
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

5

Framework for managing Business logic of web services

through Schema generation and Property evaluation

 Thirumaran. M

Lecturer, Dept. of CSE
Pondicherry Engineering

College (PEC), India.

Dhavachelvan. P
Reader, Dept. of CSE,
Pondicherry University,

India.

 Asha.T Lakshmi.P
Student, Student,

PEC, India PEC, India

ABSTRACT
Business Enterprise Management software needs to undergo

structural modifications to gratify upcoming policies, whose

advent may be due to business decision to satisfy customer

demand or new business policy. Change management is a set of

processes that is employed to ensure that significant changes are

implemented to affect the organizational change. Here Change

Management framework is proposed for making minor

alterations to business logic but whose effect is more pronounced

to the profitability of the organization. The main aspect is that

commercial entity is managed at business analyst‟s discretion

and not at developers‟ discretion which saves time and cost. A

BLMF (Business Logic Management Framework) is a structured

model in which a business analyst can store, retrieve, change and

use the business rules that effect its operations in runtime itself.

As business logic requirements change, business analysts can

update the business logic without enlisting the aid of the IT staff.

This business logic is made out at the run time so as to modify

the logics in quick and better way. In this paper, the motivation

for such framework by way of the genre of business products that

the proposed architecture supports is presented. An account of

proposed business logic management framework in terms of both

functionality and the analyst friendly features available is

detailed. Service Logic representation in XML schema

exemplifies one of such analyst friendly features. All components

are not product specification independent. Certain components of

the framework are developed based on the product

characteristics. Rule editor which helps identify the latent

business rules in its logic is a product dependent component.

Existing applications can be made compatible by developing an

application compliant rule editor. Real time management is

anticipated to get an edge over the existing management

modules. So execution of this change management is discussed

in service computing environment to throw light on how the

service is modified in run time. Property Evaluation Engine is a

noteworthy component of the framework. There has been a lot of

research in computing and enhancing QoS parameters that aid

fast retrieval of service but did not address fast modification of

service and its impact analysis. Property evaluation engine is one

such component that lends a hand in computing QoS parameters

like Computability, Traceability, Time boundness etc. that help

improve the reliability of change management system and guide

change management process throughout its life cycle to increase

its efficiency and robustness.

General Terms
Schema Generation, Property evaluation, Business logic and

rules, Change management, Computability, Traceability

Keywords
Business logic schema, Business logic, Rule extraction, Source

control management, Property evaluation, Web service

maintenance, Impact analysis.

1. INTRODUCTION
Business rules ought to be changed off times to cope with the

challenges in a free-enterprise economy. We focus on creating

environment for dynamic variations to the business logic so that

it is feasible to make frequent modifications in a service which

aids service provider and serves him to satisfy clients‟

newfangled quests. Such environment is useful in the run-time

management of web services and to exactly spot the solution to

the service provider‟s maintenance element. There are many

models that subsist for Business Process Management in which

the process is recycled for the overall process changes. However,

the problem with these solutions is that they only support the

process level flexibility and not the application/service level

flexibility. On the other hand this Business Logic Management

framework tries to append that service level flexibility. These

changes are done at the Business analyst level instead of being

done at the Developer level, which reduces the hierarchy level in

change management and thus implies a reduction in time and

cost requirements. Here we propose a layered architecture for

logic visualization and automated logic alteration which monitors

the services at a point in time. The main goal is to bring forth a

lucid Business Logic schema which versions the service source

code according to the demands and requests raised by the user.

The BL schema generation deals with generating a XML code

that reflects changes to the service logic as anticipated and the

rights to make modifications is handed over to authorized

concerns wherein the security manager component comes in . We

employ a request handler to process and filter the request and a

source control manager for locating the services and a rule

extractor which slices and segments the business rules. An

execution planner is employed to handle the same request which

arises over again. In the process we look forward to propose a

property evaluator that appraises the dependability,

computability, traceability, decidability and interoperability

phenomena in business logic which brings about reliability to the

components present. This paper draws a bead on providing

immediate alterations to the services thus effectuating service

automation process. Thus, it gives new dimensions to the

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

6

Business Logic community by discussing the transparent

framework for Dynamic management of Business Logic.

2. RELATED WORKS
In this section, we discuss the academic research till now held in

this domain. Business Process Management Systems in hand

already, make the ongoing processes in business transparent to

administrators so that they can tweak into and make changes

whenever necessary. Claire Costello and Owen Molloy [1] in

their paper introduced XESS (XML based Expert System Shell)

that creates and downloads business rules to XESS Inference

Engines deployed throughout a business scenario. Rule editing is

accomplished with a rule editor and XESS Inference Engines

bring in the new business rules into action. Here the kinds of

rules that can be created are restricted in accordance with the

rule editor capabilities. Business process oriented software

architecture (BPOSA) for supporting business process change is

being discussed by Qing Yao et al. Their paper also proposes the

development of such architecture. [2]

The classical works of Harry M. Sneed & Katalin Erdos in

regards with extraction of business rules present a tool named

SOFTREDOC that not only extract business rules but also

generates a data dictionary with the references to each data item,

a procedure tree which depicts the structure of the component

parts of a program, and a decision tree which represents the

conditional logic of each program. Finally, it generates a table of

program interfaces, both with other programs, i.e. CALL

interfaces, and with the data environment i.e. data access

interfaces, all of which aid in program maintenance.[3]

Michael zur Muehlen et al. presented the first contribution

towards representational capabilities of process modeling

languages and rule modeling languages and the conclusion was

in favor of combination of these two i.e. BPMN and SRML

together provided with a better representation of the business

logic.[4]

And then regarding legacy systems, they are usually made of a lot

of modules and business rule management gets tougher. Xie

Gang in his paper proposes a approach for rule extraction which

constitutes slicing legacy systems, domain variable identification,

business rule extraction using dependence cache slicing and rule

presentation and validation. Constructing dependence –cache

slices requires static control dependence analysis and dynamic

data dependence collection. [5]

 Similarly overtime, business rules evolve and the software that

implements it also gets morphed. As the encompassing software

becomes large, the business rules embedded are substantial and

difficult to extract. Chengliang Wang et al [6] have proposed a

tailored solution approach to the rule extraction problem which

consists of prime program slicing, prime domain variable

identifying and data analysis, rule validation. Program slicing

uses call graph approach to transform a large program into a

smaller one that contains only statements relevant to the

computation of a given function. Domain variable identification

uses the heuristic rules for choosing domain variables of interest.

This author [7] has already proposed a Business Logic model for

web service source control management. There is also a detailed

account on the cellular pattern generation for a particular web

service that proves to be helpful in evaluating impact analysis

once we manually generate the cellular pattern for modified web

service.

3. ARCHITECTURE DIAGRAM

Fig 1.Architecture diagram

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

7

Business Analyst
A typical Business Analyst‟s technical understanding can be

jotted down as follows. He possesses understanding in the areas

of application programming, database and system design. He

understands Internet, Intranet, Extranet and client/server

architectures. He understands how legacy and web-based systems

interface with each other. Here we authorize the analyst to

customize the service infrastructure according to the requests

raised in the dynamic business arena.

Change Request
A request that may be issued by end user or by employee

working at workstation or by the analyst himself in need to adapt

to a new business policy that demands in return a change to the

currently available service or services. Request is a kind of

abstract rule well formed according to specification of

representation. In this section, the intricacies of architecture and

its components are detailed. As mentioned in abstract, the course

of action begins with issue of change request and the whole

processing of the request is conducted under the supervision of

an analyst. The framework detailed above constitutes four layers

namely Business Request Analyzer, Source Control Manager,

Business Rule Extractor and Business Logic Manager

Business Request Analyzer
This component is composed of two elements namely Request

Classifier and Domain Variable identifier. Presented with a

request as input, the Request Classifier classifies the given

request into categories of Demand, Complaint and Support based

on kind of request‟s representation, more specifically based on

its specification. Priority is assigned in the order of Complaint,

Support and Demand. This priority assignment assists analyst in

making business decision of which request to be attended first.

Domain Variable Identifier discovers the domain variables

present in the request by just tokenizing the request and

searching whether any of tokens match against given domain

variable set. Once we are done with domain variable

identification, we can determine the domain to which the request

refers to i.e. we are also done with establishment of domain

mapping. If the business product is magnificent, we employ

tailored mechanisms presented by Xie Gang [base paper] for

prime domain variable identification. This narrows the count of

domain variables in case of large software systems.

Source Control Manager
We assert requests‟ domain to be the service domain and proceed

with service discovery. With the present infrastructure available,

we are able to manage get the service but not its source. Hence

attainment of service‟s source pops in a need for security

manager that takes the responsibility of authorizing concerned

business people with the rights of access. The domain variables

and domain specific to the request help search the local service

registry and locate the service to be modified. Local service

registry is privileged here to accommodate in it the source for

every given service. Runtime change analyzer handles the issue

of deciding if the change is feasible in runtime. If feasible the

version manager creates a horizontal version i.e. a temporary

copy which can be made permanent once all the expected

changes are updated. Configuration manager facilitates

implementation of a controlled change.

Business Rule Extraction
Business rules have got their hooks built deep into the business

logic. Already a great deal of research work has been carried out

in regards to this area of business rule extraction. In our

component, the rules are extracted out and represented in XML

kind of representation that augments its global appeal. Program

slicing is applied to make the source more specific. First of all

the service source is converted to schema for whose generation

algorithm is given below. The way the code constructs are

converted is shown in the template. The semantic structures are

alone converted leaving out less meaningful syntaxes for variable

declaration etc. From the XML kind of schema, it is easy to

extract conditional usages, assignment usages for a given

variable. This work is carried out by dependency analyzer. Both

static and dynamic dependency analysis is employed. Static

analysis discovers dependencies evident in the program structure

say from conditional program constructs in a program, while a

dynamic analyzer tests the scenario with an input, gets the

workflow and searches for dependencies in entire path of

information flow. Rules are nothing but a condition and its

associated action. Rule set stores a service module and the rules

extracted from it and if we wish to change the service, the

corresponding rules‟ condition or action part is modified and the

same is updated in services‟ source. In order to bring the change

in action, it should be ensured that the change is made in service

source and service redeployment and recompilation held so that

end-user is available with the service.

Business Logic Manager
XML kind of schema generated is evaluated for its syntactic

correctness by the Business logic evaluator and validated. Before

the high-level language source alteration is done, a significant

component of this architecture namely Business logic comes into

picture. The aim of this component is to evaluate whether the

properties of interoperability, traceability, decidability,

computability are preserved even after the alteration. These

properties are evaluated by business property evaluation engine

and the calculated properties are appended to the schema to

generate the final schema. The property values assist the analyst

in making a decision whether or not to implement the alteration.

Because of this reliability of the product is not much affected

even after the change. Now the high-level language source

alteration is done according to variations n schema. Service is

redeployed and recompiled and ready for use.

4. WORKFLOW DESCRIPTION

In following sections, a detailed work flow diagram of the

architecture is shown in Fig.2 The change request is made to

follow certain norms for its representation for easy processing

and the request classifier hence becomes business dependent.

Once the representation pattern is defined, corresponding regular

expression is formulated and the request is processed for the

pattern to find to which category it belongs. Priority is assigned

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

8

to indicate the order of importance of the request. Requests‟ domain is the next area of interest because the effect of change is

also seen in the same domain. Mechanisms presented by Xie

Gang [5] for prime domain variable identification provides us

with request specific domain variables that can be matched

against Domain Variable Set to find the core domain. With the

help of outputs from previous layers, WSDL files and Local

service Registry that has in it service source and other access

control details that aid in locating service source code. The

source code is manipulated by schema generator to generate

XML kind of representation which is understandable for analyst

as well as machine. Business logic is monitored to find if it‟s

modifiable in runtime and if the change made will stay reliable

by specified components. Rules are extracted by methods

suggested in [6] but using the generated schema as the

foundation. Standard mechanisms are applied in for slicing and

segmenting procedures. Conditional references and assignment

usages are used for rule extraction in both static and dynamic

dependency analysis. Rules have XML kind of representation,

therefore easily processable. Rule set and service schema is

evaluated for property determination and workflow management

to finally obtain modified source followed by redeployment,

recompilation and then service in action.

Fig.2 Model Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

9

5. 1 XML SCHEMA FOR C LANGUANGE LIKE CONSTRUCTS

The below table is used in the schema generator program for obtaining the template and for the program to gain knowledge of attributes

that are to be accessed. The schema has got all possible sub elements and attributes that enforce the semantic structure of code even after

the conversion to XML format.

SL.NO STATEMENT SAMPLE CODE XML SCHEMA
1. SELECT QUERY

select name,id from account

where accno = +accno

<query type=”Data retrieval” name=”select”

table=”account”>

<rowset condition= “accno=+accno “>

<columns>

<column_name>name </column_name>

<column_name>id </column_name>

</columns>

</rowset>

</query>

2. UPDATE QUERY update account set

curr_bal=curr_bal where

accno=+accno

<query type =”DML” name=”update”>

<rowset condition: “accno=+accno”>

<columns>

<column_name assignment=”curr_bal=+curr_bal”>

curr_bal

</column_name>

</columns>

</rowset>

</query>

3. INSERT QUERY Insert into employee values

(„some_name‟,‟some_id‟)

<query type=”DML” name=”insert”>

<rowset >

<columns>

<column_name

value=”some_name”>name</column_name>

<column_name value=”some_id”>id</column_name>

</columns>

</rowset>

</query>

4. IF –ELSE STATEMENT If(curr_bal<=amount)

{

Out.println(“Not enough

money”);

Return(“No”);

}

else

{

curr_bal=curr_bal_amt;

return(“Yes”);

}

<if condition=”curr_bal<=amount”>

<process>

<ouput_statement>

<print>“not enough money”</print>

</output _statement>

</process>

<return> no </return>

</if>

<else>

<process>

<assignment_statement>

<LHS> curr_bal </LHS>

<RHS> curr_bal-amount </RHS>

</assignment_statement>

</process>

<return> yes </return>

</else>

5. FOR LOOP for(i=0;i<n;i++)

{

}

<loop initial condition=”i=1” Condition=”i<n”

Operation=”increment”>

<process>

</process>

</loop>

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

10

6. WHILE LOOP while(i<=10)

{

}

<loop condition =”i<=10”>

<process>

</process>

</loop>

7. SWITCH CASE switch(choice)

{

case1:-----------

 Break;

case2:-----------

 Break;

default:-----------

 Break;

}

<switch variable=”choice”>

<cases>

<case no=”1”variable_value=‟A‟>

</case>

<case no=”2”variable_value=‟B‟>

</case>

<default>

</default>

</cases>

</switch>

8.

PRINTF printf(“%d”,x);

printf(“Welcome”);

<output_statement>

<print>x</print>

</output statement>

<output_statement>

<print>“Welcome”</print>

</output statement>

9. SCANF scanf(“%d”,&x); <input_statement>

<get_input>x</get_input>

</input_statement>

5.2 ALGORITHM FOR GENERATION OF

XML SCHEMA FOR A GIVEN SOURCE

CODE

As the name indicates, this is the procedure for conversion of

program to XML schema.

GENSCHEMA (Source)

Begin

I:=0

LEVEL_INDEXER(Source,Level_table)

//to correlate structure begin with its associated end

While not end of source

Begin

Curr_token = READ_NEXT_TOKEN (Source)

For K:=0 to N /

/N is the size of structure having xml schema

id,template,description etc.,

Begin

If(Curr_token = Table_keyword[K])

Begin

Lines[I] := Line_no

Line_id[I] := Table_id[K]

Template[I] := Table_template[K]

EXTRACT_PGM_SEGMENT(Source,Line

s[I],Buffer,Level_table)

 EndIf

EndFor

Curr_token :=READ_NEXT_TOKEN(Source)

EndWhile

End

//--

GET_ATTRIBUTE(Buffer,Line_Id,Attribute)

Begin

While not end of Buffer

Switch(Id)

Begin

Case1: GET_ATTRIBUTE_LOOP(Buffer,Attribute,Line_Id)

Case 2:

GET_ATTRIBUTE_SELECT_QUERY(Buffer,Attribute,Line_I

d)

Case 3:

GET_ATTRIBUTE_CONDITIONAL_CONTROL_STRUCTU

RE(Buffer, Attribute,Line_Id)

....................................

....................................//cases covering all program structures;

EndSwitch

End

//--

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

11

GET_ATTRIBUTE_LOOP(Buffer,Attribute,Line_Id)

//procedure for extracting attribute values for loop Begin

Attrib_value :=

EXTRACT_INITIAL_CONDITION_VALUE(Buffer)

Write to Atribute file

Initial_condition := Attrib_value

Attrib_value := EXTRACT_CONDITION_VALUE(Buffer)

Write to Atribute file

Condition := Attrib_value

Attrib_value := EXTRACT_OPERATION_VALUE(Buffer)

Write to Atribute file

Operation := Attrib_value

End

//--

SUBSTITUTE_ATTRIBUTE(Attribute,Template,Partial_out

put)

Begin

While not end of template

Begin

Curr_token := READ_NEXT_TOKEN(Template)

Find := CHECK(Empty_attrib_value_field_to

be_filled)

If(Find)

Begin

Prev_token :=

READ_PREVIOUS_TOKEN(curr_token,Template)

While not end of Attribute

Begin

If(Prev_token = Attribute_name)

Begin

Value :=

GET_ATTRIB_VALUE(Attribute,prev_token)

Write to Partial_output file

Curr_token := READ_NEXT_TOKEN(Template)

 EndIf

EndWhile

Else

Write to Partial_output file

 Curr_token := READ_NEXT_TOKEN(Template)

EndIf

EndWhile

//--

LEVEL_INDEXER(Source,Level_table)

While not end of Source file

Begin

I :=0

 Curr_token=READ_NEXT_TOKEN(Source)

 If(Curr_token = Pgm_structure_begin)

Begin

 Starttag_lineno[I] := Line_no

Curr_token=READ_NEXT_TOKEN(Source)

Increment I

ElseIf(Curr_token=pgm_structure_end)

Decrement I

Endtag_lineno[I] :=Line_no

Curr_token=READ_NEXT_TOKEN(Source)

Increment I

Else

Curr_token=READ_NEXT_TOKEN(Source)

EndIf

EndWhile

Level[0] := 0

Level[1] := 1

For K := 2 to I-1

Begin

If(Endtag_lineno[K]<Starttag_lineno[K-1])

Begin

Level[K] := Level[K-1]+1

Else

Level[K] := Level[K-1]

EndIf

EndFor

For K := 0 to I-1

Begin

Open Source file

GOTO(starttag_lineno[K])

If(Level[K]=0)

Begin

Append parent tag

GOTO(endtag_lineno[K])

Append closing parent tag

ElseIf((Level[K]=1)

Append child tag

GOTO(endtag_lineno[K])

Append closing child tag

ElseIf((Level[K]=2)

Append grandchild tag

GOTO(endtag_lineno[K])

Append closing grandchild tag

Else

Print”Only three levels of nesting supported”

End program execution

EndIf

EnfFor

End

//--

EXTRACT_PGM_SEGMENT(Source,Lines[I],Buffer,Level_

table)

Begin

While not end of Level_table

Begin

If(Lines[I] != Starttag_lineno[K])

Begin

While not end_of_statement

Begin

Write to Buffer File

EndWhile

GET_ATTRIBUTE(Buffer,Line_id[I],Attribute)

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

12

SUBSTITUTE_ATTRIBUTE(Attribute,Template[I],Buffer,Part

ial_output)

Append Partial_output content to Output

Else

If(Starttag_lineno[K+1]> Endtag_lineno[K])

Begin

For Line_no=Starttag_lineno[K] to Endtag_lineno[K]

Begin

Write to Buffer file

EndFor

GET_ATTRIBUTE(Buffer,Line_id[I],Attribute)

SUBSTITUTE_ATTRIBUTE(Attribute,Template[I],

Buffer,Partial_output)

Append Partial_output content to Output

EndIf

If(Endtag_lineno[K+1]<Endtag_lineno[K])

Begin

EXTRACT_PGM_SEGMENT(Source,

Starttag_lineno[K+1],Buffer,Level_table)

EndIf

EndIf

EndWhile

End

//---

The source code is given as input to the program. The program

processes the code to give desired schema. The code is level

indexed first i.e. blocks, inner blocks and inner most blocks

are identified in case of presence of nested if..else and nested

for loops. This is for aiding highly understandable schema.

Then each line is scanned. Within each line the tokens are

searched for their entry in the table shown before. If found, the

corresponding schema template is retrieved for future use and

the code part that should be converted is extracted.

Extract_pgm_segment () method is employed for this. It takes

into consideration all possible kinds of program constructs and

extracts code segment from beginning to ending. Getattributes

() method extracts appropriate attributes depending upon the

kind of program construct. If the select DB query is to be

processed, then table name, column names, row set condition

etc.attributes are extracted. Setattributes substitutes the

attributes into the template. The entire code is processed the

same way and merged to get the schema.

5.3 EXAMPLE

Here is an example of a withdrawal procedure in a bank

application being converted into XML schema which is

accomplished by the above algorithm. The possible rules are

extracted from the XML schema. According to the change

request the rule sets are modified in the XML schema.

Source program for withdrawal

Public string withdrawal (int acc_no, double amount)

{

sql = “select * from account where acc_no = “+accno””

rs.executeupdate ();

amount = 500;

if (curr_balance <= amount)

{

out. print (“Balance is not enough”);

return (“No”);

}

else

{

curr_balance=curr_balance - amount;

return(“yes”);

}

sql = “update account set curr_balance = “+curr_balance”

where acc_no=”+acc_no””

rs.executeupdate ();

}

Modified rule set as per the request

//rule #1

<assignment_statement>

<LHS>amount</LHS>

<RHS>600 </RHS>

</assignment_statement>

//assignment usage of amount variable

//rule #2

// No change

Modified schema

<assignment_statement>

<LHS>amount</LHS>

<RHS>600 </RHS>

</assignment_statement>

Modified source

amount=600;

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

13

Fig 3.Schema for the above source program for bank

withdrawal

Fig .4 Rule set extracted from above source

6. PROPERTY EVALUATION

Computability
Computability refers to feasibility of the modification

anticipated. Whenever the request is issued, it is being edited

by the analyst as a rule in order to bring in action the change

request using the rule editor whose snapshot is presented in

figure below. This editor allows only certain type of requests

to be made i.e. computability of the request is determined by

this editor. If the request can be edited as rule using this

editor, it means it is computable. And hence computability of

a request is determined to be true or false based on whether

it can be formed as rule by the editor or not. Therefore rule

editor should consider all intricacies of the business product

in its construct to effectively able to represent all computable

rules. Thus the functional QoS parameter, computability is

identified. It is enhanced by the construction of a functionally

complete rule editor.

Fig 5 Rule Editor

There are also other kinds of computability‟s defined, partial

and complete computability. Say a rule includes a set of

actions. If all the requirements of the action are satisfied it is

said to be completely computable. If few of the requirements

of the action are satisfied it is said to be partially

computable. Say an action is composed of a data retrieval

statement. If the specified database, table, fields are

available, it is said to be computable. So in the editor we

have also the space to specify actions constituted by a rule

and we can calculate computability to provide more insight

into computability of the rule.

PROPERTY IDENTIFIED: Computability of a request

VALUE: True/False

ESIMATION PHASE: Business Request analysis phase

ENHANCED BY: Functionally complete Rule editor

Rule Traceability
Rule traceability refers to tracing of similar rules which were

solved before and issue of using its execution plan in solving

current issue. Some errors may occur during runtime. The

complaint is given by the user in general English and tries to

edit it as rule using editor.

In case of the same error occurring at two different locations,

he may give the complaint in different way. If we manage to

store the thread control block of that session (shown below),

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.14, October 2010

14

then it is easy to identify similar change requests whose

origin is due to the same internal operating state of the

service. If the request happens to match and the issue was

solved, we flag the present request as repeating request and

indicate that the issue was not solved completely. If it

happens to match partially, say parameters alone, we can

make use of execution plan of the change request solved

before.

PROPERTY IDENTIFIED: Rule traceability of a request

VALUE: (True, Execution plan)/(False, Repeating request)

ESIMATION PHASE: Business Request analysis phase

ENHANCED BY: Execution planner

7. CONCLUSION

The proposed framework is a full fledged one, when all the

components of it are completely conceptualized will turn out

to be a great tool for business change management i.e.

runtime time change management. In this paper, we focused

on defining the components, where few components had

already its base derived from the research work available.

Here we define the need for components such as property

evaluator and run time manager. The novel procedure

introduced here is the XML schema generation even for the

programming logic statements and making that as base for

rule extraction sample case study where a withdrawal module

of banking program is managed making use of the above

discussed concepts depicts the simplicity and effectiveness of

the architecture.

REFERENCES

[1] Claire Costello and Owen Molloy, “Orchestrating Supply

Chain Interactions using Emerging Process Description

Languages and Business Rules”, Sixth International

Conference on Electronic Commerce,ICEC,pp 21-30,2004.

[2] Qing Yao,Jing Zhang,Haiyang Wang, “Business Process

Oriented Architecture for Supporting Business Process

Change”, International Symposium on Electronic Commerce

and Security,pp 690- 694,2008.

[3] Harry M. Sneed , Katalin Erdos, “Extracting Business

Rules from Source Code”, IEEE publication,2004.

[4] Michael zur Muehlen, Marta Indulska, Gerrit Kamp,

“Business Process and Business Rule Modeling Languages

for Compliance Management: A Representational Analysis”,

Twenty-Sixth International Conference on Conceptual

Modeling, 2007.

[5] Xie Gang, “Business Rule Extraction from Legacy system

Using Dependence-Cache Slicing”, The 1st International

Conference on Information Science and Engineering,

ICISE,pp 4214-4218,2009.

[6] Chengliang Wang , Yaxin Zhou, Juanjuan Chen,

“Extracting Prime Business Rules from large legacy system”,

International Conference on Computer Science and Software

Engineering, pp 19-23, 2008.

[7] Thirumaran.M, Dhavachelvan. P, Tushar Ranjan Sahoo,

Maria Stephen “Business Logic Model for Web Service

Source Control Management” International Journal of

Computer Applications (0975 - 8887) Volume 1 – No. 21,

2010

[8] Bassam Atieh Rajabi, Sai Peck Lee, “Change

Management in Business Process Modeling Survey”, 2009

International Conference on Information Management and

Engineering.

[9]. F. A. Blaauboer, K. Sikkel, M.N Aydin, “Deciding to

Adopt Requirements Traceability in Practice”, In Proc. of

19th Int. Conf. on Advanced Information Systems

Engineering (CAiSE'07), Springer Lecture notes in Computer

Science 4495, Norway, 2007, pp. 294-308.

[10]. J. Cleland-Huang, “Toward Improved Traceability of

Non-Functional requirements”, Proceedings of the 3rd

international workshop on Traceability in emerging forms of

software engineering, Long Beach, California, 2005, pp. 14 –

19.

[11]. Uttam Kumar Tripathi, Knut Hinkelmann, “Change

Management in Semantic Business Processes Modeling”,

Eight International Symposium on Autonomous

Decentralized Systems (ISADS’07).

[12]. Xiang Luo, Koushik Kar, Sambit Sahu, Prashant

Pradhan, Anees Shaikh, “On Improving Change Management

Process for Enterprise IT Services” IEEE International

Conference on Services Computing, 2008.

[13] Alpigini, J.J., Neill, C.J., and Ramsey F.V.,

"Classification of Rule Extraction Techniques from

Knowledge-Based Systems", Proceeding of the IASTED

International Conference Modeling and Simulation, 2001,

pp. 60-64.

[14] X. Wang, J. Sun, X. Yang, Z. He, and S.R. Maddineni,

"Human Factors in Extracting Business Rules from Legacy

Systems," in Proceedings of 2004 IEEE International

Conference on Systems, Man and Cybernetics, 2004, pp.

200-205.

[15] Software AG, "Unlock data and functions in your legacy

systems", GrossVision, 2006.

[16] O.Vasilecas and A. Smaizys, “Business rule

specification an transformation for rule based data analysis,”

in Proc. of 19th International Conference on Systems for

Automation of Engineering and Research (SAER 2005), R.

Romansky, Ed., 2005, pp. 35-40.

[17] M. Bajec and M. Krisper "A methodology and tool

support for managing business rules in organizations",

Information Systems, 2004, Elsevier

[18]. M. Bajec and M. Krisper "A methodology and tool

support for managing business rules in organizations",

Information Systems, 2004, Elsevier.

