
International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

36

Program Slicing for Refactoring: Static Slicer using

Dynamic Analyser
Amogh Katti

Poojya Doddappa Appa College of Engineering,
Gulbarga, Karnataka, India.

 Sujatha Terdal

Poojya Doddappa Appa College of Engineering,
Gulbarga, Karnataka, India.

ABSTRACT

Refactoring is the process of changing the code of the software

such that its internal design is improved without altering its

observable behavior. Method Extraction is the process of

separating out a subset of method’s statements into another

method and replacing their occurrence in the original method with

a call to this new method. Method extraction is a classical

problem to improve the modularity of the system and is used in

extracting methods from long procedural programs. It can also be

used in extracting aspects from object oriented code. Thus it

makes the software easier to understand, maintain and reusable. In

the earlier days of method extraction, programmer selected a

random set of statements for extraction which was made more

sensible by specifying the variables of interest and separating the

statements concerning them into a method. Thus, program slicing

became part of method extraction. Many slicing algorithms exist

in the literature; they first convert the program into some

alternative representation and then apply some correctness

preserving transformations on it to produce slice and its

complement. This process was identified to be expensive and an

algorithm was proposed to act directly on the source code. It

statically analyzes the source code to produce the slice but fails to

handle dynamic constructs like aliasing and polymorphism

effectively. To overcome this limitation we propose a new slicing

algorithm that dynamically analyzes source code to produce static

slices. It exploits the behavior preservation requirement of

refactoring and uses the data collected during testing, which we

perform prior to refactoring, for slicing. This algorithm suits

better to the refactoring domain.

General Terms

Refactoring, Extract Method Refactoring, Program Slicing

Keywords
Program Slicing for Refactoring, Static Slicer using Dynamic

Analyser

1. INTRODUCTION

Refactoring is the process of changing a software system in such a

way that it does not alter the external behavior of the code yet

improves its internal structure. Refactoring Improves the design of

software and it makes software easier to understand.

The extract method refactoring takes a set of statements out of a

method and places them inside a new method replacing the

statements’ occurrence in the old method with a call to this new

method. This refactoring has many benefits like increased

comprehension, maintenance and reuse.

The concept of program slicing was originally introduced by Mark

Weiser [1]. He claimed a slice to be the mental abstraction people

make when they are debugging a program. A slice consists of all

the statements of a program that may affect the values of some

variables in a set V at some point of interest p. The pair (p,V) is

referred to as a slicing criterion.

Many slicing algorithms have been proposed in the literature and

used in their original or slightly modified form for method

extraction [2, 3, 4, 5, 7]. All these algorithms first convert the

program into some alternative representation and then apply some

correctness preserving transformations on it to produce slice and

its complement. Converting a program into an alternative form

and then extracting slice is quite heavy in terms of both

computation and resource usage.

This was identified and an algorithm was proposed, by Mathieu

Verbaere using inference rules in [6] that acts directly on the

source code. This algorithm statically analyzes the source code

and does not handle dynamic constructs like aliasing and

polymorphism effectively.

To overcome this limitation we propose a new slicing algorithm

that dynamically analyzes the source code to produce static slices.

As testing is an inalienable part of refactoring (we test the code to

observe behavior, refactor and test it again to make sure that the

refactoring has not altered the behavior), we can collect data

usage details at runtime during this testing. We use multiple test

cases to make sure that all program statements have been

executed, which is required as we need to collect data usage

details in the whole program for computing static slices. This

collected data is analyzed to find data dependencies and then we

collect program statements/predicates that form the slice. Since

this algorithm exploits the testing performed prior to refactoring

and does not use any program representation it best suits

refactoring.

2. BACKGROUND

In this section we discuss refactoring, dynamic data flow analysis,

aspects and AspectJ and program slicing. We will provide a few

definitions and customize them if necessary to suit our approach,

discuss the concepts necessary to understand the slicing

algorithms and refactoring and our slicing algorithm’s

implementation concerns.

2.1 Refactoring

“Refactoring is the process of changing a software system in such

a way that it does not alter the external behavior of the code yet

improves its internal structure”, [8]. According to Flower, [8],

“Refactoring Improves the Design of Software and Refactoring

Makes Software Easier to Understand”.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

37

A few refactorings are:

 Composing Methods: Extract Method, Inline Method,

Inline Temp, Replace Temp with Query, etc.

 Moving Features Between Objects: Move method,

Move Field, Extract Class, Inline Class, etc.

 Organizing Data: Self Encapsulate Field, Replace Data

Value with Object, Change Value to Reference, etc.

 Simplifying Conditional Expressions: Decompose

Conditional, Consolidate Conditional Expression,

Remove Control Flag, etc.

 Making Method Calls Simpler: Rename Method, Add

Parameter, Remove Parameter, etc.

 Dealing with Generalization: Pull up Field, Pull up

Field, Pull up Constructor Body, etc.

 Big Refactorings: Tear Apart Inheritance, Convert

Procedural Design to Objects, Separate Domain From

Presentation and Extract Hierarchy.

2.1.1 The “extract method” refactoring

The extract method refactoring takes a set of statements out of a

method and places them inside a new method replacing the

statements’ occurrence in the old method with a call to this new

method. For example, Fig 1 shows a method,

computeSumAndProduct(int n), that calculates the sum and

product of first n natural numbers. We can extract the statements

computing the sum into the method computeSum(int n) and

replace the sum computation in the former procedure with a call

to this new method.

This refactoring has many benefits like increased comprehension,

maintenance and reuse.

Fig 1 An example for Extract Method Refactoring

2.2 Dynamic Data Flow Analysis

Dynamic data flow analysis is used in software testing to detect

data flow anomalies: define-define, define-undefine and undefine-

reference. However, we are interested in performing dynamic data

dependency analysis as part of our program slicer.

Andrew Cain, Jean-Guy Schneider, Doug Grant and Tsong Yueh

Chen defined a set of requirements any data analysis approach

must support in order to perform a complete analysis of programs

written in modern object-oriented programming languages like

Java, in [9]:

1. The approach must allow at least the tracking of actions for

the definition, reference and destruction of all variables under

investigation.

2. The approach must be able to handle any type of variable,

independent of scope, type or visibility.

3. The approach must support targeted analysis of source,

thereby allowing analysis of individual parts of a system and also

allowing analysis of systems that use third party components.

4. The output generated by the approach must enable

programmers to identify the location and type of any anomalies

produced.

5. The approach must enable automated analysis.

For Java there are two ways that we can retrieve the required

information at runtime: program transformation or debugging

services. Program transformation can be performed at a number of

levels, either by inserting probes into the original source,

providing a compiler which produces instrumented byte code, or

by instrumenting byte code produced from an existing compiler.

Alternatively the debugging services provided in the Java

Platform Debugger Architecture can be used to watch for access

and modification of Java fields.

We discuss the pros and cons of each of the above dynamic data

flow analysis approaches and make a choice for our slicing

algorithm implementation in the implementation section.

2.3 Aspects and AspectJ

2.3.1 Aspects

Cross-cutting concerns are aspects of a program which affect

(crosscut) the main concerns. These concerns often cannot be

cleanly decomposed from the rest of the system in both design and

implementation and result in either scattering or tangling of the

program or both [10, 11]. Here the code is scattered or tangled,

making it harder to understand and maintain. It is scattered when

one concern (like logging) is spread over a number of modules

(e.g., classes and methods). That means to change logging can

require modifying all affected modules. Modules end up tangled

with multiple concerns (e.g., account processing, logging, and

security). That means changing one module entails understanding

all the tangled concerns.

For example, consider a banking application for transferring an

amount from one account to another:

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

38

In the above example other interests have become tangled with the

basic functionality of withdrawing from an account and then

transferring to the other (sometimes called the business logic

concern). Transactions, security, and logging all exemplify cross-

cutting concerns. Also consider what happens if we suddenly need

to change (for example) the security considerations for the

application. In the program's current version, security-related

operations appear scattered across numerous methods, and such a

change would require a major effort.

Therefore, we find that the cross-cutting concerns do not get

properly encapsulated in their own modules. This increases the

system complexity and makes evolution considerably difficult.

Aspect Oriented Programming (AOP) attempts to solve this

problem by allowing the programmer to express cross-cutting

concerns in stand-alone modules called aspects. Aspects can

contain advice (code joined to specified points in the program)

and inter-type declarations (structural members added to other

classes).

One more application of AOP is it can be used for program

analysis. It provides constructs to intercept program execution and

we make use of them to intercept variable accesses for

dependency analysis prior to slicing.

2.3.2 AspectJ Language Constructs [12]

To support AOP, AspectJ adds to the Java language the concepts:

Joinpoints: Points in a program's execution. For example,

joinpoints could define calls to specific methods in a class

Pointcuts: Program constructs to designate joinpoints and

collect specific context at those points

In particular, Field-access pointcuts are of interest to us and they

capture read and write access to a class's field. Table 1 shows

some examples.

Advices: Code that runs upon meeting certain conditions. For

example, an advice could log a message before executing a

joinpoint Pointcut and advice together specify weaving rules.

Aspect, a class-like concept, puts pointcuts and advices together

to form a crosscutting unit. The pointcuts specify execution points

and the weaving rule's context, whereas the advices specify

actions, operations, or decisions performed at those points. One

can also look at joinpoints as a set of events in response to which

an advice is executed.

Table 1. Field Access Pointcuts

Pointcut Description

get(PrintStream System.out)

Execution of read-

access to field out of

type PrintStream in

System class

set(int MyClass.x)

Execution of write-

access to field x of

type int in MyClass

2.4 Program Slicing

The concept of program slicing was originally introduced by Mark

Weiser [1]. He claimed a slice to be the mental abstraction people

make when they are debugging a program. A slice consists of all

the statements of a program that may affect the values of some

variables in a set V at some point of interest p. The pair (p,V) is

referred to as a slicing criterion.

We use a slightly modified definition of a slice: instead of

specifying a line number as part of slice criterion, we take the end

of the method as point of interest as it would make sense for the

extract method refactoring. So we have only the set of variables

which are of interest to us as the slice criterion i.e. (V).

Since Weiser introduced the concept of slicing, many different

notions of program slicing and approaches to compute them have

been proposed. Tip makes an extensive survey of these different

types of slices, algorithms to compute them, language constructs

they support and applications of slicing in [13].

2.4.1 Static Vs Dynamic Slices

There are two varieties of program slicing: Static and Dynamic. In

static slicing, static analysis of the source code is carried out to

compute the slice. Whereas in dynamic slicing, we execute the

source code for a particular input and compute the slice that is

valid only for this particular execution. Slicing criterion for

dynamic slicing includes a specific input for which the slice is

valid along with other components in static slicing criterion.

Figures 2 and 3 below show an example for static and dynamic

slices respectively.

For n = -3, the statement of the then branch is not relevant and can

be removed. The semicolon is kept in order to preserve the syntax

correctness.

Fig 2 Static slice for the criterion ({product})

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

39

Fig 3 Dynamic slice for the criterion (n=-3, {sign})

We are interested in static slice computation since the slice has to

be valid for all possible program executions. Slice computed

using our approach is actually a kind of combination of a number

of dynamic slices, since we execute the program for different test

cases corresponding to different program paths prior to slice

computation.

2.4.2 Forward Vs Backward Slicing

Slice computation can be accomplished in two ways: using

Backward Slicing or using Forward Slicing. Backward slicing is

the one which was introduced originally by Weiser: a slice

contains all statements and control predicates that may have

influenced a given variable at a given point of interest. By

contrast, forward slices contain all statements and control

predicates that may be influenced by the variable. Nevertheless,

backward and forward slices are computed in a similar way. The

only difference is the way the flow is traversed.

We are using dynamic dependence analysis in our slicing

approach; we execute the program prior to dependence

computation for each possible test case reflecting program paths.

Program execution has to start from the beginning and precedes in

the forward direction and this force us to adopt forward slicing

approach.

2.4.3 Intra-procedural Vs Inter-procedural slices

Slices can span a single procedure or multiple procedures and are

called Intra-procedural and Inter-procedural slices respectively.

Intra-procedural slicing computes slices within one procedure. On

the other hand, inter-procedural slicing can compute slices which

span procedures and even different classes and packages when

slicing object-oriented programs.

Our slicing algorithm supports both intra-procedural and inter-

procedural slicing. Though method extraction is restricted to

extracting from within a single procedure, inter-procedural slicing

support can be helpful in extracting aspects from object oriented

code [14]. Inter-procedural slice identification using dynamic

analysis is much easier and does not require any method call to

definition mapping as in case of slicing using static analysis (We

show this in further chapters).

Inter-procedural slicing raises an important problem: when the

same procedure is called at different places in the program, the

context in which the call occurs is certainly different. Not taking

into account this difference of context can lead to very inaccurate

slices. Because program slicing for refactoring must be

sufficiently accurate to be useful in a development process, it has

to be inter-procedural and account for this difference of context.

Solutions that handle this problem are said context sensitive.

Context sensitivity issue arises only if static analysis is used. In

our approach the method is executed for all possible test cases

corresponding to different program paths, and this execution of

the method rather than just analyzing it statically, automatically

solves the problem of context sensitivity.

3. STATIC SLICER USING DYNAMIC

ANALYSER

In this section we propose our slicing algorithm that computes

static slices by using dynamic analysis. We first introduce the

terminology used in the approach. Then we describe the

algorithm. And finally we discuss the features that our approach

supports or could be enhanced to support.

3.1 Terminology

3.1.1 Variable Accesses

Variable accesses in a program can be of two types – read and

write. A program statement performs some computation taking as

input values of some variables, i.e. it reads some variables, and

writes some variable as a result of its computation. We denote a

variable v’s read as Read(v) and write as Write(v).

3.1.2 Events, Listeners and Handlers

An event in a program’s execution is a particular occurrence like,

reading and writing of variables, calling and execution of

methods, rising of an exception, etc. We can observe these events

with the help of event listeners and take some action, with the

help of handlers, when the events occur.

We make use of event listeners and event handlers to calculate

data dependencies. Variable reading and writing are the events we

are interested in; we attach listeners to these events and specify

the handler code that executes when the event fires.

3.1.3 Data Dependency

Data dependence from statement s1 to statement s2 by a variable

v, exists iff

o s1 assigns a value to v,

o s2 refers to v, and

o at least one execution path from s1 to s2 without re-

defining v exists

For example, in the class input.PolyInterPro, shown in Fig 4, the

variable input.PolyComp.sum is data dependent on

input.PolyInterPro.c, input.PolyComp.sum and input.PolyComp.i.

Hence statement 10 is data dependent on statements 1, 2, 4, 5, 7

and 9.

3.1.4 Testing

Developer is responsible to perform unit testing of the

components (classes containing instance variables and methods)

he develops. If we consider the testing of a method, two kinds of

testing are performed on them: black-box testing in which we test

the method’s functionality without regard to its structure (code

structure) and white-box or structural testing in which we design

test cases making sure that each path through the method is

executed [15].

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

40

Our slicing algorithm collects information about data flow in a

program during execution. We exploit the structural testing

performed on the program/method prior to refactoring.

3.2 Algorithm

We describe the algorithm below and we use the program

shown in the Fig 4 to illustrate these steps. We are slicing the

method computeSumAndProduct(int n, String obj) in the class

input.PolyInterPro. input.PolyComp is a class on which

input.PolyInterPro is dependent and input.SubPolyComp is a sub

class of input.PolyComp. This program computes and displays the

sum and product of first n positive integers and is made complex

for the explanation of our algorithm. Program statements are

numbered and this is used by our algorithm to find the statements

that form the slice.

Fig 4 Example program for slicing

1. Listener Attachment

Attach listeners to read and write accesses to the program/method

variables so that a handler code will be triggered when the access

events occur.

For our example program, attach read and write listeners to all the

variables – c, n, i, sum and product.

2. Program Execution and Data Collection

Perform structural testing of the code with a number of test cases

ensuring that all program paths are executed at least once.

During the execution of the program while testing, variable

accesses will trigger the handler code due to listener attachment.

In the handler code collect the location, in terms of line number or

statement number, of variable access.

This collection of variable access details will be repeated for each

execution corresponding to the test cases identified. Then take the

union of these access details to form complete variable access

details for all the variables in the program/method under

consideration.

For the example program shown in Fig 4, execute the method

computeSumAndProduct(..) once with the arguments 4 and “sub”

and next with the arguments 4 and “super”. For the first test case

we get read and write access details as shown in Fig 5.

File names in which accesses occur are prefixed to the reads and

writes.

Fig 5 Variable Access Details for

computeSumAndProduct(4,”sub”)

And for the second case the details are as shown Fig 6

Fig 6 Variable Access Details for

computeSumAndProduct(4,”super”)

And the variable access details after the union of the above two

are as shown in Fig 7.

Fig 7 Variable Access Details for after union

3. Data Dependency Calculation

For each of the variables, find dependencies with other variables.

A variable v1 is dependent on variable v2 if v2 is read in a

statement whose purpose is to perform a write to v1.

Use these dependencies to calculate transitive dependencies. A

variable v1 is transitively dependent on variable v2 if v1 is

dependent on a variable v’ which is dependent on v2.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

41

For the variables in our program, their dependencies and transitive

dependencies with others is shown in Fig 8

Fig 8 Dependencies for the variables in the earlier program

4. Slice Calculation

Collect all the statements where the slice variables are read or

written. And then collect the definitions of the variables on which

the slice variables are transitively dependent. All these statements

form the slice.

Let us calculate the slice for the slice criterion – {sum}. The

statements that form the slice are SubPolyComp.java-{1, 2},

PolyInterPro.java–{1, 2, 4, 5, 7, 9, 10} and PolyComp.java-{1,

2}. The statements are prefixed with the file names they occur.

3.3 Features

We investigate how our algorithm behaves in presence of different

program constructs like different types of expressions, complex

data types, structured jumps, aliases, polymorphism, etc. We

restrict ourselves to the features of Java language, however. The

capabilities and limitations of our algorithm are a function of the

capabilities of the dynamic data flow analysis tools available (We

discuss these tools/approaches in the next chapter).

Expressions and Local Variables

Our slicing algorithm records a dependency between two

variables if they are written and read in the same statement. This

would work for cases where the statements involve simple

assignments, assignments involving prefix and postfix operators,

assignments inside control constructs. It gets a little complicated

when a statement involves a method call that performs some

computation and returns a value. This returned value can be a

local variable to the method. The tools available for dynamic data

flow analysis today do not support listener attachment to local

variable accesses and hence these events do not trigger handler

execution. To support this, we need to customize these tools to

support local variable access handling. However, we can

overcome this limitation with the help of a static analysis

supplement which introduces an instance variable wrapping a

local variable for all the methods in a class. The code fragments

below illustrate this. Now the instance variable corresponding to

the local variable when accessed would trigger handler execution.

Complex Data Types

Arrays are complex data types containing other data elements.

One issue with arrays in the context of slicing is whether to log

whole array in dependencies or only the array element accessed.

Our choice determines the accuracy of slicing and we are

considering the whole array as one variable in dependency

analysis as this is the way analysis tools available to us treat

arrays.

Classes are another complex data types containing instance

variables. Since we are provided with facilities to attach listeners

to instance variables we can attach them to individual instance

variables or to the entire class, when the class itself is an instance

variable of another class. This fine grained feature provides us

accurate slices.

Jump Statements and Control Constructs

As said previously, we are concentrating on only identifying the

statements that constitute the slice and not on slice extraction.

Handling of jump statements like break and continue can be

considered as part of semantic slice extraction and can be taken as

future work.

Aliasing and Polymorphism

Aliasing refers to a situation in which one or more

pointers/references are referring to the same variable. Using static

and backward slicing it is not possible to determine what variable

a reference is referring to prior to run time. Since we are slicing

dynamically this problem is easily solved.

Method call resolution is a typical polymorphism example.

Mapping between method calls to their definitions is very difficult

if static slicing is performed as it requires the analysis of the entire

source code to search for candidate methods that might be called.

This is not at all a problem in dynamic slicing as the execution

itself determines the mapping. We execute the program with test

cases corresponding to each polymorphic path to take into

account all the possible method destinations and collect all the

methods as part of our static slice.

Other object oriented features like inheritance, packages, etc are

also supported by our approach.

4. IMPLEMENTATION

We use Java 1.5 for implementing our slicing algorithm and we

have arrived at the conclusion to use AspectJ, to perform dynamic

dependence analysis as part of our slicing algorithm, after

evaluating the candidates for dynamic data flow analysis [9, 16]:

program transformation, debugging services and aspects. The

table below compares the approaches.

From Fig 10 it seems that the debugger API is a strong contender

to support analysis. But we choose the aspect approach because it

achieves good modularity, maintainability and reusability; it

achieves complex handling of control elements such as multi-

threading and exception in a well-organized way; the aspect

handles objects using weak reference so as not to affect the

lifetime of objects; and due to inefficiency of the debugger

approach.

We now briefly describe the program elements implementing our

algorithm:

o Listener attachment to program variables is achieved

using AspectJ’s field access pointcuts. We place our test

files containing programs/methods in the input package

of our project.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

42

o User specified method is executed dynamically using

the Java’s reflection API. During execution, variable

accesses trigger the handler code associated with the

listeners attached and in the handler code we collect the

location of accesses using AspectJ’s reflection

mechanism.

Fig 9 Comparison of approaches for dynamic data flow analysis

o We analyze these variable access details and calculate

dependencies and Java’s Collections Framework is

heavily used here.

o Slice calculation is accomplished again with the help of

Collections.

o We provide a simple Swing GUI for our application.

We have used “GUI Genie” for generating the GUI.

5. CONCLUSION AND FUTURE WORK

Objective of our work was to design a slicing algorithm that suits

reafactoring’s needs and could be used as part of extract method

refactoring.

We have observed that the approaches to slicing used alternative

program representations and they were cumbersome due to the

program conversion. We have taken the path suggested,

computation of slice by directly analyzing the program, to

improve this and identified the weakness of the present approach

in handling run time constructs like aliasing, polymorphism, etc.

We proposed our slicing approach that exploits of behavior

preservation requirement of refactoring. We used the data

collected during testing prior to refactoring to analyze

dependencies. This dependency information is used by our

algorithm to compute slice. Our algorithm handles run time

constructs – aliasing and polymorphism – effectively as it uses

dynamic analysis.

We have compared the tools available to perform dynamic data

flow analysis and picked up aspectj for our implementation as it’s

the better one amongst. We have implemented our slicing

algorithm using aspectj constructs for dependency analysis and a

forward slicing algorithm in java.

Aspectj constructs return line number as the location of variable

accesses and hence our implementation is line number dependent.

This can be overcome either by customizing the aspectj constructs

to return statement identifier/pointer as the location of variable

accesses or using the Java Debugger Interface (JDI), which allows

us analyze each statement being executed by setting breakpoints,

for implementation.

Due to the unavailability of constructs to intercept local variable

accesses, control construct execution, they were neglected by our

algorithm. We can customize aspectj to support local variable

access join-points and its reflection capabilities to include

statement identifier, block/control construct identifier, etc. for

each join-point. Once these features are available we can perform

semantic preserving slice extraction just by sequestering the

statements and control constructs as slice.

Once the support for intercepting local variables is available we

can use the modified form of our slicing algorithm that takes into

account local variables in inter-procedural slicing; the steps below

mention the modifications to our original algorithm:

o Attach listeners to local variable accesses as well as

formal parameters.

o Data collection phase remains the same but we collect

data for all local variable accesses as well.

o In dependence calculation, fuse (take union)

dependencies of formal parameters and actual

parameters. Also take the union of dependencies of

return parameter of the called procedure and its place

holder in the calling procedure.

o Slice calculation phase remains the same.

Also, this algorithm being light weight - as it does not use any

additional data structure for program representation - can be used

as a general purpose slicing algorithm.

6. REFERENCES

[1] Mark Weiser. Program slicing. IEEE Transactions on

Software Engineering, 10(4):352-357, 1984.

[2] Karl J. Ottenstein, Linda M. Ottenstein. The program

dependence graph in a software development environment.

Software Development Environments (SDE), pages 177-184,

1984.

[3] Filippo Lanubile, Giuseppe Visaggio. Extracting Reusable

Functions by Flow Graph-Based Program Slicing. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

23, NO. 4, APRIL 1997.

[4] Raghavan Komondoor, Susan Horwitz. Semantics-

Preserving Procedure Extraction. In Proc. of 27th ACM

Symp. on Principles of Programming Languages (POPL),

(Boston, Massachusetts, January 2000).

[5] Arun Lakhotia, Jean-Christophe Deprez. Restructuring

programs by tucking statements into functions. Information

& Software Technology 40(11-12): 677-689 (1998).

[6] Mathieu Verbaere. Program Slicing for Refactoring.

Master’s thesis, 2003.

[7] Ran Ettinger. Refactoring via Program Slicing and Sliding.

Ph D thesis 2006.

[8] M. Fowler. Refactoring: Improving the Design of Existing

Programs. Addison-Wesley, 1999.

International Journal of Computer Applications (0975 – 8887)

Volume 9– No.6, November 2010

43

[9] A. Cain, J.-G. Schneider, D. Grant, and T. Y. Chen. Runtime

data analysis for Java programs. In Proceedings of ECOOP

2003 Workshop on Advancing the State-of-the-Art in

Runtime Inspection (ASARTI 2003), July 2003.

[10] Andre Restivo. The Case for Aspect Oriented Programming.

in Proceedings of the 1st Conference on Methodologies for

Scientific Research (CoMIC'06), p.84-92, 2006.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J. Loingtier and J. Irwin. Aspect Oriented

Programming. Proceedings of the 11th annual European

Conference for Object-Oriented Programming, vol.1241 of

LNCS, pp.220-242(1997).

[12] AspectJ: http://www.eclipse.org/aspectj

[13] Frank Tip. A survey of program slicing techniques. Journal

of programming languages, 3:121-189, 1995.

[14] MIGUEL JORGE TAVARES PESSOA MONTEIRO.

Refactorings to Evolve Object-Oriented Systems with

Aspect-Oriented Concepts. Ph D thesis, 2005.

[15] Ian Sommerville. Software Engineering, Pearson Education,

2004.

[16] Takashi Ishio, Shinji Kusumoto, Katsuro Inoue. Program

Slicing Tool for Effective Software Evolution Using Aspect-

Oriented Technique. IWPSE 2003: 3-12

