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ABSTRACT 

Till current date in majority books on algorithm and research 

papers, they talk about height of a binary tree in terms like height 

balanced binary tree. In this paper the notion of width of a binary 

tree has been introduced and later the recursive algorithm based 

on the traversal techniques of the binary tree is given. Later the 

iterative version of algorithm using the notion of stack is 

introduced. The width of a binary tree is defined based on the 

number of nodes at every level. The highest of all is the width of a 

binary tree. The same concept can be applied to the general tree. 

General Terms 
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1. INTRODUCTION 
Binary tree is a tree in which each internal node including 

root has at most two children. Leaf node has no children. 

The root node is at level 0 and so on. The width of a binary 

tree is defined as the maximum number of nodes in a given 

tree at some level. For example in figure 2 the width is 2 as 

level 1 contains two nodes, and all other level contains only 

one node. If two levels had same number of nodes than we can 

consider either of them as shown in figure 1. As a literature 

survey till now the material which was published and application 

found is height balanced binary tree or we can say AVL tree [1-9]. 

This paper outlines the concept of width.  

 
Fig. 1 

 
Fig 2 

 

2. RECURSIVE APPROACH 
Here we can use the same concept of recursive traversal of binary 

tree with little modification by introducing the notion of the level. 

We assume that we have sufficient amount of array to store the 

number of nodes of each level. For simplicity we start the index of 

array from zero because tree start from level 0. Let’s develop the 

algorithm step by step. The arguments are the tree pointer and the 

level number. We can call by passing ROOT and 0 from calling 

function. The first step will be to check if the tree from that node 

will be existing or not. Assume t is the tree pointer which passed 

as an argument then the code will be. 

If (t = NULL) 

Then 

     Return 

Now if there is some nodes like left or right than we have to 

recursively call that part but before it we increment the number of 

nodes in that level by 1 as follows, where l is the level number. 

Level[l] =Level[l] +1 

Here we can create the array elements at runtime by different 

memory operations to save the space. So the final algorithm is as 

follows. 

Algorithm Findwidth (TREEPTR *t, l) 

{ 

1. If(t = NULL) 

2. Then 

3.      Return 

4. Level[l]=Level[l] +1 

5. Findwidth(left(t),l+1) 

6. Findwidth(right(t),l+1) 

7. Return 

} 
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Fig 3 

 

Level No. of Nodes 

0 1 

1 2 

2 4 

3 7 

4 2 

Table 1 

 

As shown in figure 3 the example of binary tree is given and table 

1 summarize the number of nodes at each level. From table 1 and 

by the definition given in the introduction of this paper, the width 

of binary tree is 7. 

3. ITERATIVE APPROACH 
In the binary tree for iterative traversal we use the   concept of 

stack. The same concept is used in this one. Here we assume the 

linked representation of the node in binary tree and in the stack as 

given in figure 4 and figure 5 respectively. 

 
Fig 4 

 
Fig 5 

Here LPTR is the pointer to the left subtree of a node. Rptr is the 

pointer to the right subtree of a node. Info is the data of a node. 

Level no. is the level of a node and addr is the address of that 

node. Next is pointer to the next in the list. Now let’s develop step 

by step the algorithm. The first step is to create an empty stack. 

First push the root and level no. as 0 and address of root as the top 

of the stack so the step are  

   Stack S 

   PUSH(S, r, 0) 

Next is loop till we not have an empty stack. There is function 

called GetTopLevel which return the level no. of the top most 

node in a stack. We store in some     variable called Curr_level 

and make change in the Level array which was passed as 

argument. Now pop the top node and if it has left and/or right 

child than push all of them and continue with the loop. So the 

code will be as follow. 

While (NotEmpty(S)) 

Do 

      Curr_level=GetTopLevel(S) 

      Level [Curr_level] = Level [Curr_level] + 1 

      Node = POP(S) 

      If (LPTR (Node)) 

      Then 

                PUSH(S, LPTR (Node), Curr_level+1) 

      If (RPTR (Node)) 

      Then 

                PUSH(S, RPTR (Node), Curr_level+1) 

Done 

After above steps we have Level array contains    number of 

nodes in each level so next is to find the maximum in the array. 

So if we assume that there are N total nodes in a given binary tree 

than the running time for recursive as well as iterative is O (N). 

Algorithm Finfwidth (Root r, Level []) 

{ 

1. Stack S 

2. PUSH(S,r,0) 

3. While (NotEmpty(S)) 

4. Do 

5.       Curr_level=GetTopLevel(S) 

6.       Level[Curr_level]= Level[Curr_level] + 1 

7.       Node = POP(S) 

8.       If (LPTR(Node)) 

9.       Then 

10.                 PUSH(S, LPTR(Node), Curr_level+1) 

11.       If (RPTR(Node)) 

12.       Then 

13.                 PUSH(S, RPTR(Node), Curr_level+1) 

14. Done  

15. Return  FindMax(Level) 

    

Now let’s take an example as given in figure 3 and see the 

execution of stack as step by step. 

 

Iteration Stack content Level array 

0 0 A Null        
 

0 0 0 0 0 
 

1 1 B  

1 C Null 
 

1 0 0 0 0 
 

2 2 D  

2 E  

1 C Null 
 

1 1 0 0 0 
 

3 3 H  

3 I  

2 E  

1 C Null 
 

1 1 1 0 0 
 

4 3 I  

2 E  

1 C Null 
 

1 1 1 1 0 
 

5 2 E  

1 C Null 
 

1 1 1 2 0 
 

6 3 J  1 1 2 2 0 
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1 C Null 
 

7 4 O  

1 C Null 
 

1 1 2 3 0 
 

8 1 C Null 
 

1 1 2 3 1 
 

9 2 F  

2 G Null 
 

1 2 2 3 1 
 

10 3 K  

3 L  

2 G Null 
 

1 2 3 3 1 
 

11 4 P  

3 L  

2 G Null 
 

1 2 3 4 1 
 

12 3 L  

2 G Null 
 

1 2 3 4 2 
 

13 2 G Null 
 

1 2 3 5 2 
 

14 3 M  

3 N Null 
 

1 2 4 5 2 
 

15 3 N Null 
 

1 2 4 6 2 
 

16 EMPTY 1 2 4 7 2 
 

Table 2 

 

Here we can see the numbers of iterations are 16 which are equal 

to the number of nodes in a binary tree. So this completes the 

proof that running time of this algorithm is O (N) because to find 

maximum in a array of size ≤ N requires O (N) so total is O (N). It 

is required constant time to push and pop the node in the stack. 

For simplicity the algorithm for PUSH, POP and FindMax is 

omitted. 

4. CONCLUSION 
This paper gives the idea of width of a binary tree. This concept 

can be applied to general tree also. By summing all the Level 

array element we can get total number of nodes in a given binary 

tree and based on that we can predict that to make a given tree as  

height balanced binary tree how many level should be required. In 

this paper we had only introduce the concept of width of a binary 

tree, there will be no any applications given which can be useful 

for this approach. That can be done as future work where width 

can be useful parameter. 
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