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A Clickstream-based Focused Trend Parallel Web Crawler  

ABSTRACT 

The immense growing dimension of the World Wide Web induces 

many obstacles for all-purpose single-process crawlers including 

the presence of some incorrect answers among search results and 

the scaling drawbacks. As a result, more enhanced heuristics are 

needed to provide more accurate search outcomes in an 

appropriate timely manner. Regarding the fact that employing link 

dependent Web page importance metrics within a parallel crawler 

yields a considerable overhead on the overall searching system, 

and also because such a metric is not able to cover the authorized 

Web content in dark net and authorized fresh pages, therefore 

employing these metrics is not an absolute solution within search 

engines’ architecture. This paper proposes the application of a 

link independent Web page importance metric to govern the 

priority rule within the crawl frontier through proposing a modest 

weighted architecture for a focused structured parallel Web 

crawler (CFP crawler) in which the credit assignment to URLs in 

crawl frontier is done according to a clickstream-based 

prioritizing algorithm. 

Keywords 
Clickstream analysis, Focused crawlers, Parallel crawlers, Web 

data management, Web page Importance metrics.  

1. INTRODUCTION 
The dimension of the World Wide Web is being expanded by an 

unpredictable speed. As a result, search engines encounter many 

challenges such as yielding accurate and up-to-date results to the 

users, and responding them in an appropriate timely manner. A 

centralized single-process crawler is a part of a search engine that 

traverses the Web graph and fetches any URLs from the initial or 

seed URLs, keeps them in a priority based queue and then in an 

iterated manner, according to an importance metric selects the 

first most important K URLs for further processing based on a 

version of Best-first algorithm. A parallel crawler on the other 

hand is a multi-processes crawler in which upon partitioning the 

Web into different segments, each parallel agent is responsible for 

crawling one of the Web partitions [9]. On the other end of 

spectrum, all purpose unfocused crawlers attempt to search over 

the entire Web to construct their index while a focused crawler 

limits its function upon a semantic Web zone by selectively 

seeking out the relevant   pages to   pre-defined topic taxonomy as 

an effort to maintain a reasonable dimension of the index [8], 

[18].  

The bottleneck in the performance of any crawler is applying an 

appropriate Web page importance metric in order to prioritize the 

crawl frontier. Since we are going to employ a clickstream-based 

metric as a heuristic, our hypothesis is the existence of a standard 

upon which the authorized crawlers have the right to access the 

server log files. 

In continue, we first review on the literature of parallel crawlers, 

focused crawlers and the existed link-based and text-based Web 

page importance metrics by defining the drawbacks of each of 

them. Then, we briefly discuss our clickstream-based metric since 

it has been thoroughly discussed in a companion paper. Next, the 

application of the clickstream-based metric within the architecture 

of a focused parallel crawler which we call it CFP crawler will be 

presented.  

2. PARALLEL CRAWLRS 
An appropriate architecture for a parallel crawler is the one in 

which the overlap occurrence of download pages among parallel 

agents is low. Besides, the coverage rate of downloaded pages 

within each parallel agent’s zone of responsibility is high. 

However, the quality of the overall parallel crawler or its ability to 

fetch the most important pages should not be less than that of a 

centralized crawler. For achieving these goals, a measure of 

information exchange is needed among parallel agents [9]. 

Although this communication yields an inevitable overhead, a 

satisfactory trade-off among these objectives should be taken into 

account for an optimized overall performance. 

Selecting an appropriate Web partitioning function is another 

issue of concern in parallel crawlers. The most dominant 

partitioning functions of the Web are the URL-hash-based, the 

site-hash-based and the hierarchical schemes. In URL-hash-based 

function, assignment of pages to each parallel agent is done 

according to the hash value of each URL. Under this scheme, 

different pages in a Web site are crawled by different parallel 

agents. In site-hash-based function, all pages in a Web site are 

assigned to one agent based on the hash value of the site name. In 

hierarchical scheme, partitioning the Web is performed according 

to the issues such as the geographic zone, language or the type of 

the URL extension [9]. Based on the definition above, designing a 

parallel crawler based on the site-hash-based partitioning function 

is reasonable with regard to the locality retention of the link 

structure and balanced size of the partitions. 

Another issue of concern in the literature of parallel crawlers is 

the modes of job division among parallel agents. There are 

different modes of job division which are firewall, cross-over and 

exchange modes [9]. Under the first mode, each parallel agent 

only retrieves the pages inside its section and neglects those links 

pointed to the outside world. Under the second mode, a parallel 

agent primarily downloads the pages inside its partition and if the 

pages in its section have been finished, it follows inter-partition 

links. Under the exchange mode, parallel agents don’t follow the 
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inter-partition links. Instead, each parallel agent communicates 

with other agents to inform the corresponding agent of the 

existence of the inter-partition links points to pages inside their 

sections. Hence, a parallel crawler based on the exchange mode 

has no overlaps, has an acceptable coverage and has suitable 

quality, in addition to having a communication overhead for 

quality optimization.  

3. FOCUSED CRAWLRS 
There are two different classes of crawlers known as focused and 

unfocused. The purpose of unfocused crawlers is to search over 

the entire Web to construct the index. As a result, they confront 

the laborious job of creating, refreshing and maintaining a 

database of great dimensions. While a focused crawler limits its 

function upon a semantic Web zone by selectively seeking out the 

relevant pages to predefined topic taxonomy and avoiding 

irrelevant Web regions as an effort to eliminate the irrelevant 

items among the search results and maintaining a reasonable 

dimensions of the index. A focused crawler’s notion of limiting 

the crawl boundary is fascinating because “a recognition that 

covering a single galaxy can be more practical and useful than 

trying to cover the entire universe” [8].  

The user information demands specification in a focused crawler 

is via importing exemplary Web documents instead of issuing 

queries. Therefore, a mapping process is performed by the system 

to highlight (a) topic(s) in the pre-existing topic tree which can be 

constructed based on human judgment [8]. The core elements of a 

traditional focused crawler are a classifier and a distiller sections. 

While the classifier checks the relevancy of each Web document’s 

content to the topic taxonomy based on the naïve Bayesian 

algorithm, the distiller finds hub pages inside the relevant Web 

regions by utilizing a modified version of HITS algorithm. These 

two components, together determine the priority rule for the 

existing URLs in a priority based queue of crawl frontier [8], [17]. 

 

4. LINK DEPENDENT WEB PAGE 

IMPORTANCE METRICS 
PageRank metric as a modification to Backlink count that simply 

counts the number of links to a page, calculates the weighted 

incoming links according to Equation (1) in which the pages t1 to 

tn   point to page p and ci is the number of its outgoing links from 

the page ti and d is a damping factor which presents the 

probability of visiting the next page randomly. So, the PageRank 

or IR(p) is computed as shown in Equation (1) [4], [10]; 

 

                  [ ]nn ctIRctIRddpIR /)(.../)()1()( 11 +++−=        )1(  

 

PageRank suffers from a computation of links per page on the 

subset of already crawled portion of Web in the index. As a matter 

of fact, to this time, no crawler could claim to make an index near 

half of the whole Web. As a result, the crawlers are able to 

calculate IR`(p) instead of the real IR(p) [10]. In other words, 

upon downloading more portion of Web, the computed 

importance of a page will be affected and so the order of pages 

according to their importance. Moreover the noisy links such as 

advertisement related links are not among the links with citation 

objective [15]. So these types of links could mislead the link 

dependent crawlers. Besides PageRank does not cover the pages 

in dark net. Although PageRank improves its functionality by 

covering one category of pages in dark net as form pages by 

considering them as an entry point to some highly authorized 

content but it has no solution for another category of pages in dark 

net as unlinked pages which are the pages with few or no 

incoming links [2], [16]. So these pages never achieve a high 

PageRank score even if they contain authoritative content. 

Besides due to the fact that pages with high number of in-links 

mostly are older pages which over the time of existence on the 

Web they accumulate the links, hence these authoritative fresh 

Web content are disregarded under the PageRank perspective 

[15].  

The TimedPageRank algorithm adds the temporal dimension to 

the PageRank as an attempt to pay a heed to the newly uploaded 

high quality pages into the search result by considering a function 

of time f(t) ( 1)(0 ≤≤ tf ) in lieu of the damping factor d. The 

notion of TimedPageRank is that a Web surfer at a page i has two 

options: First randomly choosing an outgoing link with the 

probability of f(ti) and second jumping to a random page without 

following a link with the probability of 1-f(ti). For a completely 

new page within a Web site, an average of the TimedPageRank of 

other pages in the Web site is used [25]. 

Forward link count metric checks the emanated links from a page 

with the notion that a page with a high forward link score is a hub 

page [10]. This metric suffers from this defect as a page creator 

could simply put links to many destinations from the Web pages 

to mislead the forward link-based crawlers. 

The HITS metric views Web page importance in its hub and 

authority scores. A Web page with high hub score is a page that 

points to Web pages with high authority scores and a Web page 

with high authority score is a page that has been pointed to by 

Web pages with high hub scores. The mutually relationship 

between these two scores is shown in Equation (2) and (3). In 

these equations, a(i) is the authority score of page i and h(i) is the 

hub score of page i while E is the set of edges in the Web graph 

[14]:   

                             ∑= ∈Eij jhia ),( )()(                      )2(  

                                            ∑= ∈Eji jaih ),( )()(                                    

)3(  

 

The HITS metric has some drawbacks including the issue of topic 

drift, its failure in detecting mutually reinforcing relationship 

between hosts, and its shortcoming to differentiate between the 

automatically generated links from the citation-based links within 

the Web environment and its no anti-spamming feature. Due to 

the fact that the pages to which a hub page points to, are not 

definitely around the same topic, the problem of topic drift is 

formed. The second problem occurs when a set of documents in 

one host points to one document on another host. As a result, the 

hub score of pages on the first host and the authority score of the 

page on second host will be increased. But this kind of citation 

cannot be regarded as coming from different sources. Besides, 

Web authoring tools generate some links automatically that these 

links cannot be regarded as citation based links. Furthermore, this 

metric has no anti-spamming feature since it is easy to put 

outlinks to authoritative pages to affect the hub score of the pages. 

Although the literature includes some modifications to HITS 

algorithm such as the research on detecting micro hubs, neglecting 

links with the same root, putting weights to links based on some 

text analysis approach or using a combination of anchor text with 
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this metric, there is no evidence of a satisfactory success of these 

attempts [3],[5], [6], [7]. 

5. TEXT-BASED METRICS 
The metric of content-query similarity checking measures the 

textual similarity between the query q and page p according to the 

vector space model. In this computation the factor of Inverse 

Document Frequency (idf) is needed which describes the number 

of times the word appears in the entire collection [10]. Since in 

this approach, the terms need to carry an absolute measure across 

the whole collection and indexing the whole Web is still an open 

issue so the precise calculation of idf is impossible [15], [23]. 

Also due to the noisy environment of the Web and the hurdles to 

realize semantically related terms, utilizing the mere text 

dependent approach could be really challenging. Although Latent 

Semantic Indexing (LSI) and the usage of Singular Value 

Decomposition (SVD) is proposed to discover the documents 

containing the semantically related terms to  the query, employing 

SVD within Web is not an absolute solution with regard to its 

huge time complexity [11], [15]. 

 

6. CLICKSTREAM-BASED WEB PAGE 

IMPORTANCE METRICS 
The literature on clickstream analysis includes the research on this 

dataset for e-commerce objectives and the usage of clickstream 

dataset as a Web page importance metric is roughly ignored [13], 

[15]. In a companion paper we proposed the clickstream analysis 

for Web page importance determination with a thorough 

discussion on the challenges of using this dataset as an importance 

metric and our heuristics to conquer the problems [1]. In another 

companion paper we propose the application of this metric in 

parallel crawlers [20]. Here we shortly review this metric. 

Clickstream-based importance metric is computed according to 

the total duration of all visits per a Web page during the time 

period of observation. In other words, the log ranking (LRdj) of a 

Web page of dj is the total duration of server sessions per that 

page (Dsdj) as shown in Equation (4) [1]: 

                                                  jj sdd DLR =                           )4(  

Regarding the fact that clickstream analysis has no relation with 

the page content, in order to cover the authorized newly uploaded 

Web content and authorized Web pages with few or no incoming 

links (unlinked pages in dark net) in result set, we combine it with 

the context analysis approach of Okapi to put weight to page 

context. Besides, due to the fact that some Web pages with high 

LRdj scores may contain news and be of low descriptive nature for 

user information demands, therefore, the combination of 

clickstream-based metric with a text analysis approach is vital in 

order to have a robust decision on Web page importance. Our 

final importance calculation of each Web page of dj is shown in 

Equation (5); 

                      jdjj LRcdOkapiEdI ×+××= βα ),()( *              )5(  

In Equation (5), two factors of α and β is applied in order to 

normalize two measures of LRdj and Okapi(dj,c
*) and make the 

results of these two measures balanced with each other. Moreover 

the emphasis factor of E empowers the Okapi(dj,c
*) in order to 

consider the importance of Web page content. Here the text 

analysis approach of Okapi measures the similarity of each Web 

page content to a node in topic taxonomy tree (c*) instead of a 

user issued query that will be discussed in detail in section 8.  

Upon employing this metric in crawlers, the calculated importance 

of each page is precise and independent from the downloaded 

portion of the Web [1]. In our approach, we will go beyond 

noticing the page importance in its connection pattern and instead, 

the page credit computation is performed according to an 

algorithm which worked based on a simple textual log file in lieu 

of working with matrixes of high dimensions. As a result the time 

complexity of this algorithm is not high. Moreover due to the fact 

that pages from the same domain are adjacent URLs in crawl 

frontier, upon one server log file accessing the importance of 

these pages will be calculated. Hence, the importance calculation 

burden will be shared among the pages in the same Web site.  

7. PROBLEM STATEMENT 
Upon considering the literature on link dependent Web page 

importance metrics, it can be concluded that applying such 

metrics within a parallel crawler is not an absolute solution 

because:  

- The calculated importance of each page is not permanent in an 

observation period since this value is dependent to the 

downloaded portion of the Web [10].  

- Detecting the authoritative recently uploaded Web pages on 

Web is an obstacle with link-based metrics [15].  

- Detecting the authoritative Web pages with few or no numbers 

of incoming links is another drawback with link-based metrics 

[15].  

Additionally, the major problem in a traditional focused crawler is 

a suitable credit assignment to the items in crawl frontier [12], 

[18]. So our different credit allocation approach is employed in 

this framework to address the mentioned barrier. On the other 

hand, there is no proposed structure for a focused crawler which 

works in a parallel mode. Moreover, the presence or absence of a 

central coordinator within the parallel crawler architecture is an 

issue of concern in the architecture. Due to the fact that the 

presence of the central coordinator section organizes the order of 

fetching the parallel agents’ queue, causes an inevitable 

communication overhead on the overall crawler due to the 

persistent information exchange among parallel agents and the 

coordinator component especially when these sections are 

implemented on physically disperse nodes over the Web graph 

[9].  

So our problem statement is how can we improve the searching 

process regarding the coverage and total searching time issues 

meanwhile reduce the overhead on the overall parallel crawler by 

considering the presence of authoritative pages in dark side of the 

Web and authoritative recently uploaded pages among search 

results? 

Thus the objective of this paper is proposing an architecture for a 

focused-based parallel Web crawler (CFP crawler) in which 

prioritizing the crawl frontier is based on a combination of 

clickstream analysis and text analysis approaches. Besides, the 

suggested architecture answers this question that in the absence of 

a central coordinator, in which order, the overall crawler reads the 

ordered queue of the parallel agents to achieve the most important 
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discovered pages by parallel agents at the earliest time of result 

organizing.   

8. OPERATION SYNOPSIS OF THE CFP 

WEB CRAWLER  
Within a focused structure crawler, let’s consider G as a Web 

graph, C as a tree-shaped topic directory, Cc∈  as each topic 

node, D(c) as exemplary document set associated with topic c that 

was defined manually as the best descriptive Web documents for 

each topic node, c* as the highlighted mapped node and dj as a 

document. Since it is not very easy for users to issue an effective 

search request, the user imports the Web pages of his/her interest 

to the searching system (Du). Upon analyzing the imported 

documents, CFP crawler highlights (a) node(s) (c*) in the existed 

topic taxonomy tree through the mapping process by machine Z as 

the Mapper as shown in figure 1. This process will be done by 

using an Inverted List shown as J in figure 1 through TF-IDF 

scheme. So given a set of user documents of D={d1,…,dj,…, dn}, 

there is a vocabulary V contains all the distinct terms in the 

semantic region in which the focused crawler is specialized.  The 

Inverted list version is <idj, wi, [o1,…, ok]> in which the idj is the 

document unique identifier, the wi is the weight of each term i and 

the rest is the offset of the term i in the document j. For using less 

memory space for the Inverted List, a method of compression like 

Elias Delta coding [15] could be used for representing the 

document unique identifier since it is the most space consuming 

section of an Inverted List. 

Furthermore, the CFP crawler will add any distinct term from the 

corpus which is not included in the vocabulary V into a temporary 

index of V`. In this step, the section of Semantic Checker shown 

as S in figure 1 will be used to determine the semantically related 

terms from the V ` with the terms in the main vocabulary of V. 

Then the not semantically related words with high importance rate 

will be used by system to edit the topic taxonomy of T and the 

vocabulary of V. Figure 1 depicts the mapping function of mapper 

machine (Z) from the imported documents (Du) to (a) node(s) in 

topic taxonomy tree of T. After node detection, the pre-existed 

Web pages associated with the node(s) will be added to the Du to 

form the crawling list (CL) as shows in Equation (6) [1]. The CL 

list is considered as the second level seed URLs and should be 

divided among parallel agents by the site hash-based partitioning 

function.  

 

   
                                        *)(cDDCL u +=                         )6(  

 

Figure 2 shows the operational framework of our CFP crawler. 

The overall framework has been divided to a central agent (A), 

parallel agents and the index sections. The central agent (A) 

includes the topic taxonomy tree (T), mapper machine (Z), Seed 

partitionner (B), crawl history (C), and the user imported 

documents (Du) as input and the exemplary documents (D(c)) for 

each node. Each parallel agent has the elements of crawler (D), 

distiller (G), classifier (H), crawl frontier (F), duplication 

detector (E) and coordinator (I) but because of the space 

limitation, only the details of one parallel agent are shown. The 

list below describes each section in the CFP crawler architecture; 

 
Figure 1.  Mapping process by Mapper machine (Z) 

 

•   The topic taxonomy tree (T) is a tree-shaped topic tree that is 

constructed by human judgment on one semantic zone like the 

area of computer science in which each node represents a 

specific phrase. 

•   The seed partitionner (B) is responsible to partition the second 

level seed URLs among parallel agents according to the site-

hash based partitioning function. 

•   The crawler (D) element is responsible for the process of 

fetching any unvisited URL from the allocated second level 

seed URLs in an iterated manner and populates them in the 

crawl frontier.  

•   The crawl frontier (F) is a priority-based list corresponding to 

the Best-First crawling that will be checked by the sections of 

crawl history (C) and duplication detector (E) before further 

processing as described below. 

•   A crawl history (C) or a time-stamp list of visited URLs is 

maintained by the central machine (A) to keep those URLs 

that their pages have been fetched, as a way to decrease the 

overlap among different parallel agents.  

•   A section of duplication detector (E) is maintained by each 

parallel agent to prevent the duplicate URLs in the crawl 

frontier through maintaining a separate hash-table.  

•   The decision on the importance of each Web page in crawl 

frontier is made by distiller (G) and classifier (H) sections 

after the crawl frontier is checked by section C and E. The 

distiller is responsible to calculate the page importance based 

on the clickstream analysis.  

•   Intermittently, classifier (H) measures the importance of each 

URL in crawl frontier based on the content relevancy of page 

dj to the mapped topic(s) of c* according to Okapi(dj 

,c*)(shown in Equation (7)).  Due to the fact that our topic 

taxonomy tree includes short terms/phrases, we choose the 

Okapi content relevancy ranking method since it is well suited 

for the systems where the search query is concise in 

comparison to other similarity methods like Cosine or Pivoted 

Normalized Weighting (PNW) [15], [19], [22]. In Equation 

(7) ti is a term, fij is the number of occurrences of the term ti in 

document dj,  fic* is the number of occurrences of the term ti in 

topic node of c*,  N is the total number of documents in the 

collection, dfi is the number of documents that contain term ti, 

dlj is the length of the document dj in byte, avdl is the average 

document length of the collection, k1 as a parameter is 

between 1.0 and 2.0, b is a parameter usually set to 0.75 and 

k2 is a parameter between 1 and 1000. 

 

                             ∑ ××= ∈ ji dctj CBAcdOkapi ,
*

*),(               )7(  
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Figure 2.  Architecture of the CFP crawler 

 

•   The coordinator section (I) of each parallel agent is 

responsible to apply a combined importance metric of 

clickstream and Okapi approaches for credit assignments to 

the items in crawl frontier. As discussed earlier, the presence 

of a central coordinator causes an inevitable load on the 

network due to the unavoidable communication between this 

component and parallel agents especially when these sections 

are implemented on disperse nodes over the Web graph and 

also causes the maintenance complication regarding the 

dependency of the whole system to this element on the 

upgrade occasions. Hence we eliminate the presence of this 

section and instead, there is a smaller part inside each parallel 

agent to harmonize the results with those of other parallel 

agents. Therefore the coordinator of each parallel agent is 

responsible for combining the two measures of LRdj and 

Okapi(dj,c
*) to yield an importance measure of I(dj) as shown 

In Equation (5). Our experiments will determine a range or an 

exact value for each of the factors of α, β and E. Upon 

computing of I(dj), the queue of each parallel agent is 

reordered based on the descending value of I(dj).  

                    
 

The raised question in the absence of a central coordinator is that 

in which order the overall crawler fetches the ordered queue of 

each parallel agent. To address this issue, a matter of 

communication transfer is vital among parallel agents to substitute 

the role of the central coordinator and to yield an organized and 

integrated result by the overall CFP crawler. To achieve this 

objective, let’s consider K as the size of the crawl frontiers. As a 

part of communication, parallel agents should inform each other 

of the importance of the pages in their queue. If during the 

communication, the average of I(dj) for all the K URLs is 

transferred,  a problematic issue is that a queue with few number 

of very high important pages and many low important pages may 

have the same average as a queue with many medium important 

pages. While missing the very high important pages will be a 

crucial inaccuracy and misjudgment of the overall crawler. To 

prevent this problem, the communication among parallel agents in 

our approach, consists sending the average of I(dj) for a fraction 

of the pages or the K/L size of the frontier in lieu of transmitting 

the average of I(dj) for K URLs. Therefore if m is the number of 

parallel agents in the CFP crawler and L is the number of frontier 

divisions and n is the size of each information nugget which is 

due to transfer, the notification overhead is calculated as shown in 

Equation (8); 

 

                   Notification overhead = ( ) Lmmn ×−×× 1
          

)8(
 

As depicted in figure 3, the format of each nugget is in a way that 

the first position from the left is a flag bit. It is set to one if the 

average of I(dj) belongs to the last K/L set of that parallel agent’s 

queue and zero vice versa. The rest of the nugget consists of the 

correspondent parallel agent identification number, the K/L 

identification number and the last part is the average of I(dj) for 

the K/L set respectively. Equation (9) shows the formulation for n 

in which λ is the size of Iavg value in bits. 

                                           
21 Logn

mL++= λ
                      

)9(
 

 

Figure 3.  The structure of the notification nuggets 

Upon receiving the notification nuggets from other parallel 

agents, the coordinator section of each parallel agent compares the 

I(dj) average in the received nuggets with that of itself. The URLs 

of the correspondent K/L set to the best I(dj) average will be sent 

to the index section and a new nugget will be produced for the 

next K/L set. The production of the nuggets is done in a 

synchronous manner in each t seconds intervals. When the time of 

t arrives, only a parallel agent which sent a set of URLs to the 

index is eligible to produce a new nugget. This is a normal run of 

the procedure and any other variation of this rule produces an 

erroneous condition. Figure 4 depicts an example of a CFP 

crawler with four parallel agents in which L=4. For the matter of 

simplicity it only depicts the nuggets received by parallel agent1 

and the first transmitted nugget from parallel agent1 in the first 

iteration of notification transmission.  

According to Equation (8), to decrease the notification overhead, 

the number of parallel agents should not be high. Google employs 

a few numbers of parallel agents of power two [4]. Other 

researches also shows considering a few numbers of parallel 

agents in order to decrease the overhead on the overall systems 

[21]. Moreover the size of each nugget should be maintained as 

small as possible. Besides, considering the L as a big number 

causes more numbers of notification nugget transfers among 

parallel agents resulting more overhead on the overall system. 
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Upon sending the URLs with best I(dj) average in each K/L set to 

index, the CFP crawler is capable to announce the most important 

pages fetched from different parallel agents in the earliest time of 

the result organizing. Besides, the index will receive the partially 

sorted most important URLs. As a result the sorting time will be 

decreased dramatically due to the large number of URLs to be 

indexed. Figure 7 illustrates the algorithm of the CFP crawler. 

 

 
 

Figure 4.  The transmitted and received notification nuggets 

by parallel agent1 in the first transmission 

 

Figure 5 and 6 illustrates the effect of m and L on the notification 

overhead. We consider λ =4 for both diagrams, L=4 for showing 

the impact of the number of parallel agents (m) on the overhead 

and m=4 for illustrating the impact of frontier division (L) on the 

notification overhead.  In figure 5, the horizontal axis (m) is set to 

1, 2, 4, 8 and 16 and the overhead is shown in vertical axis and in 

figure 6, the horizontal axis (L) is set to 1, 2, 4, 8, 16, 32, 64, 128 

and 256 and the overhead is shown in vertical axis. According to 

the diagram, notification overhead is more affected by m rather 

than L, since considering m=16 and L=4 produces about the same 

overhead when L=64 and m=4. Due to the fact that implementing 

higher L value leads to having more precision on the CFP 

crawler’s performance, thus finding an acceptable tradeoff 

between the appropriate m and L values and the cost of overall 

searching system should be taken into account. 

9. CONCLUSION 
In this paper we proposed an architecture for a focused structured 

parallel crawler (CFP Crawler) which employs a clickstream-

based Web page importance metric. Besides in our approach, 

parallel agents collaborate with each other in the absence of a 

central coordinator in order to minimize the inevitable 

communication overhead.  

Our future work consists of more research to minimize the 

notification overhead to speed up the whole process and to run the 

crawler on the UTM University’s Web site. We intend to 

determine the precise value for the emphasis factor of E and the 

two balancing factors of α and β. Moreover, our research on the 

clickstream-based Web page importance metric is not finished 

since we are trying to make the metric more robust.  

Since the associated examples for each node (Dc*) in topic 

taxonomy tree is selected based on the higher PageRank score 

instead of selecting them randomly or considering the pages with 

high number of outgoing links [24], so in order to evaluate our 

CFP crawler, we will combine all second level seed URLs into 

one document in order to have a highly relevant Web source and 

then calculate the context relevancy of Web pages in result set to 

this document. Besides, our CFP crawler performance could be 

evaluated by using precision and harvest rate factors too.   

 

 

Figure 5. The impact of the number of parallel agents (m) on 

the notification overhead 

 
Figure 6. The impact of the number of frontier divisions (L) on 

the notification overhead 
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1. INPUT: 

2.             Du is the set of documents imported by user 

3. PARAMETERS: 

4. c*,   is each topic node in topic tree.   Dc* , is predefined exemplary documents with each topic 

node. CL, is the second level seed urls. cl, is partitioned seed urls. m, is the number of parallel 

agents. CF, is the queue of crawl frontier. p, each Web page. CHistory, is crawl history. flag, is 

the flag bit in each information nugget. Iavg , average of importance for the links in each frontier 

division. devisionID, is the identification of each frontier division. dID, is the identification of 

each frontier division. agentID, is the identification of each parallel agent. aID, is the 

identification of each parallel agent. NuggetTransfer, is a method of transferring information 

nuggets among parallel agents. NuggetInfo, is a data structure to save the nugget information. 

Transfer, is a method that transfers the best URLs to the index section along with their ranking 

and the division ID. 

 

5. OUTPUT: 

6. LR[], is log ranking of array. Tp[], is the context similarity ranking array. 
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 I[], is the final importance array. index[] is a partially sorted array of the most important links. 

7. BEGIN: 

8.             c* ←  Du;     // map the imported documents to the topic node 

9.             CL= Du + Dc*;     // formation of second level seed links 

10.             Partition (CL, m) ;     // partitioning of seed links among parallel agents 

11.             for each mi∈  do     

12.                   CF ← Crawl(cl);     // crawling process within each parallel agent 

13.             for each CFp∈  do  

14.                   duplicationDetetion(CF) ;     // detecting repeated link in crawl frontier 

15.                   if CFp∈  already exists in CF 

16.                          delete(p);     // remove the repeated link    

17.                  else 

18.                         CHistory. append(p);     // add a fetch page to crawl history 

19.                         CHistory. refresh();     // refresh crawl history    

20.                         continue;     // proceed to next link 

21.             repeat the process from line 13 to 20  

22.             for each CFp∈  do 

23.                      read(robot.txt) ;     // respect to politeness policy 

24.                     LR[] ← Distill(p);     // calculation of log ranking for each link 

25. 
                 Tp[]←

ci
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)1(

)1(

5.0

5.0
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+
×

++−

+
×∑

+

+−
∈ ;    //  context similarity 

 
26.                 I[]. value← TpELR ××+× βα ;     // final page importance calculation 

27.                I[]. url← p; 

28.       repeat until the end of CF 

29.       for each Ii∈  do 

30.             sort I[] from the highest I[].value to the lowest; 

31.       for each mj ≤  do 

32.            for each lengthNuggetInfoi [].≤   do 

33.                  NuggetTransfer(); NuggetInfo[i].flag← flag; NuggetInfo[i].I← Iavg;  

34.                  NuggetInfo[i].dID← devisionID; NuggetInfo[i].aID← agentID; 

35.              repeat until all nuggets is saved     

36.              max(NuggetInfo[i].Iavg) ;     // the best importance average for set of pages     

37.                        index[].append ()← Transfer (url, I, devisionID);     

38.           Do 

39.                        NuggetTransfer(); NuggetInfo[i].flag← flag;  NuggetInfo[i].I← Iavg; 

40.                        NuggetInfo[i].dID← devisionID +1; NuggetInfo[i].aID← agentID; 

41.            Until (flag=1)     

42.           repeat the process from line 32 to 41        

43.           END        

Figure 7.  Algorithm of the CFP crawler 


