CFP last date
20 June 2024
Reseach Article

Design and Implementation of Multi-Band Antenna for Energy Harvesting

by Nabeel A. Abdullah, Sherif Hekal, Mohamed Sharaf, Lotfi R. Gomaa
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 185 - Number 8
Year of Publication: 2023
Authors: Nabeel A. Abdullah, Sherif Hekal, Mohamed Sharaf, Lotfi R. Gomaa
10.5120/ijca2023922732

Nabeel A. Abdullah, Sherif Hekal, Mohamed Sharaf, Lotfi R. Gomaa . Design and Implementation of Multi-Band Antenna for Energy Harvesting. International Journal of Computer Applications. 185, 8 ( May 2023), 13-17. DOI=10.5120/ijca2023922732

@article{ 10.5120/ijca2023922732,
author = { Nabeel A. Abdullah, Sherif Hekal, Mohamed Sharaf, Lotfi R. Gomaa },
title = { Design and Implementation of Multi-Band Antenna for Energy Harvesting },
journal = { International Journal of Computer Applications },
issue_date = { May 2023 },
volume = { 185 },
number = { 8 },
month = { May },
year = { 2023 },
issn = { 0975-8887 },
pages = { 13-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume185/number8/32720-2023922732/ },
doi = { 10.5120/ijca2023922732 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:25:34.330612+05:30
%A Nabeel A. Abdullah
%A Sherif Hekal
%A Mohamed Sharaf
%A Lotfi R. Gomaa
%T Design and Implementation of Multi-Band Antenna for Energy Harvesting
%J International Journal of Computer Applications
%@ 0975-8887
%V 185
%N 8
%P 13-17
%D 2023
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Radiofrequency (RF) energy harvesting is a promising alternative for delivering energy to wireless sensor network (WSN) electronic circuits that demand modest quantities of power. The design of the reception antenna in RF Energy Harvesting systems is the most difficult and, in most instances, a complicated undertaking. As a result, A lot of work is carried out to optimize the performance of the receiving antenna characteristics. In this paper, we design a multi-band antenna for RF energy harvesting systems. The suggested antenna operates in the 800 MHz, 1800 MHz, and 1900 MHz frequency bands. The numerical findings show that the proposed design performs well as a receiving antenna in an RF energy harvesting system. Finally, we implemented the proposed antenna to show the congruence between the simulation and the fabricated antenna.

References
  1. Kanoun O, Bradai S, Khriji S, Bouattour G, El Houssaini D, Ben Ammar M, Naifar S, Bouhamed A, Derbel F, Viehweger C, Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548.
  2. Harb A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654.
  3. Ibrahim H.H, Singh M.S.J, Al-Bawri S.S, Islam M.T, Synthesis, Characterization and Development of Energy Harvesting Techniques Incorporated with Antennas: A Review Study. Sensors 2020, 20, 2772.
  4. Lu X, Wang P, Niyato D, Kim D.I, Han Z, Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789.
  5. Niotaki K, Kim S, Jeong S, Collado A, Georgiadis A, Tentzeris M.M, A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1634–1637.
  6. Visser H.J, Vullers R.J.M, RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements. Proc. IEEE 2013, 101, 1410–1423.
  7. Sim Z.W, Shuttleworth R, Alexander M.J, Grieve B.D, Compact Patch Antenna Design for Outdoor RF Energy Harvesting in Wireless Sensor Networks. Prog. Electromagn. Res. 2010, 105, 273–294.
  8. Arrawatia, M, Baghini, M.S, Kumar, G. Differential Microstrip Antenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2015, 63, 1581–1588.
  9. Georgiadis, A, Andia, G.V, Collado, A. Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 444–446.
  10. Boursianis A.D, Papadopoulou M.S, Gotsis A, Wan S, Sarigiannidis P, Nikolaidis S, Goudos S.K, Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2020.
  11. Wagih M, Weddell A.S, Beeby S, Millimeter-Wave Power Harvesting: A Review. IEEE Open J. Antennas Propag. 2020, 1, 560–578.
  12. Boursianis A.D, Papadopoulou M.S, Pierezan J, Mariani V.C, Coelho L.S, Sarigiannidis P, Koulouridis S, Goudos S.K, Multiband Patch Antenna Design Using Nature-Inspired Optimization Method. IEEE Open J. Antennas Propag. 2020, 2, 151–162.
  13. Wagih M, Weddell A.S, Beeby S, Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2020, 62, 95–107.
  14. Kim S., Vyas R., Bito, Niotaki K., Collado A., Georgiadis A., and Tentzeris M. M., Ambient rf energy-harvesting technologies for self-sustainable standalone wireless sensor platforms, Proceedings of the IEEE, vol. 102, no. 11, pp. 1649–1666, 2014.
  15. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.
  16. H. Sun, Y. Guo, M. He, and Z. Zhong, “Design of a high-efficiency 2.45-ghz rectenna for low-input-power energy harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 929–932, 2012.
  17. M. Arrawatia, M. S. Baghini, and G. Kumar, “Differential microstrip antenna for rf energy harvesting,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1581–1588, 2015.
  18. B. Li, X. Shao, N. Shahshahan, N. Goldsman, T. Salter, and G. M. Metze, “An antenna co-design dual band rf energy harvester,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 12, pp. 3256–3266, 2013.
  19. H. Sun, Y. Guo, M. He, and Z. Zhong, “A dual-band rectenna using broadband yagi antenna array for ambient rf power harvesting,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 918–921, 2018.
  20. S. Shen, C. Chiu, R.D. Murch, “A Dual-Port Triple-Band L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting,” IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3071 3074.
  21. S. Chandravanshi, S.S. Sarma, M.J. Akhtar, “Design of Triple Band Differential Rectenna for RF Energy Harvesting,” IEEE Trans. Antennas Propag. 2018, 66, 2716–2726.
  22. S. Shen, C. -Y. Chiu and R. D. Murch, "Multiport Pixel Rectenna for Ambient RF Energy Harvesting," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 644-656, Feb. 2018, doi: 10.1109/TAP.2017.2786320.
  23. Yuan, G., Yang, S., & Mittal, G. (n.d.). Tracking control of a mobile robot using a neural dynamics-based approach. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). doi: 10.1109/robot.2001.932547
  24. Dierks, T., & Jagannathan, S. (2007). Control of Nonholonomic Mobile Robot Formations: Backstepping Kinematics into Dynamics. 2007 IEEE 22nd International Symposium on Intelligent Control. doi: 10.1109/isic.2007.4359798
Index Terms

Computer Science
Information Sciences

Keywords

Energy harvesting Rectenna design multi-band antenna.