
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

22

Ultra Long Integer Multiplication on GDPS

Y K Viswanadham

Dept of CSE
S V University

Tirupati – 517 502, India

Dr Ch D V Subba Rao
Dept of Computer Sci Engg

S V University
Tirupati – 517 502, India

T V Subrahmanyam
 Dept of IT, Gudlavalleru

Engineering College,
Gudlavalleru-521 356, India

ABSTRACT

Many Internet applications require intensive cryptographic
calculation such as public-key encryptions and digital signatures.
These schemes require a computation of large integer
multiplications. Those cryptographic schemes are vulnerable to a

brute-force attack, and the large key is the countermeasure. In
practice, the key size that makes brute-force attack impractical
will slows down the speed of encryption and decryption.
Multiplication of two very long integers usually takes time to
compute. Distributed Karatsuba algorithm is proposed to reduce
the time of multiplication of two very long digits. The proposed
architecture that makes use of Karatsuba algorithm achieves
faster multiplication.

Keywords

GDPS, IMDP, Karatsuba Algorithm.

1. INTRODUCTION

Distributed computing is the process of aggregating the power of
several computers to collaboratively run a single computational
task in a transparent and coherent way. In other words it enables
usage of the idle time of large numbers of networked computers
to work on projects too large for any single group[7]. Recent
distributed computing projects have been designed to use the

computers of hundreds of thousands of volunteers all over the
world, via the Internet, to look for extra-terrestrial radio signals
[8], investigate and reduce uncertainties in climate modeling [9],
detect earthquakes [10], prime numbers so large that they have
more than ten million digits [11] etc. These projects require so
much computing power to solve and they would be impossible
for any single computer to solve in a reasonable amount of time.

1.1 Cryptography

During this time when the Internet provides essential

communication between tens of millions of people and is being
increasingly used as a tool for commerce, security becomes a
tremendously important issue to deal with. There are many
aspects to security and many applications, ranging from secure
commerce and payments to private communications and
protecting passwords. One essential aspect for secure
communications is that of cryptography. But it is important to
note that while cryptography is necessary for secure

communications, it is not by itself sufficient. This field required
very fast large integer multiplication. Multiplication of large
integers is a fundamental requirement in polynomial
multiplication for signal processing, coding theory [1].

2. PROBLEM DEFINITION

Multiplication is one of the most frequently used arithmetic
operations in public key cryptography and the performance of a
cryptosystem often depends mostly on the efficiency of a
multiplication operation. The efficiency of cryptosystem is often

determined based on how fast an encryption/decryption operation
can be done. Modular exponentiation is hard operation used in
most cryptosystems. It consists of performing modular
multiplication repeatedly. Modular multiplication can be
performed by first multiplying then reducing or by interleaving
the multiplication and reduction steps. The former way is
preferred as there are very fast multiplication algorithms as they
were over studied while the latter is used when there is only a
limited storage in the case of smartcards.

Multiplication of long integers is cornerstone primitive in most
public-key cryptosystems. These kinds of multiplications are also
required in mathematics, signal processing and astrophysics [1].
Multiplication of large numbers requires huge resource of time
and space. The study of fast multiplication algorithms is always
an important task pursued by mathematicians and computer
scientists.

2.1 Existing Systems

The multiplication of ultra long integer can not be handled by a
single computer in reasonable amount of time, but such kind of
problems can be solved by Supercomputer.

2.2 Limitations of Existing System

The super computers may be fast, however those are not widely
available because of its huge cost and maintenance. The simple
client-server system may not achieve the speed of the super
computer.

3. PROPOSED SOLUTION

The main objective of this proposal is multiplying the two ultra-
large numbers (12000 digits) using low cost computing resources
and getting faster, accurate result. Generalized Distributed

Processing System (GDPS), which aims at providing a simple,
generic, reusable and extensible platform for the purpose of
Internet, based Massively Distributed Processing (IMDP). These
systems are used to solve scientific problems which are too large
to be solved by even the most powerful Supercomputers. In the
Internet world there are so many computers having idle
processing. So we can use such kind of idle CPU processing time
by activate our own program on the idle client. For example

http://en.wikipedia.org/wiki/Global_climate_model

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

23

SETI@Home[8], Predictor @ Home [6]...etc, provide for solving
huge data analysis problems in a Distributed Environment.

3.1 Methodology

We propose GDPS for solving ultra long integer multiplication
using Karatsuba algorithm. With this we can achieve faster result.
It is an economical solution, because large volumes of computing
resources are available on the internet. We can form those
resources as a community and use them in their idle time as
background process of our screensaver. Any Solution to

Distributed Processing must provide the following:

 The Breakdown of Large tasks or Jobs into smaller

independently possible portions or subtasks.

 The Allocation of these subtasks to the Participant
Computers.

 The Physical Distribution of these tasks to the Participant
Systems.

 The Processing of these subtasks by the relevant systems.

 The Physical Collection of partial results from the

Participant Computers.

 The Combination of the partial solutions thus received into a

Complete Solution.

3.1.1 Server Side

The server side architecture is as illustrated in the Figure 1.

Fig 1. Server side Architecture

 Fig 1. Server side Architecture

Manager
This is the Most Important Component of the Server End
Architecture. It accesses the Sub Task, Partial Result and Client

Databases, and interfaces with the Internet Interface, The Sub
task Generator and the Combining partial result Algorithms.

The partial result combination algorithm interface
This involves combining the partial result into final result and it
is imitated by manager after receiving all partial results.

The subtask generator algorithm interface
This involves provision of a program call to the end user whereby
he may create and store a sub task in the subtask database.

The internet interface
The Internet Interface has modules to handle the server end
databases.The Server end of GDPS bears 3 databases which may
be implemented using any standard database package or as files.
They are

 A Database of the Various Subtasks or Work Units yet to be

assigned to volunteers. This is a file handled by the subtask
generator and updated or flagged when work units are

assigned.

 A Database of the partial result for each subtask. All
received result fragments are added here. Once all fragments

for a subtask are received, the combination algorithm is
initiated and these results are passed to it.

 A Database of clients who involved in this evaluation.

3.1.2 Client Side
The client side architecture is illustrated in the figure 2

Fig 2. Client side Architecture

The Client End Algorithm Initiator
 This component detects the activation of the Screensaver in
Windows based PCs or waits for an explicit start up on other

Karatsuba Algorithm

Interface to Server & Initiator

P-Result Send

Sub Task Receive Results

Sub Tasks

Registration

Data

Control

LAN / Internet
Control

Sub Task
Generator Combining

Partial Result

Interface to Clients

P-Result Receive

Sub Task Sent

Clients

Results

Sub Tasks

Registration

Manager

Data
LAN / Internet

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

24

systems. It then initiates the relevant client end algorithms for
subtask on the client PC.

The Internet Interface
 This detects the initiation of an Internet Connection and proceeds
to upload partial result and download more subtasks. The Client

end PCs may not have standard database systems available and
hence all data would be stored in files on the Clients.

3.2 Karatsuba Algorithm

In 1962 Karatsuba developed an algorithm for multiplying two
numbers by using a divide-and-conquer method [2].Suppose two

n-digit radix b numbers X and Y are expressed as x1b
 n/2

+x0 and

y1b
 n/2

+y0 respectively.

The grade-school method computes the product Z of X and Y as
follows:

 Z = X.Y

 = (x1b
n/2+x0) (y1b

 n/2+y0)
 =x1y1b

 n+ (x1y0+x0y1) b
 n/2+x0y0

Karatsuba proposed a multiplication algorithm that computes the
product Z of X and Y as follows:

Z = X . Y
 = (x1b

 n/2+x0)(y1b
 n/2+y0)

 = x1y1 b
 n

+ [(x1+x0)(y1+y0)- x1y1 - x0y0]b
 n/2

+x0y0

To multiply two n digit numbers, the grade-school method has
four n/2 digit multiplications and Karatsuba Algorithm has three
n/2 digit multiplications [3].

Table 1: Experimental Results(Time ms)

For school book method

 T(1) = 1

 T(n) = 4 T(n/2)+cn

 = n log
2

4

 = n 2

For Karatsuba Algorithm

 T(1) = 1

 T(n) = 3 T(n/2)+cn

 = n
log

2
3

 = n 1.58

4. EXPERIMENTAL RESULTS

The resulting program is implemented on Intel Core2Duo 2.0
GHz Processor with Jdk1.6.0 programming language. A
graphical user interface is designed with swings to facilitate the
user give the input in file mode as well as manually. The given
input is divided into no. of segments which is a fixed length of

digits. Those segments will be given as subtasks to clients. Those
clients will send the result back to the server and stored in file.
Finally combining algorithm will conquer the partial result and
gives the final result.

It is tested for various combinations of size and no. of clients.
The experimental results are analyzed in Fig-3 & 4 and noticed
that best performance is only possible with no. of clients with
respect to size of the problem. The increase of no. of clients for

small problem degrades the performance of the system due to
overhead. So the no. of clients should directly proportional to the
Length of the problem up to threshold value.

4.1 Performance Analysis

 The experiments have conducted on LAN in idle
condition; all clients have the same specification Intel Core2Duo
2.0 GHz Processor 1 GB RAM.

No.of Clients

/ Length 1 2 3 4 5 6 7

100 235 63 31 62 78 94 104

200 203 141 140 78 79 102 124

300 438 313 234 157 188 218 252

400 656 594 531 391 203 297 341

500 812 766 656 437 302 406 512

600 1250 1047 1079 1046 1126 859 902

700 1765 1594 1563 1078 1124 844 983

800 1984 1687 1749 1797 1735 1579 1592

900 3374 3250 3172 3156 3124 3117 3109

1000 5265 4937 4906 4829 4719 4680 4562

1500 10266 10204 10141 9859 9625 9214 8609

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

25

Performance Analysis

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7

No.of Clients

T
i
m

e
(
m

s
)

1500

1000

900

800

700

600

500

400

300

200

100

Best Performance Analysis

0

1

2

3

4

5

6

7

8

100 200 300 400 500 600 700 800 900 1000

Length of Problem

N
o

.o
f

C
li

e
n

ts

Best Performance

 Fig 3.No.of Clients Vs Time for Size of the Problem Fig.4: Length of the problem Vs No. of Clients

5. CONCLUSION
 It has been showed that distributed Karatsuba algorithm running
on network of nodes/ systems is fast and economical.
Distributed Computing is a new methodology of solving
problems when it was first introduced. With its advancements,
many small computers could be linked together in order to

achieve tremendous processing power. This computing power
will be an alternative solution for costly supercomputers.

We hope that the generic platform and protocols we have
conceived will fuel further growth in this emerging field, with
newer and better applications being developed every day. The
Internet is fast changing, with round the clock, high-speed
connections replacing intermittent and slow dial up lines. Thus,

looking towards the future, one may say that a shift from the
Client-Server models of IMDP that we see today; to an even
more generic Peer-to-Peer model is in the offing.

 In this case, the distributed computing concept may be applied
by all users connected to the Internet to solve their specific
problems, each with the power of several thousand PCs at his
disposal. Such a scenario would surely require an agreed set of

standards for data communication, subtask assignment and result
correlation, with support for multiple algorithms at all points in
the network. It is our contention that GDPS, with its protocols,
predefined structures and support for multiple algorithms could
well prove to be a precursor to these.

6. FUTURE SCOPE
We are working on a new parallel implementation of the
Karatsuba algorithm for handling division operation. We hope

that will give us notable results. The fast multiplication approach

can be used in prime number generation.

7. REFERENCES
[1] Andre Weimerskirch, “Generalizations of the Karatsuba
Algorithm for Efficient Implementation”,http://www.

Crypto.ruhr-uni-bochum.de/imperia/md/content/textekaweb.pdf,
2003

[2] A.Karatsuba and Y.Offman, “Multiplication of multi digit
numbers on automata“, Soviet Physics-Doklady,1962.

[3] Chin-Bou Liu, “Design and Implementation of Long-Digit

Karatsuba’s Multiplication Algorithm Using Tensor Product
Formulation”, In The Ninth Workshop on Compiler Techniques
for High-Performance Computing, 2003.

[4] Dan Zuras, “More On Squaring and Multiplying Large
Integers”, IEEE Transactions on Computers, AUGUST 1994

[5] J. Tudor, “Using the Parallel Karotsuba Algorithm For Long

Integer Multiplication”, European Conference on Parallel
Processing,, 1997.

[6] M. Taufer, “A Protein Structure Prediction Supercomputer

Based on Public-Resource Computing”. IEEE Transactions on
Parallel and Distributed Systems, Aug 2006.

[7] en.Wiktionary . org / wiki / distributed _ computing

[8] SETI@Home - setiathome.ssl.berkeley.edu

[9] Climate prediction - Climateprediction.net

[10 Quake-Catcher Network - qcn.stanford.edu

[11] PrimeGrid-http://distributedcomputing.info/ap-
math.html#primegrid

http://www.google.com/url?q=http://en.wiktionary.org/wiki/distributed_computing&sa=X&ei=2WinTNWNEYOyvgO8vpDgDA&ved=0CBMQpAMoAQ&usg=AFQjCNFbtsPenSmGxELAtzmldRlrAjui0Q

