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ABSTRACT 

Remote sensing is defined as obtaining information about a 

Performance metrics for measuring absolute degradation and their 

gain in fused image quality are proposed when fusing noisy input 

modalities. This considers fusion of noise patterns, is also 

developed and used to evaluate the perceptual effect of noise 

corrupting homogenous image regions (i.e. areas with no salient 

features). These metrics are employed to compare the performance 

of different image fusion methodologies and feature 

selection/information fusion strategies operating under noisy input 

conditions. The aim of this paper is to define appropriate metrics 

which measure the effects of input sensor noise on the 

performance of image fusion systems.’ noisy fusion’’ metrics are 

developed and used, in the first two scenarios, to measure the 

effects of additive sensor noise on the performance of several 

signal-level image fusion algorithms operating across a range of 

input signal-to-noise ratio (SNR) values. 
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1. INTRODUCTION 
An illustration of a single sensor image fusion system is shown in 

Figure1. The sensor shown could be a visible-band sensor such as 

a digital camera. This sensor captures the real world as a sequence 

of images. The sequence is then fused in one single image and 

used either by a human operator or by a computer to do some 

task. For example in object detection, a human operator searches 

the scene to detect objects such intruders in a security area [21]. 

 

Figure 1 Single Sensor Image Fusion Systems 

This kind of systems has some limitations due to the 

capability of the imaging sensor that is being used. The conditions 

under which the system can operate, the dynamic range, 

resolution, etc. are all limited by the capability of the sensor. For 

example, a visible-band sensor such as the digital camera is 

appropriate for a brightly illuminated environment such as 

daylight scenes but is not suitable for poorly illuminated 

situations found during night, or under adverse conditions such as 

in fog or rain. 

A multi-sensor image fusion system overcomes the limitations of 

a single sensor vision system by combining the images from these 

sensors to form a composite image [6]. Figure 2 shows an 

illustration of a multi-sensor image fusion system. In this case, an 

infrared camera is supplementing the digital camera and their 

individual images are fused to obtain a fused image. This 

approach overcomes the problems referred to before, while the 

digital camera is appropriate for daylight scenes, the infrared 

camera is suitable in poorly illuminated ones. 

 

Figure 2 Multisensor Image Fusion Systems 

The benefits of multi-sensor image fusion include: 

• Extended range of operation – multiple sensors that operate 

under different operating conditions can be deployed to 

extend the effective range of operation. For example different 

sensors can be used for day/night operation. 

• Extended spatial and temporal coverage – joint information 

from sensors that differ in spatial resolution can increase the 

spatial coverage. The same is true for the temporal dimension. 

• Reduced uncertainty – joint information from multiple sensors 

can reduce the uncertainty associated with the sensing or 

decision process. 

• Increased reliability – the fusion of multiple measurements 

can reduce noise and therefore improve the reliability of the 

measured quantity. 

• Robust system performance – redundancy in multiple 

measurements can help in systems robustness. In case one or 

more sensors fail or the performance of a particular sensor 

deteriorates, the system can depend on the other sensors 

Compact representation of information – fusion leads to compact 

representations. For example, in remote sensing, instead of storing 

imagery from several spectral bands, it is comparatively more 

efficient to store the fused information. 

Fusion is performed in the pyramid domain by creating a fused 

pyramid using the information present in the input pyramids. This 

is usually referred to as the pyramid fusion process and can be 

performed in a number of different ways. The most successful 

approach is to use some form of feature selection that directly 
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compares input pyramids coefficients on the basis of their 

importance and selects the one deemed more important for the 

fused pyramid [13]. Practically, selection maps are formed that 

indicate, at each fused pyramid pixel, which of the input pyramids 

is to be used as a source to copy the value from. These selection 

maps are the most optimal entry point for feature level 

information, explained in the following section. Finally, once a 

fused pyramid is completed it is input into the image 

reconstruction process, reverse of image decomposition, which 

produces the fused image. 

Within these application areas, where there is a tendency to 

employ several sensing modalities under a wide range of 

operating conditions, the prospect arises of fusing input images of 

low visual quality. As a result, ‘‘noisy’’ input information 

associated with individual sensors may affect significantly fusion 

system performance. This is because input ‘‘noise’’ may be 

treated by the fusion system as valid information and transferred 

to the fused output image. Furthermore input image noise may 

affect the selection/fusion process of the MSL-IF system in a way 

that introduces additional unwanted artefacts and distortion into 

the fused image [1–6]. 

The performance characteristics of image fusion algorithms, 

operating in noise free conditions, are considered in a number of 

papers. Zhang and Blum [6] present a thorough investigation into 

several multiresolution fusion methodologies for a digital camera 

application. Fusion schemes are categorised according to their 

basic multiresolution/pyramid image representation approach and 

mechanisms for pyramid coefficient fusion. Pohl and van 

Genderen [27] provide a comprehensive review of fusion 

techniques as applied to the field of remote sensing.  

Figure 3 show diagrammatically the fusion process the same 

approach is taken when both input images are corrupted images is 

scaled to 7. The noisy fused output images are produced while 

fusing corrupted inputs at matching SNR values with a true 

“noise-less” fused reference image. 

Multisensor imaging arrays often include (i) visible light sensors 

that measure scene illumination in the visible spectrum (0.45–0.7 

lm) (ii) infrared sensors that measure the thermal radiance of 

scene objects in the infrared part of the spectrum (1.5–15 lm) and 

(iii) low light or image enhanced cameras [25]. In general, sensor 

noise is the result of several processes associated with the 

underlying physics of recording an observation [8–12]. Typically 

however, additive noise is the predominant component of noise 

encountered in such devices. Additive noise is modelled as a 

random signal that is simply added to the original signal. In the 

practical model used in this investigation, an input image A is 

corrupted to yield image An by (i) generating a noise-seed signal 

N according to particular sensor noise characteristics, (ii) scaling 

N by an appropriate factor kn to produce a desired signal-to-noise 

ratio ‘‘n’’ and (iii) adding the 

   Figure 3 Single noisy input fusion and corresponding noise free 

fusion processes 

2. NOISY IMAGE PERFORMANCE 

EVALUATION 
Noise-free fusion system performance metric such as the root 

mean square error (RMSE), compare the output fused image with 

a reference image and form a distance between the two, e.g. 

square of the difference in the RMSE metric. These metric, which 

are potentially applicable to the case of noisy fusion measure 

‘‘relative’’ fusion performance (with respect to a noise free fused 

reference) . 

Both the ‘‘relative’’ and ‘‘absolute’’ image fusion performance of 

a systems operating under noisy input conditions can be 

objectively measured using the subjectively meaningful fusion 

performance evaluation. In this approach, visual information is 

associated with ‘‘edge’’ related information that is measured at 

each image pixel. An image fusion process that succeeds in 

transferring all of the visual information from any number of 

inputs into the fused image is said to have achieved ideal fusion. 

2.1 Overall Degradation of Performance in 

Noisy Image Fusion 
Main objective of an image fusion system is to transfer, the 

content of input images into a fused output image as faithfully as 

possible. This implies a possible ‘‘loss’’ of information as well as 

the introduction of ‘‘artefacts’’ in the fused image. With this in 

mind, the QAB/F p measure [13, 14], see Eq. (6) is a fusion 

performance metric whose value increases toward unity as the 

amount of information loss and artefacts in F decreases. However, 

when input images are corrupted by noise, loss of input ‘‘noise 

information’’ in the output image is an advantageous 

characteristic of the underlying fusion process. 

Measuring only the representation of ‘‘true’’ scene information in 

the fused image solves the problem of taking into account 

correctly the loss of noise information. This true information is 

contained in the noise free input images, A and B, and meaningful 

performance assessment is achieved using the QAB/Fn 
p metric. The 

value of QAB/Fn 
p increases when the fused output image is a more 

accurate representation of the noise free A and B images, i.e. 

when there is a reduction of noise in Fn. QAB/Fn 
p measures the 

overall success, of the fusion scheme p, in representing true scene 

information in the noisy fused image Fn, and can be used to 

determine fusion performance under noisy input conditions. Thus 
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for decreasing SNR values ‘‘n’’, QAB/Fn 
p describes the absolute 

degradation of fusion performance with increasing noise. Notice 

that QAB/Fn p takes into account the effects of artefacts and 

distortions introduced by the fusion process itself. 

Another metric of ‘‘relative’’ noisy fusion performance is the 

change in degradation found in the fused image with respect to 

that of input images. This metric considers the fact that robust 

fusion algorithms may suppress noise effects and, as a result, 

fused images may degrade less than input images for 

corresponding levels of noise. Conversely, fused images obtained 

via noise sensitive algorithms either degrades in the same manner 

as input images or contain amplified noise. By comparing the 

degradation of information in input images corrupted by noise, 

with that of fused images, a relative performance (information) 

gain achieved by the fusion process can be measured. A measure 

of relative fusion ‘‘gain’’ can be defined when one or two inputs 

are corrupted by noise. In particular, in the single noisy input 

case, QAA/An 
p measures the loss of visual information as a result of 

corrupting the noise-free image A with n dB noise to obtain An. 

Also, QFF /Fn 
p
 measures the loss of information at the output of the 

fusion system, due to the input being corrupted by noise. The 

relative effect of noise on the visual information observed in the 

input and output fused images can then be defined as the relative 

difference between the degradation of the fused image QFF /Fn 
p and 

the degradation of the input image QAA/An
p . For the single noisy 

input case then, the relative noisy fusion gain Dp
n, is defined as. 

AnAA

AnAAFnFF

Q

QQ
D

/

//
−

=                      (1) 

Most of the fusion method treats noise patterns as valid 

information and fuse them directly into Fn. This transfer of noise 

information is not desirable and for a decreasing SNR, a robust 

fusion method preserves the true information in the fused image 

and the rate of decrease of QFF /Fn
p is slower than that of QAA/An

p 

resulting in a positive value of Dp
n. In general, Dp

n is negative 

when input noise is ‘‘amplified’’ by the fusion process, i.e. further 

loss of information in Fn is caused by the fusion process. 

2.2 Performance Measure in Noisy Fusion 
Preservation of significant information from the uncorrupted input 

images into the fused images is concentrated on measuring their 

performance. Noise in this area may cover a large part of the fused 

image, has a distracting effect on the visual quality when both 

input images are corrupted by noise, the properties of noise 

patterns in the fused image depends on the fusion algorithms 

should discern between real information and noise. 

The effect of different fusion approaches an output noise is 

evaluated here, while fusing signals containing only random noise 

patterns of the resulting fused signals. Fused noise power directly 

relates directly to the “detectability” of the noise pattern in the 

fused image. Relative change in the noise power, produced by a 

fusion scheme p is measured as the noise power gain Sp, defined 

in Eq. (9), where σ2
0p and σ2

0i are the fused and input noise 

variances respectively. Fusion algorithms, which amplify input 

noise, have Sp > 1, while noise suppression in fused image 
produces Sp < 1. 

                      
i
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3. RESULTS AND DISCUSSION 
The image fusion technique for RS data GUI (Graphic User 

Interface) will be introduced. It was developed with the Matlab 

tool GUIDE (GUI Design Environment). This Toolkit intends to 

perform fusion of two source images using the different methods, 

in a user-friendly. 

During the experimentation in the first a true, “noise-less” fused 

image is produced for each input pair, where fusion of images A 

and B using different methods like DWT and Laplacian pyramid. 

In this work we take performance under the single noisy input 

scenario and the same is done by taking the when both images are 

corrupted at different level of SNR  

 

Figure 4 Snapshot of Fusion toolkits Main Screen 

 

Figure 5 Snapshot for selecting the images methods and 

distortion 
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Figure 6 Snapshot for applying Gaussian noise and their RMSE 

value using DWT and Laplace 

 

Figure 7 Snapshot for applying Gaussian noise to only one image 

A 

3.1 Performance of Image Fusion in the 

presence of Input Noise. 
In our work selection of coefficients approach is used for a feature 

selection mechanism. In this work images obtained from the 

region are decomposed into several lower resolution sub-bands 

that contain varying or same size information which operates the 

fusion process effectively at different scale range. 

The Laplacian pyramid representation is formed by the expanded 

version which is obtained by filtering each level of the Laplace 

pyramid. This process decomposes for each input image according 

to their pyramids according to their orientation. This introduces 

orientation sensitivity to the fusion process whereby information 

of different orientation is fused independently. 

The Discreet Wavelet Transform (DWT) approach decomposes an 

input image using a 1D and 2D filter banks, having sub-bands of 

images at each resolution level. The values of DWT pyramid 

coefficients reflect local area rather than direct pixel level at 

corresponding scales, the fused output images are obtained from 

the fusion pyramid by applying reconstruction process. 

Fusion performance results are shown in Figure 8 when the above 

scheme operate with only one noisy input image Figure 8 displays 

absolute performance values for the corrupted visible light input 

data. The absolute performance with decreasing SNR values, a 

behavior that levels off below 5 db above 10 db the laplacian 

pyramid fusion performs slightly better than the DWT indicating 

relative insensitivity to small, random changes in the input signal. 

The fusion gain performance degradation results are shown in 

Figure 9. Image averaging is least affected by the increase in input 

noise, while DWT is most sensitive.    
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Figure 8 Single Noisy fusion Gain DPn performances against 

input SNR for Laplacian and DWT. 
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Figure 9 Fusion of two noisy inputs fusion gain DPn performance 

against SNR of Laplace and DWT. 

 

A final comparison between these noisy performances with 

respect to the selection of their coefficient the and Dp
n capture the 

subjective effective of noise on “coherent” edge detection on 

related to true scene visual information, on the other hand, in 

“uniform” image regions which are subjectively less meaningful 

since the human visual system filters out of which people can see 

through noise, i.e. the presence of input noise, smaller the 

selection template size will preserve better true scene information. 

A graphic example of fusion performance of FS/FP is 

demonstrated in Figure 10. Noise free input images are shown in 

Figure 10(a) and (b) and the Corrupted SNR vales of 10dB Figure 

10 (d). Direct DWT fusion scheme produced the noise free fused 

image as shown in Figure 10 (c), with value of  QAB/Fn 
p =0.689  

with an objective measure. When significant noise corruption is 

present at the input images, DWT fusion performance suffers 

where the main objects in the input images are hardly visible in 

Figure 10(e). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 10 Input Images (a) Noise free input image A (B) Noise 

free Input image B (c) Noise free Fused Image (d) Noisy Fused 

Image at SNR 10db (e) Noisy Fused Image. 

4. CONCLUSION 
The performance of image fusion system which is significantly 

affected within the visible range were studied, where input signals 

where corrupted to check the performance of absolute fusion 

performance and fusion gain, were evaluated at different feature 

selection at multiresolution technique generally preserve or in 

some case even increase noise in fused signals. DWT fused 

images degrade least for increasing level of input noise. 

In multiresolution fusion the feature selection under noisy input 

condition selection of coefficients were through coefficient 

combining method and weighting average method, provides best 

absolute fusion performance even though the feature selection 

methods exhibit performance limitation when input images are 

free of noise. Performance is found dependent strongly on the 

selection of their coefficient would better preserve the true scene 

information. 
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