
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.2, November 2010

41

Width of a Binary Tree

Nishant Doshi
Pursuing Ph.D.
SVNIT, Surat
Gujarat, India

Tarun Sureja
Assistant Professor

R.K. College of
Engineering &

Technology Rajkot,
Gujarat, India

Bhavesh Akbari
Lecturer

R.K. College of
Engineering &

Technology Rajkot,
Gujarat, India

Hiren Savaliya
Lecturer

V.V.P. Engineering
College

Rajkot, Gujarat, India

Viraj Daxini
Lecturer

V.V.P. Engineering
College

Rajkot, Gujarat, India

ABSTRACT

Till current date in majority books on algorithm and research

papers, they talk about height of a binary tree in terms like height

balanced binary tree. In this paper the notion of width of a binary

tree has been introduced and later the recursive algorithm based

on the traversal techniques of the binary tree is given. Later the

iterative version of algorithm using the notion of stack is

introduced. The width of a binary tree is defined based on the

number of nodes at every level. The highest of all is the width of a

binary tree. The same concept can be applied to the general tree.

General Terms

Algorithms

Keywords

Algorithm, Binary tree, Stack, Width.

1. INTRODUCTION
Binary tree is a tree in which each internal node including

root has at most two children. Leaf node has no children.

The root node is at level 0 and so on. The width of a binary

tree is defined as the maximum number of nodes in a given

tree at some level. For example in figure 2 the width is 2 as

level 1 contains two nodes, and all other level contains only

one node. If two levels had same number of nodes than we can

consider either of them as shown in figure 1. As a literature

survey till now the material which was published and application

found is height balanced binary tree or we can say AVL tree [1-9].

This paper outlines the concept of width.

Fig. 1

Fig 2

2. RECURSIVE APPROACH
Here we can use the same concept of recursive traversal of binary

tree with little modification by introducing the notion of the level.

We assume that we have sufficient amount of array to store the

number of nodes of each level. For simplicity we start the index of

array from zero because tree start from level 0. Let’s develop the

algorithm step by step. The arguments are the tree pointer and the

level number. We can call by passing ROOT and 0 from calling

function. The first step will be to check if the tree from that node

will be existing or not. Assume t is the tree pointer which passed

as an argument then the code will be.

If (t = NULL)

Then

 Return

Now if there is some nodes like left or right than we have to

recursively call that part but before it we increment the number of

nodes in that level by 1 as follows, where l is the level number.

Level[l] =Level[l] +1

Here we can create the array elements at runtime by different

memory operations to save the space. So the final algorithm is as

follows.

Algorithm Findwidth (TREEPTR *t, l)

{

1. If(t = NULL)

2. Then

3. Return

4. Level[l]=Level[l] +1

5. Findwidth(left(t),l+1)

6. Findwidth(right(t),l+1)

7. Return

}

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.2, November 2010

42

Fig 3

Level No. of Nodes

0 1

1 2

2 4

3 7

4 2

Table 1

As shown in figure 3 the example of binary tree is given and table

1 summarize the number of nodes at each level. From table 1 and

by the definition given in the introduction of this paper, the width

of binary tree is 7.

3. ITERATIVE APPROACH
In the binary tree for iterative traversal we use the concept of

stack. The same concept is used in this one. Here we assume the

linked representation of the node in binary tree and in the stack as

given in figure 4 and figure 5 respectively.

Fig 4

Fig 5

Here LPTR is the pointer to the left subtree of a node. Rptr is the

pointer to the right subtree of a node. Info is the data of a node.

Level no. is the level of a node and addr is the address of that

node. Next is pointer to the next in the list. Now let’s develop step

by step the algorithm. The first step is to create an empty stack.

First push the root and level no. as 0 and address of root as the top

of the stack so the step are

 Stack S

 PUSH(S, r, 0)

Next is loop till we not have an empty stack. There is function

called GetTopLevel which return the level no. of the top most

node in a stack. We store in some variable called Curr_level

and make change in the Level array which was passed as

argument. Now pop the top node and if it has left and/or right

child than push all of them and continue with the loop. So the

code will be as follow.

While (NotEmpty(S))

Do

 Curr_level=GetTopLevel(S)

 Level [Curr_level] = Level [Curr_level] + 1

 Node = POP(S)

 If (LPTR (Node))

 Then

 PUSH(S, LPTR (Node), Curr_level+1)

 If (RPTR (Node))

 Then

 PUSH(S, RPTR (Node), Curr_level+1)

Done

After above steps we have Level array contains number of

nodes in each level so next is to find the maximum in the array.

So if we assume that there are N total nodes in a given binary tree

than the running time for recursive as well as iterative is O (N).

Algorithm Finfwidth (Root r, Level [])

{

1. Stack S

2. PUSH(S,r,0)

3. While (NotEmpty(S))

4. Do

5. Curr_level=GetTopLevel(S)

6. Level[Curr_level]= Level[Curr_level] + 1

7. Node = POP(S)

8. If (LPTR(Node))

9. Then

10. PUSH(S, LPTR(Node), Curr_level+1)

11. If (RPTR(Node))

12. Then

13. PUSH(S, RPTR(Node), Curr_level+1)

14. Done

15. Return FindMax(Level)

Now let’s take an example as given in figure 3 and see the

execution of stack as step by step.

Iteration Stack content Level array

0 0 A Null

0 0 0 0 0

1 1 B

1 C Null

1 0 0 0 0

2 2 D

2 E

1 C Null

1 1 0 0 0

3 3 H

3 I

2 E

1 C Null

1 1 1 0 0

4 3 I

2 E

1 C Null

1 1 1 1 0

5 2 E

1 C Null

1 1 1 2 0

6 3 J 1 1 2 2 0

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.2, November 2010

43

1 C Null

7 4 O

1 C Null

1 1 2 3 0

8 1 C Null

1 1 2 3 1

9 2 F

2 G Null

1 2 2 3 1

10 3 K

3 L

2 G Null

1 2 3 3 1

11 4 P

3 L

2 G Null

1 2 3 4 1

12 3 L

2 G Null

1 2 3 4 2

13 2 G Null

1 2 3 5 2

14 3 M

3 N Null

1 2 4 5 2

15 3 N Null

1 2 4 6 2

16 EMPTY 1 2 4 7 2

Table 2

Here we can see the numbers of iterations are 16 which are equal

to the number of nodes in a binary tree. So this completes the

proof that running time of this algorithm is O (N) because to find

maximum in a array of size ≤ N requires O (N) so total is O (N). It

is required constant time to push and pop the node in the stack.

For simplicity the algorithm for PUSH, POP and FindMax is

omitted.

4. CONCLUSION
This paper gives the idea of width of a binary tree. This concept

can be applied to general tree also. By summing all the Level

array element we can get total number of nodes in a given binary

tree and based on that we can predict that to make a given tree as

height balanced binary tree how many level should be required. In

this paper we had only introduce the concept of width of a binary

tree, there will be no any applications given which can be useful

for this approach. That can be done as future work where width

can be useful parameter.

5. REFERENCES
[1] T.H.Cormen, C.E. Leiserson, R. L. Rivest, C. Stein, “Introduction to

algorithms”, second edition, McGraw-Hill publication, 2002.

[2] C. C. Foster, Information retrieval: information storage and

retrieval using AVL trees, Proceedings of the 1965 20th

national conference, p.192-205, August 24-26, 1965,

Cleveland, Ohio, United States.

[3] Foster, C.C. A study of A VL trees. GER-12158, Goodyear

Aerospace Corp., Akron, Ohio, Apr. 1965.

[4] Harold S. Stone, Introduction to Computer Organization and

Data Structures, McGraw-Hill, Inc., New York, NY, 1971.

[5] P. L. Karlton , S. H. Fuller , R. E. Scroggs , E. B. Kaehler,

Performance of height-balanced trees, Communications of

the ACM, v.19 n.1, p.23-28, Jan. 1976

[6] J.-L. Baer , B. Schwab, A comparison of tree-balancing

algorithms, Communications of the ACM, v.20 n.5, p.322-

330, May 1977.

[7] J. L. Baer, Weight-balanced trees, Proceedings of the May

19-22, 1975, national computer conference and exposition,

May 19-22, 1975, Anaheim, California.

[8] Ralston, R. 2009. ACL2-certified AVL trees. In Proceedings

of the Eighth international Workshop on the Acl2 theorem

Prover and Its Applications (Boston, Massachusetts, May 11

- 12, 2009). ACL2 '09. ACM, New York, NY, 71-74.

[9] Yi-Ying Zhang, Wen-Cheng Yang, Kee-Bum Kim, Myong-

Soon Park, "An AVL Tree-Based Dynamic Key

Management in Hierarchical Wireless Sensor Network," iih-

msp, pp.298-303, 2008 International Conference on

Intelligent Information Hiding and Multimedia Signal

Processing, 2008.

http://portal.acm.org/citation.cfm?id=806043&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=806043&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=806043&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=806043&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=578826&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=578826&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=359989&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=359989&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=359989&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=359593&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=359593&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=359593&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=1500040&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=1500040&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044
http://portal.acm.org/citation.cfm?id=1500040&dl=ACM&coll=ACM&CFID=106034265&CFTOKEN=46873044

