
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

10

Automatic SystemC Code Generation from UML Models at

Early Stages of Systems on Chip Design

Fateh Boutekkouk
Larbi ben M’hedi University

BP 358, Oum El Bouaghi, 04000
Algeria

ABSTRACT

In this paper, we present our approach for automatic SystemC

code generation from UML models at early stages of Systems On

Chip (SOC) design. A particularity of our proposed approach is

the fact that SystemC code generation process is performed

through two levels of abstraction. In the first level, we use UML

hierarchic sequence diagrams to generate a SystemC code that

targets algorithmic space exploration and simulation. In the

second level of abstraction, messages that occur in sequence

diagrams are implemented using UML activity diagrams whose

actions are expressed in the C++ Action Language (AL) included

in the Rhapsody environment from which a full SystemC code is

generated for both simulation and synthesis.

General Terms

Systems On Chip, System Modeling

Keywords

UML, SystemC, Sequence diagrams, Activity diagrams, Action

Language, Simulation.

1. INTRODUCTION
System On Chip (SOC) [1] can be defined as a complex

integrated circuit that integrates the major functional elements of

a complete end-product into a single chip or chipset.

The ever complexity of SOC design has pushed researchers in

the field to raise the level of abstraction and exploit recent

Software Engineering technologies such as object technology and

in particular the Unified Modeling Language (UML) [2, 3].

SOC designers are now confronted with the challenge of how to

bridge the gap between software standard modeling language

such as UML and the well practiced SOC System Level

Languages (SLL) like SystemC [4, 5, 6]. Since UML was

initially introduced in the software domain, most commercial

tools generate software code such as C, C++, and Java from

UML models. However, there is a lack of tools that can

synthesize UML models into SLL descriptions. Our objective is

to raise the level from which SystemC descriptions can be

generated to perform quick simulations and synthesis eventually.

Thus a refinement directed approach seems inevitable to bridge

the gap smoothly between UML models and SystemC

descriptions. To address this problem, we have proposed a flow

that permits automatic SystemC code generation from UML

models at two levels of abstraction. The first level corresponds to

SystemC code generation from UML sequence diagrams without

implementing messages. Thus the generated code at this stage is

oriented to algorithmic space exploration and simulation since

the obtained code consists only of processes input/output ports,

processes sensitivity lists, dependencies between processes, and

signals. The second level of abstraction is a refinement of the

first level where messages are implemented using UML activity

diagrams whose state actions are expressed in the Action

Language included in the Rhapsody environment [7]. At this

stage, the generated code is dedicated to both simulation and

synthesis. The rest of this paper is organized as follows: section

two is dedicated to related works concerning the synthesis of

UML models to SystemC code. Section three puts the light on

UML. Section four gives an overview of the SystemC language.

Our proposed flow with an illustrative example is discussed in

section five. Section six is about implementation and a case study

before concluding.

2. RELATED WORK
In this section, we try to present brievely some pertinent works

targeting the generation of SystemC code from UML models.

SystemC code generation from UML was first investigated in [8],

who presented several benefits when combining UML/SysML

and SystemC, like a common and structured environment for

system documentation/specification. The approaches in [9] and

[10] cope with direct code generation by taking the UML model

as an XMI (XML Metadata Interchange) file for translation to

SystemC.

In [11], the authors presented a UML/SystemC profile for

SystemC code generation from UML structural and Statecharts

diagrams. In [12], the authors proposed a UML/MDA approach

called MoPCoM methodology that permits automatic SystemC

and VHDL code generation from UML models and MARTE

profile by means of MDA techniques. Input models are focused

on UML class, component, and Statecharts diagrams.

In [13], an approach to bridge the gap between UML and

SystemC is presented. The proposed framework permits the

integration of a customized SysML [16] (SysML) is an extension

of UML for systems engineering entry with the code generation

for HW/SW cosimulation and high level FPGA synthesis. Input

models are focused on classes and blocks diagrams.

As opposite to these works, our approach tries to generate

SystemC code automatically at early stages of SOC design

(requirement analysis) from UML sequence diagrams in a first

step then from UML activity diagrams in a second step.

3. THE UNIFIED MODELING LANGUAGE
UML [2] is a graphical object-oriented modeling language,

initially, was used in software systems. However, and according

to authors, UML can be tailored to SOC domain [14].

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

11

In our case, we have chosen the Rhapsody environment [7] for

UML modeling, functional simulation, and automatic SystemC

code generation.

4. SYSTEMC
SystemC [4] is an extension of C++ language for SOC modeling

and simulation. It represents a standard for SOC system level

modeling. Various versions of the language have appeared but

we consider SystemC2.0.

SystemC structural designs are focused on modules.

A module contains ports, interfaces, channels, processes, and

eventually other modules. In SystemC, concurrent behaviors are

modeled using processes. A process has a sensitivity list that

includes the set of signals to which it is sensitive. This list can be

either static (pre-specified before simulation starts) or dynamic.

SystemC processes execute concurrently and may suspend on

wait() statements. Such processes requiring their own

independent execution stack are called “SC_THREADs”. When

the only signal triggering a process is the clock signal „clk‟ we

obtain what we call “SC_CTHREAD” (clocked thread process).

Certain processes do not actually require an independent

execution stack and cannot suspended on wait() statement. Such

processes are termed “SC_METHODs”. SC_METHOD

processes execute in zero simulation time and returns control

back to the simulation kernel.

The following code [6] presents a SystemC module named

display with an input port din, and a SC_METHOD called

print_data which is sensible to din. For each SystemC module

there are two files: .h for ports, functions, variables, and

processes declaration and .cc for process and functions

implementation. systemc.h designates the SystemC library file.

// display.h

#include "systemc.h"

#include "packet.h"

SC_MODULE(display) {

sc_in<long> din; // input port

void print_data();

// Constructor

SC_CTOR(display) {

SC_METHOD(print_data); // Method process to print data

sensitive << din;

}};

// display.cc

#include "display.h"

void display::print_data() {

cout <<"Display:Data Value Received, Data = "<< din <<

"\n";

5. OUR FLOW
As illustrated in figure 1, our proposed flow starts by capturing

system requirements as a set of related uses cases and actors. At

this stage, we use UML use cases diagrams with „include‟ and

„extend‟ relations. Figure 2 gives an example of modelling with

use cases diagram. In this example, we have one actor and two

use cases named usecase_0 and usecase_1. usecase_0 is related

to usecase_1 by the „include‟ relation. Each use case diagram is

then refined to a set of interacting objects exhibiting a possible

scenario. At this stage, we use UML sequence diagrams. The

„include‟ relation is modelled as an unconditional call of the use

case child while the „extend‟ relation is an optional call subject

to some condition. Figure 3 shows a possible implementation of

use cases using hierarchic sequence diagrams. In this example,

we model usecase_0 as the parent use case using sequence

diagram with three interacting objects (class‟s instances)

class_0, class_1, and class_2 and an external object that

represents the environment (Env). usecase_1 is modelled as a

child sequence diagram invoking by a call from the environment.

In order to model the „extend‟ relation, we add a conditional call

invoking the child sequence diagram (usecase_2 in figure 4).

From UML sequence diagrams, a SystemC code is generated

automatically using the VB API which is integrated in the

Rhapsody environment. This API offers the necessary functions

and commands that permit the parsing of UML diagrams and

then the extraction of information needed for SystemC code

generation as text files. The generated code in this step will be

used for algorithmic space exploration and simulation eventually.

We have used three techniques for SystemC code generation

process. In the first technique, each message is considered as a

SystemC SC_METHOD. In the second technique, each end-to-

end scenario is considered as a SystemC SC_THREAD. In the

third technique, each object is considered as a SystemC

SC_THREAD. Dashed lines in figure 1 enable the designer to

modify his/her design according to simulation results.

System Requirements

Modelling using

UML Use Cases Diagrams

Each Use Case is

Implemented using UML

Sequence Diagram

Refinement

Automatic SystemC

code (Algorithmic

Space exploration,

Simulation)

Each Method is modelled

using UML Activity

Diagram whose

Actions are implemented

in C++ Action Language

Automatic full

SystemC code

Generation for

Simulation and

Synthesis

Refinement

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

12

Figure 1. Our proposed flow

actoractor

usecase_0

usecase_1

«include»«include»

Figure 2. Example of UML use cases diagram

5.1 Illustrative example
In order to motivate our proposed approach, we apply the code

generation process on an example whose use case diagram is

illustrated in figure 2. In this example, we assume that we have

an actor and two use cases named usecase_0 and usecase_1 that

are related by an „include‟ relation. Both usecase_0 and

usecase_1 are implemented using UML sequence diagrams as

showed in figure 5. In the following sections, we try to explain

the three techniques for SystemC code generation from UML

sequence diagrams.

5.2 First technique
In this technique, each message is mapped to a SystemC

SC_METHOD. Methods arguments are transformed to input

ports while returned values are mapped to output ports. To each

call to a message, we add a Boolean input port that corresponds

to the event to which process is sensible and a Boolean output

port that corresponds to control return. From figure 5, we observe

that message_2 is used in both usecase_0 and usecase_1. Such a

common message will be mapped to a SC_METHOD process in

a separate module. It is obvious, that this technique may lead to a

very big number of fine grained processes which is not

acceptable in complex designs. But it serves as a first solution

for algorithmic space exploration. Table 1 shows the

correspondence between UML and SystemC concepts.

:class_0

Message_0(x)

ENV

Message_0(x)

:class_1 :class_2

usecase_1

Ref

Figure 3. Possible implementation of „include‟ relation

:class_0

Message_0(x) [x ==1]

ENV

Message_0(x) [x ==1]

:class_1 :class_2

usecase_2

Ref

Figure 4. Possible implementation of „extend‟ relation

:class_0ENV

w =Message_0(x)

Message_3()

w =Message_0(x)

Message_3()

z =Message_1()

:class_1

z =Message_1()

Message_2()

:class_2

Message_2()

usecase_1

Ref

(a)

:class_2

Message_2()Message_2()

:class_1

b =Message_5()b =Message_5()

Message_4(a) [a == 1]

:class_0

Message_4(a) [a == 1]

(b)

Figure 5. Example of hierarchic sequence diagrams

(a) Parent sequence diagram (usecase_0); (b) Child sequence

diagram (usecase_1)

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

13

Table 1. Correspondence between UML and SystemC for the

first technique

UML concept SystemC concept

message SC_METHOD

Common message
SC_METHOD in a

separate module

argument sc_in<type> port

Return value sc_out<type> port

call sc_inout<bool>

Control return sc_out<bool>

Child sequence

diagram
Sub module

Top level model sc_main()

Assume that we have a message with two integer arguments (a

and b) and an integer return value x: x = message(a, b).

The corresponding SystemC code for this message is as follows:

// module1.h

include “systemc.h”

SC_MODULE(module1){

sc_in<int> a;

sc_in<int> b;

sc_out<int> x;

sc_inout<bool> cal;

sc_out<bool> ret;

void message();

SC_CTOR(module1) {

SC_METHOD(message);

sensitive << cal; }};

// module1.cc

#include “module1.h”

void module1::message() {

int arg1, arg2, result;

while cal == 0 ;

cal = 0; // cal = false;

arg1 = a;

arg2 = b;

// message body

x = result;

ret = 1; } // ret = true;

SC_METHOD message is sensitive to the signal cal.

arg1 and arg2 are two variables used to stock the two arguments

coming from the two ports a and b.

result is a variable used to stock the returned value in the port x.

We use the Boolean ports cal and ret to specify the message

invoking and the return of the control to the caller respectively.

The meaning of this SystemC code is as follows:

The process message will be blocked until the occurrence of the

signal cal (cal = 1). After that, the process resumes its execution;

sets cal to false; stocks the arguments coming from input ports a

and b into variables arg1 and arg2; performs some computation;

stocks the result of computation into output port x; sets the signal

ret to true. Similarly, The SystemC code for the caller is as

follows:

// module2.h

include “systemc.h”

SC_MODULE(module2){

sc_in<int> x;

sc_inout<bool> ret;

sc_out<int> a;

sc_out<int> b;

sc_out<bool> cal;

void caller();

SC_CTOR(module2) {

SC_METHOD(caller);

sensitive << ****; // some ports

}};

// module2.cc

#include “module2.h”

void module2::caller() {

int result;

// instructions;

cal = 1; // cal = true;

a = “ ”; // arguments initialization

b = “ ”;

While ret == 0 ;

ret = 0;

result = x;

// remaining instructions

}

Note that SC_METHOD processes message and caller are put in

two distinct modules: module1 and module2 respectively.

However, if we put them into one module, all ports become

sc_inout. By applying this technique on our example, we obtain

six (6) SC_METHOD processes that are: Message_0,

Message_1, Message_2, Message_3, Message_4, and

Message_5. Assume that all messages arguments and return

values are integers. cal0, cal1, cal2, cal3, cal4, and cal5

designate Boolean ports for message_0, message_1, message_2,

message_3 message_4, and message_5 calls respectively. arg0

and arg4 designate ports for message_0 and message_4

arguments respectively. val0, val1, and val5 designate ports for

message_0, message_1, and message_5 returned values

respectively. ret0, ret1, ret2, ret3, ret4, and ret5 designate

Boolean ports for messages controls return.

Since message_2 is a common message, we put it in a separate

module called mess2. Here, we have two modules: usecase0

including SC_METHODS message_0, message_1, and

message_3, and usecase1including message_4, and message_5.

The corresponding SystemC code looks like:

// mess2.h

include “systemc.h”

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

14

SC_MODULE(mess2){

sc_inout<bool> cal2;

sc_out<bool> ret2;

void message_2();

SC_CTOR(mess2) {

SC_METHOD(message_2);

sensitive << cal2;

}};

// mess2.cc

#include “mess2.h”

void mess2::message_2() {

while cal2 == 0 ;

cal2 = 0;

// message body;

ret2 = 1;}

// usecase1.h

include “systemc.h”

SC_MODULE(usecase1){

sc_in<int> arg4; sc_inout<int> val5; sc_out<bool> cal2;

sc_inout<bool> ret2; sc_inout<bool> cal4;

sc_inout<bool> cal5; sc_inout<bool> ret5; sc_out<bool> ret4;

void message_4(); void message_5();

SC_METHOD(message_4);

sensitive << cal4;

SC_METHOD(message_5);

sensitive << cal5;

}};

// usecase1.cc

void usecase1::message_4() {

int var, result;

while cal4 == 0;

cal4 = 0;

var = arg4;

// instructions

cal5 = 1;

while ret5 == 0;

ret5 = 0;

result = val5;

// remaining instructions

ret4 = 1;

}

void usecase1::message_5() {

// code

}

// usecase0.h

include “systemc.h”

SC_MODULE(usecase0){

sc_in<int> arg0; sc_inout<int> arg4; sc_out<int> val0;

sc_inout<int> val1; sc_inout<bool> cal0; sc_inout<bool>

cal1;

sc_out<bool> cal2; sc_inout<bool> cal3; sc_out<bool> cal4;

sc_out<bool> ret0; sc_inout<bool> ret1; sc_inout<bool> ret2;

sc_out<bool> ret3; sc_inout<bool> ret4;

void message_0(); void message_1(); void message_3();

SC_CTOR(usecase0) {

SC_METHOD(message_0);

sensitive << cal0;

SC_METHOD(message_1);

sensitive << cal1;

SC_METHOD(message_3);

sensitive << cal3;

}};

// usecase0.cc

#include “usecase0.h”

void usecase0::message_0() {

 // code

};

void usecase1::message_1() {

// code

};

void usecase1::message_3() {

int var;

while cal3 == 0 ;

cal3 = 0;

// instructions

arg4 = var;

if arg4 = 1 {

cal4 = 1;

while ret4 == 0;

ret4 = 0;

}

// remaining instructions

ret3 = 1;

};

// main.cc

#include “mess2.h”

#include “usecase1.h”

#include “usecase0.h”

int sc_main(int argc, char* argv[]) {

sc_signal<int> ARG0, ARG4, VAL0, VAL1;

sc_signal<bool> CAL0, CAL1, CAL2, CAL3, CAL4, CAL5 ;

sc_signal<bool> RET0, RET1, RET2, RET3, RET4, RET5 ;

mess2 ms2(“mess2”); ms2.cal2(CAL2);ms2.ret2(RET2);

usecase1 uc1(“usecase1”);

uc1.arg4(ARG4);uc1.val5(VAL5);uc1.cal2(CAL2);

uc1.cal4(CAL4);uc1.cal5(CAL5);uc1.ret2(RET2);uc1.ret4(RET4)

;uc1.ret5(RET5);

usecase0 uc0(“usecase0”);

uc0.arg0(ARG0);uc0.arg4(ARG4);uc0.val0(VAL0);

uc0.val1(VAL1);uc0.cal0(CAL0);uc0.cal1(CAL1);

uc0.cal2(CAL2);uc0.cal3(CAL3);uc0.cal4(CAL4);

uc0.ret0(RET0);uc0.ret1(RET1);uc0.ret2(RET2);

uc0.ret3(RET3);uc0.ret4(RET4);

return(0);}

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

15

5.3 Second technique
In this technique, we consider each end-to-end scenario as a

SystemC SC_THREAD. An end-to-end scenario is a sequence of

methods that are invoked by an external call from the

environment. Table 2 shows the correspondence between UML

and SystemC concepts. All internal methods are implemented as

SystemC functions.

Table 2. Correspondence between UML and SystemC for the

second technique

UML concept SystemC concept

End-to-end scenario SC_THREAD

Internal message C++ function

External call port

Top level model sc_main()

By applying this technique on the above example, we obtain two

SystemC SC_THREADS: process1 including the sequence of

messages: message_0, message_1, and message_2 and process2

including message_3, message_4, message_5, and message_2.

process1 is sensitive to cal0 and process2 to cal3.

The corresponding SystemC code is as follows:

// system.h

include “systemc.h”

SC_MODULE(system){

sc_in<int> arg0; sc_inout<bool> cal0; sc_inout<bool> cal3;

sc_out<bool> ret0; sc_out<bool> ret3; sc_out<bool> val0;

int message_0(int); int message_1(void) ; void message_2(void);

void message_3(void); void message_4(int); int

message_5(void);

void process1(); void process2();

SC_CTOR(system) {

SC_THREAD(process1);

sensitive << cal0;

SC_THREAD(process2);

sensitive << cal3;

}};

// system.cc

void message_2(void){

// message_2 body}

int message_1(void){

// instructions

message_2() ; // call to message_2

// remainig instructions}

int message_0(int) {

int result;

// instructions

Result = message_1();

// remaining instructions

return}

int message_5(void) {

// instructions

message_2() ;

// remaining instructions

Return}

void message_4(int) {

int result ;

// instructions

Result = message_5() ;

// remaining instructions}

void message_3(void) {

int arg ;

// instructions

if arg == 1 message_4(arg) ;

// remaining instructions}

void system::process1() {

wait();

cal0 = 0;

arg = arg0;

val0 = message_0(arg);

ret0 = 1; }

void system::process2() {

wait();

cal3 = 0;

message_3();

ret3 = 1; }

// main.cc

#include “system.h”

int sc_main(int argc, char* argv[]) {

sc_signal<bool> CAL0, CAL3, RET0, RET3;

sc_signal<int> ARG0,VAL0;

system sys(“system”);

sys.arg0(ARG0);sys.cal0(CAL0);sys.cal3(CAL3);

sys.ret0(RET0);sys.ret3(RET3); sys.val0(VAL0);

return(0); }

5.4 Third technique
In this technique, each UML object is considered as a

SC_THREAD. For each input /output message call, we create

input/output ports (we add more ports for arguments and

returned values). Table 3 shows the correspondence between

UML and SystemC concepts. By applying this technique on the

above example, we obtain four processes (4): Env, class_0,

class_1, and class_2.

Table 3. Correspondence between UML and SystemC for the

third technique

UML concept SystemC concept

Object SC_THREAD

Input message call Input ports

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

16

output message call Output ports

Top level model sc_main()

For the sake of space, we give only the SystemC code for Env

and class_0.

// system.h

include “systemc.h”

SC_MODULE(system){

sc_inout<bool> cal0 ; sc_inout<bool> cal1;

sc_inout<bool> cal2; sc_inout<bool> cal3;

sc_inout<bool> cal4; sc_inout<bool> cal5;

sc_inout<bool> ret0; sc_inout<bool> ret1;

sc_inout<bool> ret2; sc_inout<bool> ret3;

sc_inout<bool> ret4; sc_inout<bool> ret5;

sc_inout<int> arg0, arg4,val0, val1, val5;

void env();

void class_0(); void class_1(); void class_2();

SC_CTOR(system) {

SC_THREAD(env);

sensitive << ret0 << ret3 ;

SC_THREAD(class_0);

sensitive << cal0 << ret1 << cal3 << ret4 ;

SC_THREAD(class_1);

sensitive << cal1 << ret2 << cal4 << ret5 ;

SC_THREAD(class_2);

sensitive << cal5 << cal2 ;}};

// system.cc

#include “system.h”

void system::env() {

int temp;

cal0 = 1;

arg0 = 1; // some initialization

wait (ret0);

ret0 = 0;

temp = val0;

cal3 = 1;

wait (ret3);

ret3 = 0;

}

void system::class_0() {

int arg, temp;

wait (cal0);

cal0 = 0;

arg = arg0;

-- message0 instructions

cal1 = 1;

wait (ret1);

ret1 = 0;

-- remaining message_0 instructions

ret0 = 1;

val0 = w;

wait (cal3);

cal3 = 0;

-- message3 instructions

temp := a;

if temp = 1{

cal4 = 1;

wait (ret4);

ret4 = 0;}

-- remaining message_3 instructions

ret3 = 1;

}

void system::class_1() {

// body of class_1

}

void system::class_2() {

// body of class_2

}

// main.cc

#include “system.h”

int sc_main(int argc, char* argv[]) {

sc_signal<bool> CAL0, CAL1, CAL2, CAL3, CAL4, CAL5;

sc_signal<bool> RET0, RET1, RET2, RET3, RET4, RET5;

sc_signal<int> ARG0,ARG4,VAL0,VAL1, VAL5;

system sys(“system”);

sys.arg0(ARG0);sys.arg4(ARG4);sys.val0(VAL0);

sys.val1(VAL1);sys.val5(VAL5); sys.cal0(CAL0);

sys.cal1(CAL1); sys.cal2(CAL2);sys.cal3(CAL3);

sys.cal4(CAL4); sys.cal5(CAL5); sys.ret0(RET0);

sys.ret1(RET1); sys.ret2(RET2); sys.ret3(RET3); sys.ret4(RET4);

sys.ret5(RET5);

return(0) ;}

5.5 Modeling with UML activity diagrams
In our proposed flow (see figure 1), the second step consists in

internal behaviour modelling of messages using UML activity

diagrams whose state actions are expressed in the C++ Action

Language (AL) included in the Rhapsody environment. The AL

is a subset of C++ that uses a C++ compiler to enable the model

simulation. This language provides message passing, data

checking, actions on transitions, and model execution. It supports

majority of C++ operators, if/else, for, while, do/while, return

instructions, primitive types, array of primitives, objects,

invoking block operations, generating events, generating port

events, testing port for an event, etc. Using the Rhapsody

environment, we can perform functional simulation before code

generation. This step is very important to validate the SystemC

code functionality against UML functional models.

6. IMPLEMENTATION AND CASE STUDY
We have used the Rhapsody environment for UML modelling

and SystemC code generation. In order to automate the SystemC

code generation from UML models, we have used the VB API

which is integrated in the Rhapsody environment. With VB, we

can easily parse UML graphical models then collect the

necessary information to create SystemC files. We have

developed a VB macro for SystemC code generation and

integrated it as a tool box in the Rhapsody environment. As a

case study, we have chosen the SDP (Simplex Data Protocol) [6]

application whose UML main sequence diagram is illustrated in

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.6, October 2010

17

figure 6. Figure 7 gives us an overview of generated SystemC

files for the receiver object.

7. CONCLUSION AND PERSPECTIVES
In this paper, we present our approach for automatic SystemC

code generation from UML models at early stages of SOC

design. Our proposed flow consists mainly of two steps:

generation of SystemC codes from UML hierarchic sequence

diagrams then from UML activity diagrams. Actions of activity

diagrams are expressed in the C++ Action Language (AL) which

is included in the Rhapsody environment. From AL, a full

SystemC code is generated for both simulation and synthesis.

SystemC code is generated as text files automatically and this is

due to the VB API included in the Rhapsody environment. As a

perspective, we plan to investigate the MDA approach for

SystemC code generation from Sequence diagrams and consider

asynchronous events and temporal constraints.

:Transmitter

get_data_fromApp(&buffer)

:Timer

start_timer(s.seq)start_timer(s.seq)

send_data_to_channel(&s)

:Channel

send_data_to_channel(&s)

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

:ReceiverENV

get_data_fromApp(&buffer)get_data_fromApp(&buffer)

get_data_fromApp(&buffer)

Receive

Ref

Figure 6. UML sequence diagrams for SDP

Figure 7. SystemC code generation from Rhapsody UML models

8. REFERENCE
[1] Jerraya, A.A. and Wolf, W. 2005. Multiprocessor systems

on chip. Morgan Kaufmann publishers.

[2] Booch, G., Rumbaugh, J. and Jacobson I. 1999. Unified

Modeling Language User Guide (Addison-Wesley).

[3] UML2.0 Superstructure Specification. 2003,

http://www.omg.org

[4] SystemC, IEEE Standard SystemC® language Reference

Manual. 2005, www.systemc.org

[5] SystemC, Functional specification for SystemC 2.0. 2002,

www.systemc.org

[6] SystemC, Version 2.0 User‟s guide, 2002, www.systemc.org

[7] Rhapsody UML modeler,

www.telelogic.com/products/rhapsody, from Telelogic, an

IBM company.

[8] Pauwels, M., et al. A design methodology for the

development of a complex system-on-chip using UML and

executable system models. 2004. In System Specification &

Design Languages. Springer US.

[9] Nguyen, K. D. Sun, Z., Thiagarajan, P. and Wong W.-F.

2004. Model-driven SOC design via executable UML to

SystemC. In IEEE RTSS‟04.

[10] Tan, W., et al. Synthesizable SystemC code from UML

models. 2004. In UML for Soc Design, DAC 2004

Workshop.

[11] Riccobene, E., Scandura, P., Rosti, A. and Bocchino, S.

2005. A SOC Design Methodology Involving a UML2.0

Profile for SystemC. Proceedings of the Design, Automation

and Test in Europe Conference end Exhibition (DATE‟05).

[12] Vidal, J., De Lamotte, F., Gogniat, G., Soulard, P. and

Diguet, JP. 2009. A codesign approach for embedded system

modeling and code generation with UML and MARTE. In

DATE09.

[13] Mischkalla, F., He, Da., and Mueller, W. Closing the Gap

between UML-based Modeling, Simulation and Synthesis of

Combined HW/SW Systems. 2010. In DATE10.

[14] Boutekkouk, F., Benmohammed, M., Bilavarn, S. and

Auguin, M. 2009. UML2.0 profiles for Embedded Systems

and Systems On a Chip (SOCs). In JOT (Journal of Object

Technology).

[15] Coyle, F.P, Thornton, M.A. 2005. From UML to HDL: a

Model Driven Architectural Approach to Hardware-

Software Co-Design. Proceedings of Information Systems:

New Generations Conference (ISNG), p. 88-93.

[16] Systems Modeling Language (SysML) Specification. 2006.

OMG document: ad/2006-03-08-01, version 1. Draft.

