $\{u_1, u_2, u_3, ..., u_n, v_1, v_2, v_3, ..., v_n\}$. Consider the colour class $C = \{c_1, c_2, c_3, ..., c_n\}$. Assign the colour c_i to the vertices u_i and v_j for i = 1, 2, 3..., n. This colouring is clearly acyclic.because the subgraph induced by $\langle c_i, c_j \rangle$ for all $i \neq j$ is the union of two paths P_1 always.thus the colouring is acyclic. Also this colouring is minimum. Because if we replace any colour class by another used colour class the colouring will become improper.

Thus $a[(S_n^o)] = n$ for every n = 3, 4, 5...

Example

 $a[(S_n^o)] = n$.

5. REFERENCES

- N. Alon, C. McDiarmid, and B. Reed. "Acyclic colourings of graphs". Random Structures and Algorithms, 2, 277– 288, 1990.
- [2] J.A. Bondy and U.S.R. Murty, *Graph theory with Applications*. MacMillan, London, 976.
- [3] O. V. Borodin "On acyclic colorings of planar graphs", Discrete Math. 25, 211–236, 1979.
- [4] C. B. Boyer, *A history of mathematics*. New York, Wiley. 1968.
- [5] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*. New York: Springer-Verlag, 1989.
- [6] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Spinger Verlag Graph Theory, Lagow (1981) proceedings, Berlin heidelberg, New York, Tokyo, pp. 139-150.
- [7] Douglas B .West, Introduction To Graph Theory, Second Edition, Prentice-Hall of India Private Limited, New Delhi-(2006).

- [8] H. Eves, An Introduction to the History of Mathematics. New York: CBS College. 1983.
- [9] Frank Harrary, Graph theory, Narosa Publishing House-(2001).
- [10] Frank Harary, Gray Chartrand, Ping Zhang, Geodetics sets in graphs. Discuss math. Graph Theory 20(2000)pp.129-138.
- [11] D. Frank Hsu, Harmonious Labelling of Windmill Graphs and Related Graphs, Journal of Graph Theory, Vol. 6 (1982), pp. 85-87.
- [12] Graph Colouring, Wikipedia, the free Encyclopedia.
- [13] B. Grünbaum. "Acyclic colorings of planar graphs". Israel J. Math., 14(3), 390–408, 1973.
- [14] Joseph A. Gallian, "A Dynamic Survey of Graph Labeling", The electronic journal of combinatorics, 16,11, 2009.
- [15] K. Thilagavathi, K.P. Thilagavathy and N. Roopesh, "The Achromatic colouring of graphs", Electronic notes in Discrete mathematics, 153-156, 33, 2009.
- [16] K. Thilagavathi and Vernold Vivin.J, "Harmonious Colouring of Total graphs, n-Leaf, Central Graphs and circumdetic Graphs" PhD Thesis, Kongunadu Arts and Science college, Coimbatore.
- [17] K.Thilagavathi and Vernold Vivin.J and Akbar Ali.M.M, "On Harmonious colouring of Central graphs" Advances and Appications in Discrete Mathematics, 2, 17-33, 2009.
- [18] Vivin J. Vernold, M. Venkatachalam and Ali M.M. Akbar, "A note on achromatic coloring of star graph families" 23:3 (2009), 251–255.