
International Journal of Computer Applications (0975 – 8887)
Volume 8– No.12, October 2010

39

Software Engineering - Survey of Reusability Based on
Software Component

Sarbjeet Singh, Manjit Thapa, Sukhvinder singh and Gurpreet Singh

Department of Computer Science, Sri Sai College of Engg. & Tech. Badhani
(Pathankot).

ABSTRACT

Survey of reusability based on software components that provide
the assistance to the developer in the development of software.
Reusability of software is an important prerequisite for cost and
time-optimized software development Work in software reuse
focuses on reusing artifacts. The paper discusses the reusability
concepts for Component based Systems and explores several
existing metrics for both white-box and black box components
to measure reusability directly or indirectly and presents the

special requirements on software in this domain and Reusability
is about building a library of frequently used components, thus
allowing new programs to be assembled quickly from existing
components. Component-Based Systems (CBS) have now
become more generalized approach for application development.

Keyword: Tools of reusability, Components of reuse,

Reusability matrices.

1. INTRODUCTION

Reusability is the basic concept of software engineering
.Software reuse has been a lofty goal for Software Engineering
(SE) research and practice, as a means to reduced development
costs, time, improved quality and component based
development. Reusability is about building a library of
frequently used components, thus allowing new programs to be
assembled quickly from existing components. . Software
reusability is the use of engineering knowledge or artifacts from
existing software components to build a new system. Reusability

is the key paradigm for increasing software quality in the
software development. It is an important area of software
engineering research that promises significant improvements in
software productivity and quality. The major advantages of
CBSD are low cost, in-time and high quality solutions. Higher
productivity, flexibility & quality through reusability, replace
ability, efficient maintainability, and scalability are some
additional benefits of CBSD. If there are a number of

components available, it becomes necessary to devise some
software metrics to qualify the various characteristics of
components. It is necessary to measure the reusability of
components in order to realize the reuse of components
effectively. Reusability can also be measured indirectly.
Complexity, adaptability and observability can be considered as
a good measure of reusability indirectly.

The ability to reuse relies in an essential way on the ability to
build larger things from smaller parts, and being able to identify
commonalities among those parts[1,2,3]. Reusability is often a
required characteristic of platform software. and implies some

explicit management of build, packaging, distribution,

installation, configuration, deployment, maintenance and
upgrade issues. Reusability brings several aspects to software

development that do not need to be considered when reusability
is not required.

2. TOOLS OF REUSABILITY

Software programming is a hard design task, mainly due to the

complexity involved in the process. Reuse deals with the ability
to combine independent software components to form a

Larger unit of software.[4,5,6] To incorporate reusable
components into a software system, programmers must be able
to find and understand them. Thus Software reuse is software
design, where previous components are the building blocks for
the generation of new systems. These are the three or four
specific tools by Reusability.

 And shown by figure1.

 White Box Reusability

 Black Box Reusability

 Glass Box Reusability

Reusability tools are based upon software testing development.
Software reuse can apply to any life cycle product, not only to
fragments of source code[7,8].

In White-box reusability is verification technique software
engineers can use to examine if their code works as expected
and a box can share its internal structure or implementation with
another box through inheritance or delegation.

 Figure1. Shown in tools of reuse.

Tools of

Reusability

White Box Black Box

Glass Box

http://en.wikipedia.org/wiki/Commonality
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Software_build
http://en.wikipedia.org/wiki/Packaging
http://en.wikipedia.org/wiki/Distribution_%28business%29
http://en.wikipedia.org/wiki/Installation_%28computer_programs%29
http://en.wikipedia.org/wiki/Computer_configuration
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Upgrade
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.12, October 2010

40

One of the most common complaints of designers or print
service providers when previewing and printing transparency
from In Design is that a transparency effect like a drop shadow
doesn‟t display or print correctly. Instead, a white box appears
behind the transparency effect [9.10].

It discusses several benefits of component characterization,
which includes improved cataloguing, improved usage,

improved retrieval and improved understanding eventually for
better reuse [11.12].

In Black box reusability, the reuse sees the interface, not the

implementation of the component.[13,14,15] If a programmer
were to change the code of a black box component, compiling
and linking the component would propagate the change to the
applications that reuse the component. As the users of the
component trust its interface, changes should not affect the
logical behavior of the component.

In Glass box reusability the inside of the box can be seen as

well as the outside, but it is not possible to touch the inside to

obtain the digital displays. [16,17]

• A good knowledge of PowerPoint (or other slideshow

program) is necessary.

• Facility with Adobe Photoshop (or similar professional

imaging software) can certainly help speed the process and

enhance the content.

• A camera, scanner, screenshot software and a basic knowledge

Of photography and digital

imagings are requisite[18.19].

• Some artistic talent helps.

• And keep in mind that the software, ppt files, and images

demand a lot from a computer.

The computer I work on to create the display is new and has

plenty Of oomph.

3. COMPONENTS OF REUSABILITY

Component Reusability is about building a library of frequently
used components, thus allowing new programs to be assembled
quickly from existing components.[20,21] Component
Reusability has produced greater schedule and effort savings
than any other practice. We have applied this concept not only to
the code, but also to the design, data, documentation, test
materials, specifications, and plan[22,23].

We have created a repository named „Component Repository‟ to
store the components that are identified as commonly used

components. Currently this repository stores more than 100
reusable components. The repository has a search feature to look
for similar components. The repository is managed by the Reuse
Group, which has members from the design as well as
development team. And shown by figure 2. There are a number
of definitions given related to the component, some of these are:

 Software component

 Distributed component

 Business component

 Group of component

 Based on software development component

 Application

 Logic Tier

 Resource Tier

Figure 2.Shown as a tier on group of component.

A software component is a reusable piece of code or software
in binary form, which can be plugged into components from
other vendors with relatively little efforts. A component is a

language neutral, independently implemented package of
software services, delivered in an encapsulated and replaceable
container, accessed via one or more published interface. It is not
platform constrained nor is it application-bound. It t is a unit of
composition with contractually specified interface and explicit
context dependencies only. A software component can be
deployed independently and is subjected to composition by third
parts.

A distributed component is a possibly network addressable
component which has the lowest granularity. It may be
implemented as an Enterprise JavaBeans, as a CORBA
component, or as a DCOM component.

A business component implements a single autonomous
business concept. A business component system is a group of

Business components that co-operate to deliver a cohesive set of
functionality and properties required in a specific domain.

A Component-based software development (CBSD) is an
approach in which systems are built from well-defined,
independently produced pieces by combining the pieces with
self-made components. If there are a number of components

available, it becomes necessary to devise some software metrics
to qualify the various characteristics of components. Software
metrics are intended to measure software quality characteristics
quantitatively. In Object-Oriented Programming (OOP) code is
reused in the form of objects, and several mechanisms such as
inheritance and polymorphism let the developer reuse these
objects in several ways. Among several quality characteristics,

Component

 Of

Reusability

 Software

component

 Component

Based on the
development

Business

component
Distributed
component

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.12, October 2010

41

the, reusability is particularly important when reusing
components. It is necessary to measure the reusability of
components in order to realize the reuse of components
effectively.

A tier is a Group of components in the same layer.

The classic three-tier architecture consists of the presentation
tier (windows, reports), application logic tier (Business rules of
the application) and resource tier (persistent storage
mechanism).

4. REUSABILITY MATRICES AND

MODEL
Software reuse, the use of existing software artifacts or
knowledge to create new software is a key method for
significantly improving software quality and productivity.
Reusability is the degree to which a thing can be reused.
Software reuse reduces the amount of software that needs to be
produced from scratch and thus allows a greater focus on

quality. The reuse of well tested software should result in greater
reliability and less testing time for new software. With reuse,
software development becomes a capital investment. In this
paper we survey metrics and models of software reuse and
reusability. A metric is a quantitative indicator of an attribute of
a thing. A model specifies relationships among metrics. In reuse
models and metrics are categorized into types:

 Reuse cost benefits

 Maturity assessment

 Amount of reuse

 Reusability

 Reuse library

Cost benefit analysis models include economic cost-benefit
models and quality and productivity payoff analyses. These are
estimated by setting arbitrary values for cost and productivity
measures of systems without reuse, and then estimating these

parameters for systems with reuse and cost benefit analysis
consist of several types of models. As shown by figure3.

 Figure 3.Shown by knowledge base upon

 Reusability models.

 Productivity model

 Quality of Investment

 Business Reuse Metrics

Cost and productivity models for software reuse.. The cost-of-
development model builds upon the simple model by
representing the cost of developing reusable components. Let E
represent the cost of developing a reusable component relative
to the cost of producing a component that is not reusable. E is

expected to be .1 because creating a component for reuse
generally requires extra effort. Let n be the number of uses over
which the code development cost will be amortized. The new
value for C (cost) incorporates these measures:

 C = ~b 1 ~E/n! 2 1! R 1 1.

Quality of instrument based upon activities. Reuse activities are

divided into producer activities and consumer activities.
Producer activities are reuse investments, or costs incurred while
making one or more work products easier to reuse by others.
Consumer activities are reuse benefits or measures in dollars of
how much the earlier reuse investment helped. Quality of an
instrument based upon ratio as

 Q = B/R

 Q is less than B and R.

Maturity model is at the core of planned reuse, helping
organizations understand their past, current, and future goals for
reuse activities. Several reuse maturity models have been
developed and used, though they have not been validated.

Amount of reuse metrics are used to assess and monitor a reuse
improvement effort by tracking percentages of reuse of life
cycle objects over time. In general, the metric is given by

Lines of reused code in system or module

 Total line of code system

These matrices are based upon the external lower level behavior
and internal lower level behavior.

External lower level behavior = E/R

Internal lower level behavior = L/R

 Reusability Assessment includes the concept of tools of

reusability as black box, white box and glass box. And several
modules are

 Fewer module calls per source line

 Fewer I/O parameters per source line

 Fewer read/write statements per line

 Higher comment to code ratios

 More utility function calls per source line

 Fewer source lines

A coupling is based on references to variables and parameters
(data bindings). Aliasing, or referencing, is not taken into
account; only one level of data bindings is considered.

Reusability

models

Amount of

reuse
Maturity

Assessme
nt

Reuse

library

Cost
benefit

analysis

International Journal of Computer Applications (0975 – 8887)
Volume 8– No.12, October 2010

42

Reuse library Library assets can be obtained from existing
systems through reengineering, designed and built from scratch,
or purchased.

Library efficiency deals with nonfunctional requirements such
as memory usage, indexing file size, and retrieval speed.

5. CONCLUSION

In this paper we survey different aspects of reusability for
component-based, metrics and models of software reuse. A
metric is a quantitative indicator of an attribute. A model
specifies relationships between metrics. The work proposed here
can be used by researchers for further study and empirical

validation of these existing metrics for Component based upon
the system.

6. REFERENCES

[1] J.J. Bunn. Floppy and flow user manual. 1997.

[2] B.W. Goodwin, T.H. Andres, D.C. Donahue, W.C. Hajas,
S.B. Keeling, C.I. Kitson, D.M. LeNeveu, T.W. Melnyk, S.E.

Oliver, J.G. Szekely, A.G. Wikjord, K. Witzke, and L.
Wojciechowski. Radiological assessment. Technical
ReportAECL-11494-5,COG-95-552-5, Atomic Energyof
Canada Ltd, 1996.

[3] B.W. Goodwin, D.B. McConnell, T.H. Andres,waste:
Postclosure assessment of a referencesystem. Technical Report
AECL-10717, COG- 93-7, Atomic Energy of Canada Ltd, 1994.

[4] D.E. Knuth. Literate Programming. Center for the Study of
Language and Information, 1992.

[5] D.M. LeNeveu. Analysis specifications for thecc3 vault
model. Technical Report AECL- 10970,COG-94-100, Atomic
Energy of Canada Ltd, 1994.

[6] Quality assurance of analytical, scientific, and design
computer programs for nuclear power Plants. Technical Report
N286.7-99, Canadian Standards Association, 178 Rexdale Blvd.
Etobicoke, Ontario, Canada M9W 1R3, 1999.

[7] S. Oliver, K. Dougan, K. Kersch, C. Kitson, G. Sherman and
L. Wojciechowski. Unit testing- a component of verification of
scientific modeling software. In T.I. Oren and G.B. Birta,
editors, 1995 Summer Computer Simulation Conference, pages
978–983. The SocietyFor Computer Simulation, 1995.

[8] N. Ramsey. Literate programming simplified. IEEE
Software, September 1994.

[9] K. Rose. Very high level 2-dimensional graphics. In 1997
Tex User Group Conference. Textures Group, 1997.

[10] L. Wall, T. Christiansen, and R. Schwartz. Programming
Perl. O‟Reilly & Associates, 101 Morris Street, Sebastopol, CA
95472, second Edition, 1989.

[11] E. Yourdon. Modern Structured Analysis. Yourdon Press.

[12] J. Poulin, J Caruso and D Hancock, “The Business Case for
Software Reuse, IBM Systems Journal, 32(40): 567-594, 1993.

[13] Eun Sook Cho et al., “Component Metrics to Measure
Component Quality”, Proceedings of the eighths Asia-Pacific
Software Engineering Conference, 1530-1362/01.

[14] Hironori Washita, Hirokazu Yamamoto and Yoshiaki
Fukazawa,” Software Component Metrics and its Experimental
Evaluation," Proc. of the International Symposium on Empirical
Software Engineering (ISESE 2002), October 2002. World
Academy of Science, Engineering and Technology 33 200739.

[15] Gamma E., Helm R., Johnson R., Vlissides J.: Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesely, Professional Computing Series, Reading,
Massachusetts, 1994.

[26] Meyer B.: Object-Oriented Software Construction, Second
Edition, Prentice Hall PTR, New Jersey, 1997

[17] Johnson R.: Documenting Frameworks Using Patterns,
Object-Oriented Programming Systems, Languages, and
Applications conference pro-ceedings, pp. 63-76, Vancouver,
British Columbia, Canada, ACM Press, October 1992.

[18] Pirklbauer K., Plösch R., Weinreich R.: Object-Oriented
and Conventional Process Automation Systems, Proceedings of
39th International Scientific Colloqium at TU

Ilmenau,Germany, September 27-30, 1994, pp. 566-571, Bd. 3,
ISSN 0943-7207.

[5] Pomberger G., Blaschek G.: Software Engineering, Carl
Hanser Verlag, 1996

[19] Pree W.: Design Patterns for Object-Oriented Software
Development, Addison-Wesely, 1995

[20] REFORM: A Reusable Framework for Rolling Mills, online
at http://www.ssw.uni-linz.ac.at/REFORM/home.html, accessed
May 1998.

 [21] Siegel J.: CORBA Fundamentals and Programming, John
Wiley & Sons, Inc. 1996

[22] Stroustroup B.: The C++ Programming Language, Third
Edition, Addison-Wesley 1997

[23] Taligent: Building Object-Oriented Frameworks, online
http://www.ibm.com/java/education/oobuilding/index.html,
accessed September 1998

