
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

6

Inference Document Type (DTD) from XML Document:
Web Structure Mining

Nanhay Singh
Asstt. Prof.

Department of Computer
Science & Engineering
HBTI, Kanpur (India)

Dr. R. K. Chauhan
Professor & Chairman

Department of Computer
Science & Applications

Kurukshetra University (India)

Dr. Raghuraj Singh
Professor & Head

Department of Computer
Science & Engineering
HBTI ,Kanpur (India)

ABSTRACT

XML is becoming a prevalent format and de- facto standard for
data exchange in many applications. While traditionally, lots of
data are stored and managed in relational databases. There is an
urgent need to research some efficient methods to convert these
data stored in relational databases to XML format when
integrating and exchanging these data in XML format.

The semantics of XML schemas are crucial to design, query,
and store XML documents and functional dependencies are
very important representations of semantic information of
XML schemas. As DTDs are one of the most frequently used

schemas for XML documents in these days, we will use DTDs
as schemas of XML documents here.

This paper studies the problem of schema conversion from

relational schemas to XML DTDs. As functional dependencies
play an important role in the schema conversion process, the
concept of functional dependency for XML DTDs is used to
preserve the semantics implied by functional dependencies and
keys of relational schemas. A conversion method is proposed to
convert relational schemas to XML DTDs in the presence of
functional dependencies, keys and foreign keys. The methods
presented here can preserve the semantics implied by

functional dependencies, keys and foreign keys of relational
schemas and can convert multiple relational tables to XML
DTDs at the same time.

1. INTRODUCTION
XML (eXtensible Markup Language) has become one of the
primary standards for data exchange and representation on the
World Wide Web and is widely used in many fields.
Historically, lots of data and information are still stored in and
managed by relational database management systems, such as
Oracle, Sybase, SQL Server, etc. So it is necessary and urgent
to develop some efficient methods to convert relational data to
XML data in order to take advantage of all the merits of XML.

As DTDs (Document Type Definitions) are still the most
frequently used schemas for XML documents in these days, we
will use DTDs as schemas of XML documents. It is widely
accepted that schema semantics plays a very important role in
the schema conversion, and functional dependencies, keys, and
foreign keys of relational schemas are very important
representations of semantic information. So it is significant that
the conversion method from relational schemas to XML DTDs

must consider the semantics implied by functional
dependencies, keys, and foreign keys, and the obtained XML
DTDs can represent such semantics in some way. Data Mining
is the extraction of interesting and potentially useful patterns
and implicit information from artifacts or activity related to the
World Wide Web. Regression is a data mining function that
predicts a number. Profit, sales, mortgage rates, house values,
square footage, temperature or distance could all be predicted

using regression techniques. For example, a regression model
could be used to predict the value of a data warehouse based on
web-marketing, number of data entries, size, and other factors.

2. OBJECTIVES
Suppose in any organization, if we want to transfer some
database(s) to another organization then we have to give entire
XML files to another organization. This process of transfer of

XML files is very effective only for the technical persons but
for the managing persons, understanding the typical XML files
is very tedious process. Hence we have to develop a software
that can convert the XML files in such a form so that it can be
easily understood by the managing persons also. And therefore
the concepts of the DTD i.e. document type descriptor came
into existence which shows the hierarchical representation of
the XML files. In this paper we used the concept of the web-

mining which can be used to fetch some data from the
databases easily and effectively. The approach that we have
taken to overcome the difficulty in deriving DTDs is to build a
tool that will automatically suggest the DTD for a collection of
XML documents provided by the user. These XML documents
are well formed but do not come with a DTD. The derived
DTD will provide an overall schema for the document
collection. The assumption that we have made here is that the

collection of documents are similarly structured and follows a
single naming convention for the tags. This software has been
developed based on our proposed algorithms for structural
discovery of XML documents. It is further equipped with a
frame-based user interface that allows XML documents to be
uploaded from the client computers and presents the derived
DTD in the Web browser. It further allows users to refine and
simplify the derived DTDs by adjusting an input parameter
known as maximum repetition factor.

3. PAPER OUTLINE
In this paper, we describe the design and implementation of
DTD Converter. We will cover its system architecture in

section 4 and gives a brief overview used to represent the
instance structure of an XML document and the overall
structure of a collection of these documents respectively.
Section 5 briefly discusses the problem formulation, that how
the conversion of the DTD should take place with the help of
automata and regular expression. The overview of the system is
explained in section 6 which comprises of the Generalization
Subsystem and the Factoring Subsystem. A first version of the
DTD Converter has been implemented and described in Section

7 with the help of the User Interface. Section 8 describes some
related research and concludes the paper.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

7

4. SYSTEM ARCHITECTURE
The DTD Converter is made up of various modules as shown:

 DTD-Miner User Interface: The Web Interface

allows the user to submit XML files. The Web
Interface is also responsible for displaying the
generated DTD. In addition, it also allows the user to
refine the DTD so as to reduce its complexity using a
parameter Maximum Repetition Factor, which
represents the maximum number of times a child
element may appear in the parent element’s
definition in the DTD.

 DTD Generation Module: This is the main module
responsible for the generation of the DTD for a set of
structurally similar XML documents supplied by the

user.

5. PROBLEM FORMULATION
Our goal is to infer a DTD for a collection of XML documents.
Thus, for each element that appears in the XML documents, we
aim to derive a regular expression that sub element sequences
for the element (in the XML documents) conform to. Note that
an element's DTD is completely independent of the DTD for
other elements, and only restricts the sequence of sub elements

nested within the element. Therefore, for simplicity of
exposition, we concentrate on the problem of extracting a DTD
for a single element. Let e be an element that appears in the
XML documents for which we want to infer the DTD. It is
straightforward to compute the sequence of sub elements
nested within each <e></e>pair in the XML documents. Let I
denote the set of N such sequences, one sequence for every
occurrence of element e in the data. The problem we address in

this paper can be stated as follows: Given a set of N input
sequences nested within element e, compute a DTD for e such
that every sequence in conforms to the DTD. As stated, an
obvious solution to the problem is to find the most concise
regular expression R whose language is I .One mechanism to
find such a regular expression is to factor as much as possible,
the expression corresponding to the OR of sequences in I.
Factoring a regular expression makes it concise without

changing the language of the expression. For example, ab|ac
can be factored into (a|b)c . An alternate method for computing
the most concise regular expression is to first find the
automaton with the smallest number of states that accepts I and
then derive the regular expression from the automaton. Such
concise regular expressions, whose language is exactly I, are
unfortunately not good. DTDs, in the sense that they tend to be
voluminous and unintuitive. Suppose we have a collection of
XML documents that conform to this DTD. Abbreviating the

title tag by t and the author tag by a, it is reasonable to expect
the following sequences to be the sub element sequences of the
article element in the collection of XML documents:
t,ta,taa,taa,taaa,taaaa Clearly, the most concise regular
expression for the above language is t(a|(aa|(aaa|(aaaa)))) which
is definitely much more voluminous and lot less intuitive than a
DTD such as ta*. In other words, the obvious solution above
never generalizes and would therefore never contain meta-

characters like (*) in the inferred DTD. Clearly, a human being
would at most times want to use such meta-characters in a
DTD to succinctly convey the constraints he/she wishes to
impose on the structure of XML documents. Thus, the
challenge is to infer, for the set of input sequences I, a general
DTD which is similar to what a human would come up with.

6. OVERVIEW OF THE SYSTEM

 The Generalization Subsystem
For each input sequence, the generalization module generates
zero or more candidate DTDs that are derived by replacing
patterns in the input sequence with regular expressions
containing meta-characters like * and | (e.g. (ab)*,(a|b)*). Note

that the initial input sequences do not contain meta-characters
and so the candidate DTDs introduced by the generalization
module are more general. For instance sequences abab and
bbbe result in the more general candidate DTDs (ab)*,(a|b)*
and b*e to be output by the generalization subsystem. Also,
observe that each candidate DTD produced by the
generalization module may cover only a subset of the input
sequences.

Ideally, in the generalization phase, we should consider all
DTDs that cover one or more input sequences as candidates.
However, the number of such DTDs can be enormous. For

example, the sequence ababaabb is covered by the following
DTDs in addition to many more.

(a|b)*, (a|b)*a*b*, (ab)*, (ab)*c*b* Therefore, system employs

several novel heuristics, inspired by real-life DTDs, for limiting
the set of candidate DTDs.

 The Factoring Subsystem
The factoring component factors two or more candidate DTDs
into a new candidate DTD. The length of the new DTD is
smaller than the sum of the sizes of the DTDs factored. For
example candidate DTDs b*d and b*e representing the

expression b*d|b*e, when factored, result in the DTD
b*(d|e).Although factoring leaves the semantics of candidate
DTDs unchanged, it is nevertheless an important step. The
reason being that factoring reduces the size of the DTD and
thus the cost of encoding the DTD, without seriously impacting
the cost of encoding input sequences using the DTD. Thus,
since the DTD encoding cost is a component of the MDL cost
for a DTD, factoring can result in certain DTDs being chosen

by the MDL module that may not have been considered earlier.
We appropriately modify factoring algorithms for boolean
functions in the logic optimization area to meet our needs.
However, even though every subset of candidate DTDs can, in
principle, be factored, the number of these subsets can be large
and only a few of them result in good factorizations. We
propose novel heuristics to restrict our attention to subsets that
can be factored effectively.

7. USER INTERFACE OF THE

SOFTWARE
In this section, we give an illustration of an interaction with the
prototype system in order to provide a feel of how the DTD-
Converter system works. There are three main screens of the
DTD-Converter system: the initial document input screen, the
file directory screen and the DTD display screen.

The system begins at the initial document input screen. The
user can then submit his own XML documents by first
selecting the XML document in his local machine using the
“Browse...” button and then upload the file to the system using
the “Open” button and the added file should be reflected in the

file directory screen. The Maximum Repetition Factor can also
be optionally specified here by entering the required value in
the text box provided.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

8

8. DESCRIPTION
This phase of graphical user interface shows the functionality

of browse option which provide the functionality of loading the
XML file to end user. The XML file may be located to any
position in the database or in a specific location if we talk about
any particular system. On clicking the browse option the
window will appear which will show the position of various
files stored at different locations. Locate your XML file field
shows the current location of the XML file which will be used
to create the DTD file. After browsing the XML file, the
preferred location will be pointed to the execution server which

will go for the current location of the file and load it in the
current database of our software and also load for creation of
the DTD. In the next step, we will go for creating the DTD by
hitting create DTD button. After hitting this button, the
uploaded location of XML file will be preferred and
corresponding DTD will be generated and it will be displayed
on the screen. It will save the corresponding DTD to its own
database for the future use. The software saves the current

DTD for further use in its own database. It also provides the
functionality of saving the DTD file manually. Save option
does this task significantly. On hitting this option the preferred
location will appear which can be changed as per the user’s
choice. While the preferred location is chosen by the user it
will hit the “OK” option on the software. After doing this, the
corresponding file will be saved on the desired location. File
created option will be shown to the user to specify this task.

This figure shows the overall architecture of the XML file
which can be accessed from the software’s database. It also
provides the display window which shows the entire saved file
in the XML database. We can access any of its database file for
further use. It is some kind of monitoring system for XML
database which periodically monitors the current position of the
database. At last it also shows the database monitoring system
for DTDs stored in the database as same as the XML database

monitoring system. We can go for any of the DTDs stored in
the database for further use. It may be used as the regulating
rules.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.9, October 2010

9

9. CONCLUSION AND FUTURE WORK

With the increasing complexities of Web documents and the
emergence of XML, user will have a strong need or a tool to
automatically extract structures of Web documents. This

project describes the DTD-Mining software that is designed for
these purposes. The DTD generating software is a prototype
system build from the framework for structural re-engineering
XML documents. It has the ability to automatically generate
DTD from a set of similarly structured XML documents
submitted by the user. However, the software does not support
the generation of attribute types and entity references and does
not handle hyperlinks and multimedia data. We are currently
looking to further extensions to support attribute types and

entity reference generation and also the use of hyperlinks to
create inter-document structures. Work is also being done in
various methods of simplifying the DTDs generated. The DTD
generating System is a prototype for the structural re-
engineering framework proposed. It enables the automatic
generation of a DTD from a large set of XML documents while
not compromising the ease of use of the user. The system built
by is one research effort that draws some conceptual

resemblance to the DTD generation. The system attempts to
infer the structure of HTML documents by drawing clues from
display and formatting information of the HTML tags and also
the indentation to guess the structure of the Web documents.
The system however does not deal with XML and DTD. The
structural mining component of the NoDoSE by Adelbreg also
draws some similarities to DTD generating system. NoDoSE is
a semi-automatic system for data extraction. NoDoSE is

primarily based on plain text files but the HTML Parser
component allows HTML files to be handled. There are two
main drawbacks of this system for mining structures from
XML documents. Firstly, we feel that the degree for user
intervention is too extensive and may prove to be tedious for
the user when the documents to be parsed are large. Secondly,
the NoDoSE does not support XML. The difference between
HTML and XML is that in XML documents, the structure of

the document can be enclosed within user defined tags. The
DTD Generator is a tool that is able to generate the DTD for a
given XML document. The main problem with the DTDs
generated from the DTD Generator is that it will generate a
DTD for every document i.e., the system cannot handle the
generation of an overall DTD for a set of structurally similar
XML documents. One of the main features of XML is that it
allows the user to define their own grammar rules. However, in

our opinion, the user would usually define a set of rules for a
collection of Web documents rather than a separate set of rules
for a single document. This makes the ability for the system to

generate an overall DTD essential. It is however, interesting to
note the way the DTD Generator attempts to handle attribute
and attribute types. The work, however, does not address how
generated DTDs can be simplified by users using some
quantitative measure.

REFERENCES

[1] “The XML Handbook” by Charles F. Goldfarb and Paul
Prescod under the “Prentice Hall of India” publication.

[2] B. AdelBerg. NoDoSE - A Tool for Semi-Automatically
Extracting Semi-Structured Data from Text Documents. In
ACM SIGMOD International Conference on Management of
Data, pages 283–294, 1998.

[3] N. Ashish and C. Knoblock. Wrapper Generation for Semi-
structured Internet Sources. ACM SIGMOD Record, 26(4):8–
15, 1997.

[4] D. Beech, S. Lawrence, and M. Maloney. XML Schema
Part 1: Structures. Technical report, World Wide Web

Consortium, http://www.w3.org/1999/05/06-xmlschema-1,
1999.

[5] P. Biron and A. Malhotra. XML Schema Part 2: Datatypes.

Technical report, World Wide Web Consortium,
http://www.w3.org/TR/xmlschema-2/, 1998.

[6] T. Bray, C. Frankston, and A. Malhotra. Document Content

Description for XML. Technical report, World Wide Web
Consortium, http://www.w3.org/TR/1998/NOTE-dcd-
19980731.html, 1998.

[7] T. Bray, J. Paoli, and C. Sperberg. Extensible Markup
Language (XML) 1.0. Technical report, World Wide Web
Consortium, http://www.w3.org/TR/1998/REC-xml-19980210,
1998.

[8] M. Fuchs, M. Maloney, and A. Milowski. Schema for
Object-oriented XML. Technical report, World Wide Web
Constorium, http://www.w3.org/TR/NOTE-SOX, 1998.

[9] M. Kay. SAXON DTD Generator - A Tool to Generate
XML DTDs. At
http://home.iclweb.com/icl2/mhkay/dtdgen.html

