
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

1

A Clickstream-based Focused Trend Parallel Web Crawler

ABSTRACT

The immense growing dimension of the World Wide Web induces

many obstacles for all-purpose single-process crawlers including

the presence of some incorrect answers among search results and

the scaling drawbacks. As a result, more enhanced heuristics are

needed to provide more accurate search outcomes in an

appropriate timely manner. Regarding the fact that employing link

dependent Web page importance metrics within a parallel crawler

yields a considerable overhead on the overall searching system,

and also because such a metric is not able to cover the authorized

Web content in dark net and authorized fresh pages, therefore

employing these metrics is not an absolute solution within search

engines’ architecture. This paper proposes the application of a

link independent Web page importance metric to govern the

priority rule within the crawl frontier through proposing a modest

weighted architecture for a focused structured parallel Web

crawler (CFP crawler) in which the credit assignment to URLs in

crawl frontier is done according to a clickstream-based

prioritizing algorithm.

Keywords
Clickstream analysis, Focused crawlers, Parallel crawlers, Web

data management, Web page Importance metrics.

1. INTRODUCTION
The dimension of the World Wide Web is being expanded by an

unpredictable speed. As a result, search engines encounter many

challenges such as yielding accurate and up-to-date results to the

users, and responding them in an appropriate timely manner. A

centralized single-process crawler is a part of a search engine that

traverses the Web graph and fetches any URLs from the initial or

seed URLs, keeps them in a priority based queue and then in an

iterated manner, according to an importance metric selects the

first most important K URLs for further processing based on a

version of Best-first algorithm. A parallel crawler on the other

hand is a multi-processes crawler in which upon partitioning the

Web into different segments, each parallel agent is responsible for

crawling one of the Web partitions [9]. On the other end of

spectrum, all purpose unfocused crawlers attempt to search over

the entire Web to construct their index while a focused crawler

limits its function upon a semantic Web zone by selectively

seeking out the relevant pages to pre-defined topic taxonomy as

an effort to maintain a reasonable dimension of the index [8],

[18].

The bottleneck in the performance of any crawler is applying an

appropriate Web page importance metric in order to prioritize the

crawl frontier. Since we are going to employ a clickstream-based

metric as a heuristic, our hypothesis is the existence of a standard

upon which the authorized crawlers have the right to access the

server log files.

In continue, we first review on the literature of parallel crawlers,

focused crawlers and the existed link-based and text-based Web

page importance metrics by defining the drawbacks of each of

them. Then, we briefly discuss our clickstream-based metric since

it has been thoroughly discussed in a companion paper. Next, the

application of the clickstream-based metric within the architecture

of a focused parallel crawler which we call it CFP crawler will be

presented.

2. PARALLEL CRAWLRS
An appropriate architecture for a parallel crawler is the one in

which the overlap occurrence of download pages among parallel

agents is low. Besides, the coverage rate of downloaded pages

within each parallel agent’s zone of responsibility is high.

However, the quality of the overall parallel crawler or its ability to

fetch the most important pages should not be less than that of a

centralized crawler. For achieving these goals, a measure of

information exchange is needed among parallel agents [9].

Although this communication yields an inevitable overhead, a

satisfactory trade-off among these objectives should be taken into

account for an optimized overall performance.

Selecting an appropriate Web partitioning function is another

issue of concern in parallel crawlers. The most dominant

partitioning functions of the Web are the URL-hash-based, the

site-hash-based and the hierarchical schemes. In URL-hash-based

function, assignment of pages to each parallel agent is done

according to the hash value of each URL. Under this scheme,

different pages in a Web site are crawled by different parallel

agents. In site-hash-based function, all pages in a Web site are

assigned to one agent based on the hash value of the site name. In

hierarchical scheme, partitioning the Web is performed according

to the issues such as the geographic zone, language or the type of

the URL extension [9]. Based on the definition above, designing a

parallel crawler based on the site-hash-based partitioning function

is reasonable with regard to the locality retention of the link

structure and balanced size of the partitions.

Another issue of concern in the literature of parallel crawlers is

the modes of job division among parallel agents. There are

different modes of job division which are firewall, cross-over and

exchange modes [9]. Under the first mode, each parallel agent

only retrieves the pages inside its section and neglects those links

pointed to the outside world. Under the second mode, a parallel

agent primarily downloads the pages inside its partition and if the

pages in its section have been finished, it follows inter-partition

links. Under the exchange mode, parallel agents don’t follow the

F. Ahmadi-Abkenari

Intelligent Software engineering Laboratory,
Faculty of Computer Science & Information

Systems, University of Technology of Malaysia,

81310 UTM Skudai, Johor, Malaysia,

Ali Selamat

Intelligent Software engineering Laboratory, Faculty
of Computer Science & Information System,

University of Technology of Malaysia,

81310 UTM Skudai, Johor, Malaysia

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

2

inter-partition links. Instead, each parallel agent communicates

with other agents to inform the corresponding agent of the

existence of the inter-partition links points to pages inside their

sections. Hence, a parallel crawler based on the exchange mode

has no overlaps, has an acceptable coverage and has suitable

quality, in addition to having a communication overhead for

quality optimization.

3. FOCUSED CRAWLRS
There are two different classes of crawlers known as focused and

unfocused. The purpose of unfocused crawlers is to search over

the entire Web to construct the index. As a result, they confront

the laborious job of creating, refreshing and maintaining a

database of great dimensions. While a focused crawler limits its

function upon a semantic Web zone by selectively seeking out the

relevant pages to predefined topic taxonomy and avoiding

irrelevant Web regions as an effort to eliminate the irrelevant

items among the search results and maintaining a reasonable

dimensions of the index. A focused crawler’s notion of limiting

the crawl boundary is fascinating because “a recognition that

covering a single galaxy can be more practical and useful than

trying to cover the entire universe” [8].

The user information demands specification in a focused crawler

is via importing exemplary Web documents instead of issuing

queries. Therefore, a mapping process is performed by the system

to highlight (a) topic(s) in the pre-existing topic tree which can be

constructed based on human judgment [8]. The core elements of a

traditional focused crawler are a classifier and a distiller sections.

While the classifier checks the relevancy of each Web document’s

content to the topic taxonomy based on the naïve Bayesian

algorithm, the distiller finds hub pages inside the relevant Web

regions by utilizing a modified version of HITS algorithm. These

two components, together determine the priority rule for the

existing URLs in a priority based queue of crawl frontier [8], [17].

4. LINK DEPENDENT WEB PAGE

IMPORTANCE METRICS
PageRank metric as a modification to Backlink count that simply

counts the number of links to a page, calculates the weighted

incoming links according to Equation (1) in which the pages t1 to

tn point to page p and ci is the number of its outgoing links from

the page ti and d is a damping factor which presents the

probability of visiting the next page randomly. So, the PageRank

or IR(p) is computed as shown in Equation (1) [4], [10];

 []nn ctIRctIRddpIR /)(.../)()1()(11 +++−=)1(

PageRank suffers from a computation of links per page on the

subset of already crawled portion of Web in the index. As a matter

of fact, to this time, no crawler could claim to make an index near

half of the whole Web. As a result, the crawlers are able to

calculate IR`(p) instead of the real IR(p) [10]. In other words,

upon downloading more portion of Web, the computed

importance of a page will be affected and so the order of pages

according to their importance. Moreover the noisy links such as

advertisement related links are not among the links with citation

objective [15]. So these types of links could mislead the link

dependent crawlers. Besides PageRank does not cover the pages

in dark net. Although PageRank improves its functionality by

covering one category of pages in dark net as form pages by

considering them as an entry point to some highly authorized

content but it has no solution for another category of pages in dark

net as unlinked pages which are the pages with few or no

incoming links [2], [16]. So these pages never achieve a high

PageRank score even if they contain authoritative content.

Besides due to the fact that pages with high number of in-links

mostly are older pages which over the time of existence on the

Web they accumulate the links, hence these authoritative fresh

Web content are disregarded under the PageRank perspective

[15].

The TimedPageRank algorithm adds the temporal dimension to

the PageRank as an attempt to pay a heed to the newly uploaded

high quality pages into the search result by considering a function

of time f(t) (1)(0 ≤≤ tf) in lieu of the damping factor d. The

notion of TimedPageRank is that a Web surfer at a page i has two

options: First randomly choosing an outgoing link with the

probability of f(ti) and second jumping to a random page without

following a link with the probability of 1-f(ti). For a completely

new page within a Web site, an average of the TimedPageRank of

other pages in the Web site is used [25].

Forward link count metric checks the emanated links from a page

with the notion that a page with a high forward link score is a hub

page [10]. This metric suffers from this defect as a page creator

could simply put links to many destinations from the Web pages

to mislead the forward link-based crawlers.

The HITS metric views Web page importance in its hub and

authority scores. A Web page with high hub score is a page that

points to Web pages with high authority scores and a Web page

with high authority score is a page that has been pointed to by

Web pages with high hub scores. The mutually relationship

between these two scores is shown in Equation (2) and (3). In

these equations, a(i) is the authority score of page i and h(i) is the

hub score of page i while E is the set of edges in the Web graph

[14]:

 ∑= ∈Eij jhia),()()()2(

 ∑= ∈Eji jaih),()()(

)3(

The HITS metric has some drawbacks including the issue of topic

drift, its failure in detecting mutually reinforcing relationship

between hosts, and its shortcoming to differentiate between the

automatically generated links from the citation-based links within

the Web environment and its no anti-spamming feature. Due to

the fact that the pages to which a hub page points to, are not

definitely around the same topic, the problem of topic drift is

formed. The second problem occurs when a set of documents in

one host points to one document on another host. As a result, the

hub score of pages on the first host and the authority score of the

page on second host will be increased. But this kind of citation

cannot be regarded as coming from different sources. Besides,

Web authoring tools generate some links automatically that these

links cannot be regarded as citation based links. Furthermore, this

metric has no anti-spamming feature since it is easy to put

outlinks to authoritative pages to affect the hub score of the pages.

Although the literature includes some modifications to HITS

algorithm such as the research on detecting micro hubs, neglecting

links with the same root, putting weights to links based on some

text analysis approach or using a combination of anchor text with

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

3

this metric, there is no evidence of a satisfactory success of these

attempts [3],[5], [6], [7].

5. TEXT-BASED METRICS
The metric of content-query similarity checking measures the

textual similarity between the query q and page p according to the

vector space model. In this computation the factor of Inverse

Document Frequency (idf) is needed which describes the number

of times the word appears in the entire collection [10]. Since in

this approach, the terms need to carry an absolute measure across

the whole collection and indexing the whole Web is still an open

issue so the precise calculation of idf is impossible [15], [23].

Also due to the noisy environment of the Web and the hurdles to

realize semantically related terms, utilizing the mere text

dependent approach could be really challenging. Although Latent

Semantic Indexing (LSI) and the usage of Singular Value

Decomposition (SVD) is proposed to discover the documents

containing the semantically related terms to the query, employing

SVD within Web is not an absolute solution with regard to its

huge time complexity [11], [15].

6. CLICKSTREAM-BASED WEB PAGE

IMPORTANCE METRICS
The literature on clickstream analysis includes the research on this

dataset for e-commerce objectives and the usage of clickstream

dataset as a Web page importance metric is roughly ignored [13],

[15]. In a companion paper we proposed the clickstream analysis

for Web page importance determination with a thorough

discussion on the challenges of using this dataset as an importance

metric and our heuristics to conquer the problems [1]. In another

companion paper we propose the application of this metric in

parallel crawlers [20]. Here we shortly review this metric.

Clickstream-based importance metric is computed according to

the total duration of all visits per a Web page during the time

period of observation. In other words, the log ranking (LRdj) of a

Web page of dj is the total duration of server sessions per that

page (Dsdj) as shown in Equation (4) [1]:

 jj sdd DLR =)4(

Regarding the fact that clickstream analysis has no relation with

the page content, in order to cover the authorized newly uploaded

Web content and authorized Web pages with few or no incoming

links (unlinked pages in dark net) in result set, we combine it with

the context analysis approach of Okapi to put weight to page

context. Besides, due to the fact that some Web pages with high

LRdj scores may contain news and be of low descriptive nature for

user information demands, therefore, the combination of

clickstream-based metric with a text analysis approach is vital in

order to have a robust decision on Web page importance. Our

final importance calculation of each Web page of dj is shown in

Equation (5);

 jdjj LRcdOkapiEdI ×+××= βα),()(*)5(

In Equation (5), two factors of α and β is applied in order to

normalize two measures of LRdj and Okapi(dj,c
*) and make the

results of these two measures balanced with each other. Moreover

the emphasis factor of E empowers the Okapi(dj,c
*) in order to

consider the importance of Web page content. Here the text

analysis approach of Okapi measures the similarity of each Web

page content to a node in topic taxonomy tree (c*) instead of a

user issued query that will be discussed in detail in section 8.

Upon employing this metric in crawlers, the calculated importance

of each page is precise and independent from the downloaded

portion of the Web [1]. In our approach, we will go beyond

noticing the page importance in its connection pattern and instead,

the page credit computation is performed according to an

algorithm which worked based on a simple textual log file in lieu

of working with matrixes of high dimensions. As a result the time

complexity of this algorithm is not high. Moreover due to the fact

that pages from the same domain are adjacent URLs in crawl

frontier, upon one server log file accessing the importance of

these pages will be calculated. Hence, the importance calculation

burden will be shared among the pages in the same Web site.

7. PROBLEM STATEMENT
Upon considering the literature on link dependent Web page

importance metrics, it can be concluded that applying such

metrics within a parallel crawler is not an absolute solution

because:

- The calculated importance of each page is not permanent in an

observation period since this value is dependent to the

downloaded portion of the Web [10].

- Detecting the authoritative recently uploaded Web pages on

Web is an obstacle with link-based metrics [15].

- Detecting the authoritative Web pages with few or no numbers

of incoming links is another drawback with link-based metrics

[15].

Additionally, the major problem in a traditional focused crawler is

a suitable credit assignment to the items in crawl frontier [12],

[18]. So our different credit allocation approach is employed in

this framework to address the mentioned barrier. On the other

hand, there is no proposed structure for a focused crawler which

works in a parallel mode. Moreover, the presence or absence of a

central coordinator within the parallel crawler architecture is an

issue of concern in the architecture. Due to the fact that the

presence of the central coordinator section organizes the order of

fetching the parallel agents’ queue, causes an inevitable

communication overhead on the overall crawler due to the

persistent information exchange among parallel agents and the

coordinator component especially when these sections are

implemented on physically disperse nodes over the Web graph

[9].

So our problem statement is how can we improve the searching

process regarding the coverage and total searching time issues

meanwhile reduce the overhead on the overall parallel crawler by

considering the presence of authoritative pages in dark side of the

Web and authoritative recently uploaded pages among search

results?

Thus the objective of this paper is proposing an architecture for a

focused-based parallel Web crawler (CFP crawler) in which

prioritizing the crawl frontier is based on a combination of

clickstream analysis and text analysis approaches. Besides, the

suggested architecture answers this question that in the absence of

a central coordinator, in which order, the overall crawler reads the

ordered queue of the parallel agents to achieve the most important

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

4

discovered pages by parallel agents at the earliest time of result

organizing.

8. OPERATION SYNOPSIS OF THE CFP

WEB CRAWLER
Within a focused structure crawler, let’s consider G as a Web

graph, C as a tree-shaped topic directory, Cc∈ as each topic

node, D(c) as exemplary document set associated with topic c that

was defined manually as the best descriptive Web documents for

each topic node, c* as the highlighted mapped node and dj as a

document. Since it is not very easy for users to issue an effective

search request, the user imports the Web pages of his/her interest

to the searching system (Du). Upon analyzing the imported

documents, CFP crawler highlights (a) node(s) (c*) in the existed

topic taxonomy tree through the mapping process by machine Z as

the Mapper as shown in figure 1. This process will be done by

using an Inverted List shown as J in figure 1 through TF-IDF

scheme. So given a set of user documents of D={d1,…,dj,…, dn},

there is a vocabulary V contains all the distinct terms in the

semantic region in which the focused crawler is specialized. The

Inverted list version is <idj, wi, [o1,…, ok]> in which the idj is the

document unique identifier, the wi is the weight of each term i and

the rest is the offset of the term i in the document j. For using less

memory space for the Inverted List, a method of compression like

Elias Delta coding [15] could be used for representing the

document unique identifier since it is the most space consuming

section of an Inverted List.

Furthermore, the CFP crawler will add any distinct term from the

corpus which is not included in the vocabulary V into a temporary

index of V`. In this step, the section of Semantic Checker shown

as S in figure 1 will be used to determine the semantically related

terms from the V ` with the terms in the main vocabulary of V.

Then the not semantically related words with high importance rate

will be used by system to edit the topic taxonomy of T and the

vocabulary of V. Figure 1 depicts the mapping function of mapper

machine (Z) from the imported documents (Du) to (a) node(s) in

topic taxonomy tree of T. After node detection, the pre-existed

Web pages associated with the node(s) will be added to the Du to

form the crawling list (CL) as shows in Equation (6) [1]. The CL

list is considered as the second level seed URLs and should be

divided among parallel agents by the site hash-based partitioning

function.

 *)(cDDCL u +=)6(

Figure 2 shows the operational framework of our CFP crawler.

The overall framework has been divided to a central agent (A),

parallel agents and the index sections. The central agent (A)

includes the topic taxonomy tree (T), mapper machine (Z), Seed

partitionner (B), crawl history (C), and the user imported

documents (Du) as input and the exemplary documents (D(c)) for

each node. Each parallel agent has the elements of crawler (D),

distiller (G), classifier (H), crawl frontier (F), duplication

detector (E) and coordinator (I) but because of the space

limitation, only the details of one parallel agent are shown. The

list below describes each section in the CFP crawler architecture;

Figure 1. Mapping process by Mapper machine (Z)

• The topic taxonomy tree (T) is a tree-shaped topic tree that is

constructed by human judgment on one semantic zone like the

area of computer science in which each node represents a

specific phrase.

• The seed partitionner (B) is responsible to partition the second

level seed URLs among parallel agents according to the site-

hash based partitioning function.

• The crawler (D) element is responsible for the process of

fetching any unvisited URL from the allocated second level

seed URLs in an iterated manner and populates them in the

crawl frontier.

• The crawl frontier (F) is a priority-based list corresponding to

the Best-First crawling that will be checked by the sections of

crawl history (C) and duplication detector (E) before further

processing as described below.

• A crawl history (C) or a time-stamp list of visited URLs is

maintained by the central machine (A) to keep those URLs

that their pages have been fetched, as a way to decrease the

overlap among different parallel agents.

• A section of duplication detector (E) is maintained by each

parallel agent to prevent the duplicate URLs in the crawl

frontier through maintaining a separate hash-table.

• The decision on the importance of each Web page in crawl

frontier is made by distiller (G) and classifier (H) sections

after the crawl frontier is checked by section C and E. The

distiller is responsible to calculate the page importance based

on the clickstream analysis.

• Intermittently, classifier (H) measures the importance of each

URL in crawl frontier based on the content relevancy of page

dj to the mapped topic(s) of c* according to Okapi(dj

,c*)(shown in Equation (7)). Due to the fact that our topic

taxonomy tree includes short terms/phrases, we choose the

Okapi content relevancy ranking method since it is well suited

for the systems where the search query is concise in

comparison to other similarity methods like Cosine or Pivoted

Normalized Weighting (PNW) [15], [19], [22]. In Equation

(7) ti is a term, fij is the number of occurrences of the term ti in

document dj, fic* is the number of occurrences of the term ti in

topic node of c*, N is the total number of documents in the

collection, dfi is the number of documents that contain term ti,

dlj is the length of the document dj in byte, avdl is the average

document length of the collection, k1 as a parameter is

between 1.0 and 2.0, b is a parameter usually set to 0.75 and

k2 is a parameter between 1 and 1000.

 ∑ ××= ∈ ji dctj CBAcdOkapi ,
*

*),()7(

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

5

5.0

5.0
ln

+

+−
=

i

i

df

dfN
A

ij
j

ij

f
avdl

dl
bbk

fk
B

++−

+
=

)1(

)1(

1

1

*
2

*
2)1(

ic

ic

fk

fk
C

+

+
=

Figure 2. Architecture of the CFP crawler

• The coordinator section (I) of each parallel agent is

responsible to apply a combined importance metric of

clickstream and Okapi approaches for credit assignments to

the items in crawl frontier. As discussed earlier, the presence

of a central coordinator causes an inevitable load on the

network due to the unavoidable communication between this

component and parallel agents especially when these sections

are implemented on disperse nodes over the Web graph and

also causes the maintenance complication regarding the

dependency of the whole system to this element on the

upgrade occasions. Hence we eliminate the presence of this

section and instead, there is a smaller part inside each parallel

agent to harmonize the results with those of other parallel

agents. Therefore the coordinator of each parallel agent is

responsible for combining the two measures of LRdj and

Okapi(dj,c
*) to yield an importance measure of I(dj) as shown

In Equation (5). Our experiments will determine a range or an

exact value for each of the factors of α, β and E. Upon

computing of I(dj), the queue of each parallel agent is

reordered based on the descending value of I(dj).

The raised question in the absence of a central coordinator is that

in which order the overall crawler fetches the ordered queue of

each parallel agent. To address this issue, a matter of

communication transfer is vital among parallel agents to substitute

the role of the central coordinator and to yield an organized and

integrated result by the overall CFP crawler. To achieve this

objective, let’s consider K as the size of the crawl frontiers. As a

part of communication, parallel agents should inform each other

of the importance of the pages in their queue. If during the

communication, the average of I(dj) for all the K URLs is

transferred, a problematic issue is that a queue with few number

of very high important pages and many low important pages may

have the same average as a queue with many medium important

pages. While missing the very high important pages will be a

crucial inaccuracy and misjudgment of the overall crawler. To

prevent this problem, the communication among parallel agents in

our approach, consists sending the average of I(dj) for a fraction

of the pages or the K/L size of the frontier in lieu of transmitting

the average of I(dj) for K URLs. Therefore if m is the number of

parallel agents in the CFP crawler and L is the number of frontier

divisions and n is the size of each information nugget which is

due to transfer, the notification overhead is calculated as shown in

Equation (8);

 Notification overhead = () Lmmn ×−×× 1

)8(

As depicted in figure 3, the format of each nugget is in a way that

the first position from the left is a flag bit. It is set to one if the

average of I(dj) belongs to the last K/L set of that parallel agent’s

queue and zero vice versa. The rest of the nugget consists of the

correspondent parallel agent identification number, the K/L

identification number and the last part is the average of I(dj) for

the K/L set respectively. Equation (9) shows the formulation for n

in which λ is the size of Iavg value in bits.

21 Logn

mL++= λ

)9(

Figure 3. The structure of the notification nuggets

Upon receiving the notification nuggets from other parallel

agents, the coordinator section of each parallel agent compares the

I(dj) average in the received nuggets with that of itself. The URLs

of the correspondent K/L set to the best I(dj) average will be sent

to the index section and a new nugget will be produced for the

next K/L set. The production of the nuggets is done in a

synchronous manner in each t seconds intervals. When the time of

t arrives, only a parallel agent which sent a set of URLs to the

index is eligible to produce a new nugget. This is a normal run of

the procedure and any other variation of this rule produces an

erroneous condition. Figure 4 depicts an example of a CFP

crawler with four parallel agents in which L=4. For the matter of

simplicity it only depicts the nuggets received by parallel agent1

and the first transmitted nugget from parallel agent1 in the first

iteration of notification transmission.

According to Equation (8), to decrease the notification overhead,

the number of parallel agents should not be high. Google employs

a few numbers of parallel agents of power two [4]. Other

researches also shows considering a few numbers of parallel

agents in order to decrease the overhead on the overall systems

[21]. Moreover the size of each nugget should be maintained as

small as possible. Besides, considering the L as a big number

causes more numbers of notification nugget transfers among

parallel agents resulting more overhead on the overall system.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

6

Upon sending the URLs with best I(dj) average in each K/L set to

index, the CFP crawler is capable to announce the most important

pages fetched from different parallel agents in the earliest time of

the result organizing. Besides, the index will receive the partially

sorted most important URLs. As a result the sorting time will be

decreased dramatically due to the large number of URLs to be

indexed. Figure 7 illustrates the algorithm of the CFP crawler.

Figure 4. The transmitted and received notification nuggets

by parallel agent1 in the first transmission

Figure 5 and 6 illustrates the effect of m and L on the notification

overhead. We consider λ =4 for both diagrams, L=4 for showing

the impact of the number of parallel agents (m) on the overhead

and m=4 for illustrating the impact of frontier division (L) on the

notification overhead. In figure 5, the horizontal axis (m) is set to

1, 2, 4, 8 and 16 and the overhead is shown in vertical axis and in

figure 6, the horizontal axis (L) is set to 1, 2, 4, 8, 16, 32, 64, 128

and 256 and the overhead is shown in vertical axis. According to

the diagram, notification overhead is more affected by m rather

than L, since considering m=16 and L=4 produces about the same

overhead when L=64 and m=4. Due to the fact that implementing

higher L value leads to having more precision on the CFP

crawler’s performance, thus finding an acceptable tradeoff

between the appropriate m and L values and the cost of overall

searching system should be taken into account.

9. CONCLUSION
In this paper we proposed an architecture for a focused structured

parallel crawler (CFP Crawler) which employs a clickstream-

based Web page importance metric. Besides in our approach,

parallel agents collaborate with each other in the absence of a

central coordinator in order to minimize the inevitable

communication overhead.

Our future work consists of more research to minimize the

notification overhead to speed up the whole process and to run the

crawler on the UTM University’s Web site. We intend to

determine the precise value for the emphasis factor of E and the

two balancing factors of α and β. Moreover, our research on the

clickstream-based Web page importance metric is not finished

since we are trying to make the metric more robust.

Since the associated examples for each node (Dc*) in topic

taxonomy tree is selected based on the higher PageRank score

instead of selecting them randomly or considering the pages with

high number of outgoing links [24], so in order to evaluate our

CFP crawler, we will combine all second level seed URLs into

one document in order to have a highly relevant Web source and

then calculate the context relevancy of Web pages in result set to

this document. Besides, our CFP crawler performance could be

evaluated by using precision and harvest rate factors too.

Figure 5. The impact of the number of parallel agents (m) on

the notification overhead

Figure 6. The impact of the number of frontier divisions (L) on

the notification overhead

10. REFERENCES
[1] Ahmadi-Abkenari, F., and Selamat, A. July 2010.

Application of Clickstream Analysis in a Tailored Focused

Web Crawler. International Journal of Systemics and

Informatics World Network. Volume 10. pp: 137-144.

[2] Barbosa, L., and Freire, J. 2007. An adaptive Crawler for

Locating Hidden-Web Entry Points. In Proceedings of

WWW 2007, ACM 978-1-59593-654-7/07/005. Alberta,

Canada.

[3] Bharat, K., and Henzinger, MR. 1998. Improved Algorithms

for Topic Distillation in a Hyperlinked Environment. In

Proceedings of the 21st ACM SIGIR Conference on Research

and Development in Information Retrieval. pp: 104-111.

[4] Brin, S., and Page, L. 1998. The Anatomy of a Large-Scale

Hypertextual Web Search Engine. Computer Networks,

30(1-7), pp: 107-117.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

7

[5] Chackrabarti, S. 2001. Integrating Document Object Model

with Hyperlinks for Enhanced Topic Distillation and

Information Extraction. In Proceedings of the 13th

International World Wide Web Conference (WWW’01). pp:

211-220.

[6] Chackrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Kumar,

R., Raghavan, P., Rajagopalan, S., and Tomkins, A. 1999.

Mining the Link Structure of the World Wide Web. IEEE

Computer. 32(8): 60-67.

[7] Chackrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S.,

Gibson, D., and Kleinberg, J. 1998. Automatic Resource

Compilation by Analyzing Hyperlink Structure and

Associated Text. In Proceedings of the 7th International

World Wide Web Conference (WWW’7).

[8] Chakrabarti, S., Van den Berg, M., and Dom, B. 1999.

Focused Crawling: A New Approach to Topic Specific Web

Resource Discovery. Computer Networks, 31(11-16), pp:

1623-1640.

[9] Cho, J., and Garcia-Molina, H. Parallel Crawlers. 2002. In

Proceedings of 11th International Conference on World Wide

Web. ACM Press.

[10] Cho, J., Garcia-Molina, H., and Page, L. 1998. Efficient

Crawling through URL Ordering. In Proceedings of 7th

International Conference on World Wide Web.

[11] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K.

and Arsman, R. 1990. Indexing by Latent Semantic Analysis.

Journal of American Society for Information Science 41. pp:

391-407.

[12] Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L., and

Gori, M. 2000. Focused Crawling using Context Graph. In

Proceedings of the 26th VLDB Conference. Cairo, Egypt. pp:

527-534.

[13] Giudici, P. 2003. Applied Data Mining, Chapter 8, Web

Clickstream Analysis. ISBN: 0-470-84678-X. pp: 229-253.

Wiley Press.

[14] Kleinberg, J. 1999. Authoritative Sources in a Hyperlinked

Environment. Journal of the ACM 46(5), pp: 604-632.

[15] Liu, B. 2007. Web Data Mining, Chapter 6, Information

Retrieval and Web Search. ISBN: 3-540-37881-2. pp: 183-

215. Springer Press.

[16] Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen,

A., and Halevy, A. 2008. Google’s Deep Web Crawl. In

Proceedings of VLDB’08, Auckland, New Zealand.

[17] McCallum, A., and Nigam, K. 1998. A Comparison of Event

Models for Naïve Bays Text Classification. In Proceedings of

the AAAI-98 Workshop on Learning for Text

Categorization.

[18] Menczer, F., Pant, G., and Srinivasan, P. 2004. Topical Web

Crawlers: Evaluating Adaptive Algorithms. ACM

Transactions on Internet Technology 4(4), pp: 378-419.

[19] Robertson, S.E., Walker, S., and Beaulieu, M. 1999. Okapi at

TREC-7: Automatic Ad Hoc, Filtering, VLC and Filtering

Tracks. In Proceedings of the 7th Text Retrieval Conference

(TREC-7), pp: 253-264.

[20] Selamat, A., and Ahmadi-Abkenari, F. 2010. Application of

Clickstream Analysis as Web Page Importance Metric in

Parallel Crawlers. In Proceedings of the International

Symposium on Information Technology (ITSIM’10). Kuala

Lumpur, Malaysia.

[21] Selamat, A., and Selamat, H. 2005. Analysis on the

Performance of Mobile Agents for Query Retrieval from

Internet. International journal of Information Sciences,

Volume 172, Issues 3-4, pp: 281-307.

[22] Singhal, A. 2001. Modern Information Retrieval: A Brief

Overview. IEEE Data Engineering Bulletin 24(4), pp: 35-43.

[23] Srivastava, A.N., and Sahami, M. 2009. Text Mining,

Classification, Clustering and Applications. ISBN: 978-1-

4200-5940-3. CRC Press.

[24] SH. Zhengh, P. Dmitriev, C. and Giles. 2009. Graph based

Crawler Seed Selection. WWW 2009, Madrid, Spain, ACM

978-1-60558-487-4/09/04.

[25] Yu, P.S., Li, X., and Liu, B. 2005. Adding the Temporal

Dimension to Search- A Case Study in Publication Search. In

Proceedings of Web Intelligence (WI’05). pp: 543-549.

1. INPUT:

2. Du is the set of documents imported by user

3. PARAMETERS:

4. c*, is each topic node in topic tree. Dc* , is predefined exemplary documents with each topic

node. CL, is the second level seed urls. cl, is partitioned seed urls. m, is the number of parallel

agents. CF, is the queue of crawl frontier. p, each Web page. CHistory, is crawl history. flag, is

the flag bit in each information nugget. Iavg , average of importance for the links in each frontier

division. devisionID, is the identification of each frontier division. dID, is the identification of

each frontier division. agentID, is the identification of each parallel agent. aID, is the

identification of each parallel agent. NuggetTransfer, is a method of transferring information

nuggets among parallel agents. NuggetInfo, is a data structure to save the nugget information.

Transfer, is a method that transfers the best URLs to the index section along with their ranking

and the division ID.

5. OUTPUT:

6. LR[], is log ranking of array. Tp[], is the context similarity ranking array.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.5, November 2010

8

 I[], is the final importance array. index[] is a partially sorted array of the most important links.

7. BEGIN:

8. c* ← Du; // map the imported documents to the topic node

9. CL= Du + Dc*; // formation of second level seed links

10. Partition (CL, m) ; // partitioning of seed links among parallel agents

11. for each mi∈ do

12. CF ← Crawl(cl); // crawling process within each parallel agent

13. for each CFp∈ do

14. duplicationDetetion(CF) ; // detecting repeated link in crawl frontier

15. if CFp∈ already exists in CF

16. delete(p); // remove the repeated link

17. else

18. CHistory. append(p); // add a fetch page to crawl history

19. CHistory. refresh(); // refresh crawl history

20. continue; // proceed to next link

21. repeat the process from line 13 to 20

22. for each CFp∈ do

23. read(robot.txt) ; // respect to politeness policy

24. LR[] ← Distill(p); // calculation of log ranking for each link

25.
 Tp[]←

ci

ci

ij
j

ij

dct
i

i

fk

fk

f
avdl

dl
bbk

fk

df

dfN
ji

*2

*2

1

1

*,

)1(

)1(

)1(

5.0

5.0
ln

+

+
×

++−

+
×∑

+

+−
∈ ; // context similarity

26. I[]. value← TpELR ××+× βα ; // final page importance calculation

27. I[]. url← p;

28. repeat until the end of CF

29. for each Ii∈ do

30. sort I[] from the highest I[].value to the lowest;

31. for each mj ≤ do

32. for each lengthNuggetInfoi [].≤ do

33. NuggetTransfer(); NuggetInfo[i].flag← flag; NuggetInfo[i].I← Iavg;

34. NuggetInfo[i].dID← devisionID; NuggetInfo[i].aID← agentID;

35. repeat until all nuggets is saved

36. max(NuggetInfo[i].Iavg) ; // the best importance average for set of pages

37. index[].append ()← Transfer (url, I, devisionID);

38. Do

39. NuggetTransfer(); NuggetInfo[i].flag← flag; NuggetInfo[i].I← Iavg;

40. NuggetInfo[i].dID← devisionID +1; NuggetInfo[i].aID← agentID;

41. Until (flag=1)

42. repeat the process from line 32 to 41

43. END

Figure 7. Algorithm of the CFP crawler

