
International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

42

Defect Analysis and Prevention for Software Process

Quality Improvement
Sakthi Kumaresh

Research Scholar, Bharathiar University.
 Department of Computer Science,

 MOP Vaishnav College for Women, Chennai.

R Baskaran
Asst. Professor,

Dept. of Computer Science & Engg
Anna University, Chennai.

ABSTRACT

"An ounce of prevention is worth a pound of cure." In software,

these expressions translate into the common observation that the

longer a defect stays in process, the more expensive it is to fix

[10]. Moreover software defects are expensive and time

consuming. The cost of finding and correcting defects represents

one of the most expensive software development activities. And

that too, if the errors get carried away till the final acceptance

testing stage of the project life cycle, then the project is at a greater

risk in terms of its Time and Cost factors. A small amount of effort

spent on quality assurance will see good amount of cost savings in

terms of detecting and eliminating the defects.

To gain a deeper understanding of the effectiveness of the software

process, it is essential to examine the details of defects detected in

the past projects and to study how the same can be eliminated due

to process improvements and newer methodologies. This paper

will focus on finding the total number of defects that has occurred

in the software development process for five similar projects and

aims at classifying various defects using first level of Orthogonal

Defect Classification (ODC), finding root causes of the defects and

use the learning of the projects as preventive ideas. The paper also

showcases on how the preventive ideas are implemented in a new

set of projects resulting in the reduction of the number of similar

defects.

Keywords

Defect, Defect Analysis, Defect Prevention, Root Cause Analysis

1. INTRODUCTION

Software Defect can be defined as “Imperfections in software

development process that would cause software to fail to meet the

desired expectations”.

In software development, lot of defects would emerge during the

development process. It is a fallacy to believe that defects get

injected in the beginning of the cycle and are removed through the

rest of the development process [8]. Defects occur all the way

through the development process. Hence, defect prevention

becomes an essential part of software process quality

improvement.

 Defect prevention (DP) is a process of improving quality whose

purpose is to identify the common causes of defects, and change

the relevant process(es) to prevent that type of defect from

recurring[2]. DP also increases the quality of a software product

while reducing overall costs, schedule and resources. This ensures

a project can maintain cost – schedule – quality equilibrium.

The purpose of defect prevention is to identify those defects in the

beginning of the life cycle and prevent them from recurring so that

the defect may not surface again. In this study, in order to improve

software process quality, defects are first identified from a given

set of projects, classified and analyzed for patterns. These patterns

are then eliminated by finding the root causes, for which

preventive mechanisms are established for reducing re-occurrences

of similar defects in the subsequent projects, thus improving

Quality. This Cycle will be continuous to improve Quality of the

SDLC. The scope of this paper is to provide a comprehensive view

on the defect prevention techniques and practices that can be

followed in software development.

The rest of the paper is organized as follows: Section 2 presents

an overview of related work. Section 3 discusses the need for

defect prevention. Section 4, presents the process improvement

workflow along with the illustration of various stages. The

distribution of the project defect data across project is illustrated in

section 5. Section 6 presents the root cause analysis and

determination of preventive action. Section 7 displays the

reduction of defects in a new project that inherited the preventive

ideas from old projects. Finally, in Section 8, the paper is

concluded by highlighting the benefits of adopting preventive

action in the subsequent project thereby improving the software

process quality.

2. RELATED WORK
The earlier studies in defect prevention were focused on defect

prediction and decide upon the team size of the testing resources

required in order to complete the project on time and lot of effort

were utilized in the debugging and get the defects eliminated.

With the advent of SDLC processes many companies formulated

their own defect prevention mechanisms and many studies were

conducted towards defect prediction and prevention.

 One study by Fang Chenbin [6] was introduction of a tool called

Bug Tracing System (BTS) for defect tracing, has the advantage of

popularity and low cost, and also improves the accuracy of tracking

the identified defects. Work done by Stefan Wagner [9]

summarizes the work on defect classification approaches that have

been proposed by two companies IBM and HP. The IBM approach

is called Orthogonal Defect Classification (ODC) and the HP

approach is based on three dimensions -Defect Origin, Types and

Modes. Pankaj Jalote and Naresh Agarwal [7] stressed on how

analysis of defects found in first iteration can provide feedback for

defect prevention in later iterations, leading to quality and

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

43

productivity improvement. Ajit Ashok Shenvi [1] worked under

the philosophy that “capturing defects in the earlier stage of the

life cycle” is a means of preventing defects in the later stages of

the product life cycle and concentrated on finding out preventive

action for functional defect types only. Suma V [11] aimed to

provide information on various methods and practices supporting

defect detection and prevention based on three case studies and

studied about the defect detection and defect prevention strategies

adopted in these three projects only. All the above methodologies

lacked some dimension in the defect prevention process and

needed more attention.

In this study, we propose to combine the above methodologies used

such as ODC, Iteration defect reduction, capturing defects at early

stage and finding out defect prevention for better classified type of

defects and have attempted to come out with a defect prevention

cycle for continuous improvement of the Quality Processes and

Defect Prevention.

3. NEED FOR DEFECT PREVENTION

Defect prevention is an important activity in any software project.

In most software organizations, the project team focuses on defect

detection and rework. Thus, defect prevention, often becomes a

neglected component. It is therefore advisable to make measures

that prevent the defect from being introduced in the product right

from early stages of the project. While the cost of such measures

are the minimal, the benefits derived due to overall cost saving are

significantly higher compared to cost of fixing the defect at later

stage. Thus analysis of the defects at early stages reduces the time,

cost and the resources required. The knowledge of defect injecting

methods and processes enable the defect prevention. Once this

knowledge is practiced the quality is improved. It also enhances

the total productivity.

4. PROCESS IMPROVEMENT WORK FLOW

Figure 1 Process Improvement Workflow

4.1 WORK FLOW STAGES

4.1.1 Defect Identification

Defects are found by preplanned activities specifically intended to

uncover defects. In general, defects are identified at various stages

of software life cycle through activities like Design review, Code

Inspection, GUI review, function and unit testing. Once defects are

identified they are then classified using first level of Orthogonal

Defect Classification.

4.1.2 Defect Classification

Orthogonal Defect Classification (ODC) is the most prevailing

technique for identifying defects wherein defects are grouped into

types rather than considered independently. ODC classifies defect

at two different points in time

Time when the defect was first detected – Opener Section

Time when the defect got fixed – Closer Section

ODC methodology classifies each defect into orthogonal (mutually

exclusive) attributes some technical and some managerial [8].

These attributes provide all the information to be able to shift

through the enormous volume of data and arrive at patterns on

which root-cause analysis can be done. This coupled with good

action planning and tracking can achieve high degree of defect

reduction and cross learning.

For small and medium projects, in order to save time and effort,

the defects can be classified up to first level of ODC while critical

projects typically large projects needs the defects to be classified

deeply in order to get analyze and understand defects. In this

paper, the project that is selected for analysis being a project

coming under the category of small and medium size project, the

analysis of defect is done by using first level of ODC defect

classification.

First level of ODC includes classifying the defects under various

defect types like Requirements, Design, Logical (Logical defects

are found by testing the code using functional/unit testing), and

Documentation. Defects are classified under these types and then

analysis of defects is carried out.

4.1.3 Defect Analysis

Defect Analysis is using defects as data for continuous quality

improvement. Defect analysis generally seeks to classify defects

into categories and identify possible causes in order to direct

process improvement efforts. Root Cause Analysis (RCA) has

played useful roles in the analysis of software defects. The goal of

RCA is to identify the root cause of defects and initiate actions so

that the source of defects is eliminated. To do so, defects are

analyzed, one at a time. The analysis is qualitative and only

limited by the range of human investigative capabilities. The

qualitative analysis provides feedback to the developers that

eventually improve both the quality and the productivity of the

software organization [8].

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

44

4.1.4 Defect Prevention
Defect prevention is an important activity in any software project.

The purpose of Defect Prevention is to identify the cause of defects

and prevent them from recurring. Defect Prevention involves

analyzing defects that were encountered in the past and taking

specific actions to prevent the occurrence of those types of defects

in the future.

Defect Prevention can be applied to one or more phases of the

software lifecycle to improve software process quality [4].

Figure 2: Defect Prevention in Software Lifecycle

4.1.5 Process Improvement
The suggested preventive actions are implemented by rewriting the

existing quality manuals and tweaking the SDLC processes and

come out with a improved SDLC processes and documents. Next

set of projects follow the revised quality processes there by

effectively all the preventive actions are followed meticulously.

5. PROJECT DEFECT DATA

To study the prevalence of defect in software development process,

five projects are identified. Specifically, these selected projects

were developed under Microsoft .net platform. Information like

number of lines of code (KLOC) produced by the software, number

of defects and the number of man hours spent in the project are

collected. Defect density is a measure of the total number of

defects in a project divided by the size of the software being

measured [3].

Defect Density (DD) = Number of defects / size (kloc) – (1)

Defect density is calculated to track the impact of defect reduction

and to judge the quality improvement on the project that has

implemented defect preventive action with the project that did not

follow any preventive action.

Table 1: Defect Density

First set of

Project

Proj No

Proj Name &

Description

KLOC No of

Defects

Effort

(P Hr)

Defect

Density

Proj 1 Maple - CRM

module for a

trading company

29 172 2200 0.006

Proj 2 Indesign – Survey

Automation Tool

14 119 1200 0.009

Proj 3 Stock Market

Application

7 104 600 0.015

Proj 4 Issue Tracker-

Manages and

maintains list of

issues raised by an

organization

5 97 400 0.019

Proj 5 GRTNET -

General Reporting

Tool

31 145 2400 0.005

Figure 3: Defect - Size Correlation

The project size can be measured either in terms of kilo lines of

code (KLOC) produced or in terms of Function Point (FP). For the

projects that are taken for study, the project size is measured in

terms of KLOC. Comparison is then made between KLOC and

number of defect produced by the project. This comparison is

depicted in the above figure. From (fig 3), it is evident that, the

number of defects in the project varies as the size of the project

varies.

Table 2: Categorization of defects across phases for five

similar projects

Life cycle phases Activity Defect Type No of

Defects

Requirements Review REQ 74

Design Review DSN 58

Code Testing (Function/unit) LOG 420

GUI Review GUI 55

Documentation Review TYP 30

Table 3: Code Description

Code Name Description of Defect Type

LOG Logical Error Logical Error

REQ Requirements

Error in understanding the

requirements, or inadequate

requirements definition.

GUI Graphical Error
Error in screen/report layout and

design

DSN Design Error

Error in developing design, or

inadequate design, or technical

inadequacy in design.

TYP Documentation

Typographical error in

documentation or in code, including

spelling errors, mistyped words,

and missing delimiters in code.

Table 4: Observed defect pattern across projects

Proj No REQ Design LOG GUI Doc Total

Proj 1 20 17 120 9 6 172

Proj 2 15 11 75 10 8 119

Proj 3 12 14 58 13 7 104

Proj 4 12 8 60 15 2 97

Proj 5 15 8 107 8 7 145

Total 74 58 420 55 30 637

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

45

Figure 4: Defect Type pattern across project

Fig 4 illustrates the defect type pattern for five similar projects

that are shown in Table 1. It is found that 70-80 percentages of

defects were classified as coding defects. Approximately 10% of

defects are GUI defects. Balance 10% defects are Requirements,

Design and Documentation defects.

6. DEFECT ANALYSIS

6.1 Defect Pareto Chart

After defects are logged and documented, the next step is to

review and analyze them using root cause analysis techniques.

Before root cause analysis is being carried out, A Pareto chart is

prepared to show the defect type with the highest frequency of

occurrence of defects – the target. Pareto chart for various defect

types of the projects mentioned in table 4 is shown in Figure 5.

Figure 5: Defect Pareto chart

The Pareto Chart shows the frequencies of occurrences of the

various categories of problems encountered, in order to determine

which of the existing problems occur most frequently. The

problem categories or causes are shown on the x-axis of the bar

graph and the cumulative percentage is shown on the y axis of the

graph. From the Pareto chart, it is understood that 80% of the

defect are falling under the category Logical, Requirement, Design

defect type. These defect types should be given higher priority and

must be attended first.

6.2 Root Cause Analysis

Root-cause analysis is the process of finding the activity or process

which causes the defects and find out ways of eliminating or

reducing the effect of that by providing remedial measures.

The root cause analysis of a defect is driven by two key principles:

 Reducing the defects to improve the quality: The analysis

should lead to implementing changes in processes that help

prevent defects in the formation stage itself and ensure their

early detection in case it is re-occurring.

 Utilizing local and third party expertise: The people who

really understand what went wrong should be present to

analyze processes prevalent in that organization along with

third party experts. A healthy debate ensures all possibilities

are reviewed, analyzed and the best possible actions are

arrived by consensus [5].

With these guidelines, defects are analyzed to determine their

origins. A collection of such causes will help in doing the root

cause analysis. One of the tools used to facilitate root cause

analysis is a simple graphical technique called cause-and-effect

diagram/ fishbone diagram which is drawn for sorting and relating

factors that contribute to a given situation. For the projects

mentioned in Table 1, the major causes making software defect to

happen are represented using a cause-and-effect diagram, as shown

in Figure 6.

Figure 6: Cause Effect Diagram for a Software Defect

6.3 Preventive Action

A standard brainstorming procedure was followed to do root cause

analysis. First all the possible causes were identified from the

cause-and-effect diagram and debated among the team and all

suggestions were listed, then the ones that were identified as the

main reasons for causes were separated out. For these causes,

possible preventive actions were discussed and finally agreed

among project team members.

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

46

Table 5 shows possible preventive actions that were agreed by the

project team members for the various root causes of the defect.

Table 5: Root causes and preventive action

S.No Defect

Type

Root Cause Preventive Actions

1 LOG

1) Lack of Domain

knowledge.

2)Improper

Algorithm

3) Developer

without experience

4) Introduction of

new programming

language

 Domain knowledge: Training

should be given to the team

members before starting the

next phase or a new project.

The Training Calendar and the

trainings attended by the team

can be tracked as a part of the

Project status review meeting.

 Make available of trained and

experienced resources for

coding and testing. Plan for

trained resources well in

advance and if they are not

available train the existing

resources. Any risk on the

availability of the trained

resources should be tracked as

a part of the Risk Management

Worksheet.

 Generally introduction of new

programming language should

be known well in advance to

the team and proper training

should be given well in

advance.

2 REQ

1) Assumption of

the Requirement

gathering person in

the grey Area.

2) Ambiguity in

requirement

documentation

3)Incorrect

requirement

specification

4)Wrong elicitation

technique

5)Not enough

preparation for

review by reviewers

 Discuss more about the

boundary of the applications

and granularity of each

requirement

 Using Business Analysts

/Domain professionals during

requirement elicitation.

 Requirement workshop (For

clarity & common

understanding of implicit &

explicit requirements with all

teams including testing)

 Frequent communications with

customer will help to know his

requirements

 A formal sign off from all

Business Users who would

handle the application should

be mandated before starting

the design phase.

3 DSN

1)Ambiguity in

requirement

documentation

2)Incorrect usage of

design tool

3)Incomplete

review

4)Inadequate

participation of

reviewers

5)Lack of system

knowledge

 Discuss more about the

boundary of the applications

and granularity of the

requirement. The equivalent

design conversion should be

well documented in the Design

Document and sign off should

be received before starting the

coding.

 Care should be taken in

choosing right tool

 Training should be given in the

usage of design tool

 The design document should

be consistent with

requirements specification.

The review should be carried

out with a Design review list

as base and adequacy in review

should be cross checked by the

Quality team or Organisation

Design review team.

4 GUI

1) Compatibility of

browsers,

supporting S/W,

H/W etc.

2)Settings of the

system

 Resolution,

3)Limitations of the

Control

 Most of the Graphical defects

appear similar across all

projects. Maintain a defect

database and run test cases

through it before starting up

with the project

5. TYP Oversight

 A thorough check shall be

done before delivering the

artifact.

 Customer review of artifacts

and deliverables

7 IMPLEMENTATION OF DEFECT

PREVENTIVE (DP) ACTION

To see the effectiveness of using the DP action, the above

mentioned preventive action are implemented in the next set of

five similar projects, and the process improvement was observed

in terms of average defect density.

Table 6: Defect Density after implementing Defect Preventive

action

Second

set of

Project

Proj. No

Proj Name &

Description

KLOC No of

Defects

Efforts

(P Hr)

Defect

Density

Proj. 1 eCampus HR

Module

39 118 2900 0.003

Proj. 2 Content

Management

System -

Additional

Reporting

11 54 925 0.005

Proj. 3 MOSS based

document

management

system

16 152 1950 0.010

Proj. 4 UAE Finance

module

development

9 97 1290 0.011

Proj. 5 R&D based BI

tool

33 267 2450 0.008

Figure 7: Graph depicting Defect density comparison before

and after implementation of preventive action

The Graph represents the distribution of defect densities for 5

similar projects before and after implementing the Defect

Prevention as provided in the Table 1 and Table 6. Trend line

International Journal of Computer Applications (0975 – 8887)

Volume 8– No.7, October 2010

47

shows that the defect density after implementing DP is well below

that of defect density before the DP implementation.

The average defect density has gone down from 0.0108 (first set of

projects-Table 1) to 0.0074 (second set of project –Table 6). By

implementing the defect preventive action, not only reduces the

defect density, rework effort is also reduced due to which effort

involved in various processes is also reduced considerably.

8. CONCLUSION

Implementation of defect preventive action not only helps to give a

quality project, but it is also a valuable investment. Defect

prevention practices enhance the ability of software developers to

learn from those errors and, more importantly, learn from the

mistakes of others. The benefits of adopting defect prevention

strategy would be enormous and to list a few, Defect prevention

reduces development time and cost, increases customer

satisfaction, reduces rework effort, thereby decreases cost and

improves product quality.

This study confirms to implementation of first level of Orthogonal

Defect Classification (ODC) for defect classification. To gain a

deeper understanding about the defect, the defects are to be

classified by implementing ODC to next level. Analysis of ODC

classified data helps in getting better defect preventive ideas that

would further improve the software quality process.

9. REFERENCES

[1]. Ajit Ashok Shenvi,2009,”Defect Prevention with

Orthogonal Defect Classification”, In Proc- ISEC ’09,

February 23-26, 2009

[2]. Defect Prevention by SEI’s CMM Model Version 1.1.,

http://www.dfs.mil/technology/pal/cmm/vl/dp

[3]. Linda Westfall, Defect Density

http://www.westfallteam.com/Papers/defect_density.pdf

[4]. Megan Graham, 2005, Software Defect Prevention using

Orthogonal Defect Prevention. http://twin-

spin.cs.umn.edufiles/ODC_TwinSPIN

[5]. Mukesh soni, 1997, Defect Prevention: Reducing cost and

improving quality” published in IEEE Computer,

(Volume 30, Issue 8), August 1997.

[6]. Pan Tiejun, Zheng Leina, Fang Chengbin, 2008, “Defect

Tracing System Based on Orthogonal Defect

Classification” published in Computer Engineering and

Applications, vol 43, PP 9-10, May 2008.

[7]. Pankaj Jalote, Naresh Agarwal, 2007, “Using Defect

Analysis Feedback for Improving Quality and Productivity

in Iterative Software Development” In proc- ITI 3rd

International Conference on Information and

Communications Technology, pp. 703-713.

[8]. Ram Chillarege, Inderpal S Bhandari, Jarir K Chaar,

Michael J Halliday, Diane S Moebus, Bonnie K Ray,

Man-Yuen Wong, 1992, “Orthogonal Defect

Classification - A Concept for In-Process

Measurements”, IEEE Transactions on Software

Engineering, Vol. 18, No.11, Nov 1992.

http://www.chillarege.com/odc/articles/odcconcept/odc.ht

ml

[9]. Stefan Wagner, 2008,”Defect Classification and Defect

Type Revisited” Proceedings of the 2008 workshop on

Defects in large software systems, (DEFECTS’08) pages

73-83, ACM Press,2008

[10]. Steve McConnel, “An ounce of prevention”, IEEE

software, May/June 2001

[11]. Suma V and T R Gopalakrishnan Nair , 2008, “ Effective

Defect Prevention Approach in Software Process for

Achieving Better Quality Levels” Proceedings of World

Academy of Science, Engineering and Technology

Volume 32 August 2008

http://www.westfallteam.com/Papers/defect_density.pdf
http://www.chillarege.com/odc/articles/odcconcept/odc.html
http://www.chillarege.com/odc/articles/odcconcept/odc.html

