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ABSTRACT 
In the bug triage we have an unavoidable step of fixing the bugs 

which helps in correctly assigning a developer to a new bug. 

Text classification and binary classification techniques are 

applied to decrease the time cost in manual work and to 

enhance the working of automatic bug triage. We address the 

problem of data reduction and hence we combine the instance 

selection and the feature selection algorithms to simultaneously 

reduce the data scale and enhance the accuracy of the bug 

reports in the bug triage. We determine a predictive model to 

perform the algorithms which adds on to prioritize the 

developer to a new bug by extracting attributes and the bug data 

set from the historical table. By leveraging data mining 

techniques, mining software repositories can uncover 

interesting information in software repositories and solve real-

world software problem like Eclipse, Mozilla and GNOME. 

Keywords 
Bug Triage, Data Reduction in bug report, preprocessing the 

bug report, Fixing Bugs 

1. INTRODUCTION 

A time-consuming step of handling software bugs is bug triage, 

which aims to assign a correct developer to fix a new bug [1]. In 

traditional software development, new bugs are manually 

triaged by an expert developer, i.e., a human triager. Due to the 

large number of daily bugs and the lack of expertise of all the 

bugs, manual bug triage is expensive in time cost and low in 

accuracy. In manual bug triage in Eclipse, 44 percent of bugs 

are assigned by mistake while the time cost between opening 

one bug and its first triaging is 19.3 days on average. Taking an 

open source project Eclipse as an example an average of 30 new 

bugs are reported to bug repositories per day in 2007[7]. From 

2001-2010 333,371 bugs have been reported to Eclipse by over 

34917 developers and users [5]. To avoid the expensive cost of 

manual bug triage, existing work [1] has proposed an automatic 

bug triage approach, which applies text-classification 

techniques to predict developers for bug reports. In this 

approach, a bug report is mapped to a document and a related 

developer is mapped to the label of the document. 
In this paper, we address the problem of data reduction for bug 

triage, i.e., how to reduce the bug data to save the labor cost of 

developers and improve the quality to facilitate the process of 

bug triage. Data reduction for bug triage aims to build a small-

scale and high-quality set of bug data by removing bug reports 

and words, which are redundant or non-informative. In our 

work, we combine existing techniques of instance selection and 

feature selection to simultaneously reduce the bug dimension 

and the word dimension. The reduced bug data contain fewer 

bug reports and fewer words than the original bug data and 

provide similar information over the original bug data. We 

evaluate the reduced bug data according to two criteria: the 

scale of a data set and the accuracy of bug triage. 

Given an instance selection algorithm and a feature selection 

algorithm, the order of applying these two algorithms may 

affect the results of bug triage. In this paper, we propose a 

predictive model to determine the order of applying instance 

selection and feature selection. We refer to such determination 

as prediction for reduction orders. Drawn on the experiences in 

software metrics, we extract the attributes from historical bug 

data sets. Then, we train a binary classifier on bug data sets with 

extracted attributes and predict the order of applying instance 

selection and feature selection for a new bug data set. 

In the experiments, we evaluate the data reduction for bug 

triage on bug reports of two large open source projects, namely 

Eclipse and Mozilla. Experimental results show that applying 

the instance selection technique to the data set can reduce bug 

reports but the accuracy of bug triage may be decreased; 

applying the feature selection technique can reduce words in the 

bug data and the accuracy can be increased. Meanwhile, 

combining both techniques can increase the accuracy, as well as 

reduce bug reports and words. For example, when 50 percent of 

bugs and 70 percent of words are removed, the accuracy of 

Naive Bayes on Eclipse improves by 2 to 12 percent and the 

accuracy on Mozilla improves by 1 to 6 percent[7]. Based on 

the attributes from historical bug data sets, our predictive model 

can provide the accuracy of 71.8 percent for predicting the 

reduction order. Based on top node analysis of the attributes, 

results show that no individual attribute can determine the 

reduction order and each attribute is helpful to the prediction. 

The primary contributions of this paper are as follows: 

1) We present the problem of data reduction for bug triage. This 

problem aims to augment the data set of bug triage in two 

aspects, namely a) to simultaneously reduce the scales of the 

bug dimension and the word dimension and b) to improve the 

accuracy of bug triage. 

2) We propose a combination approach to addressing the 

problem of data reduction. This can be viewed as an application 

of instance selection and feature selection in bug repositories. 

3) We build a binary classifier to predict the order of applying 

instance selection and feature selection. To our knowledge, the 

order of applying instance selection and feature selection has 

not been investigated in related domains. 

2. MOTIVATION FOR DATA 

REDUCTION 
In the bug repositories, all the bug reports are filled by the 

developers in natural languages. The low quality bugs 

accumulate in bug repositories with the growth in scale. 
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Consider some examples: 

We list the bug report of bug 205900 of Eclipse in Example 1 

(the description in the bug report is partially omitted) to study 

the words of bug reports. 

a) Example 1 (Bug 205900). Current version in Eclipse 

Europa   discovery repository broken. 

[Plug-ins] all installed correctly and do not show any 

errors in Plug-in configuration view. Whenever I try 

to add a [diagram name] diagram, the wizard cannot 

be started due to a missing [class name] class ... 

In this bug report, some words, e.g., installed, show, 

started, and missing, are commonly used for 

describing bugs. For text classification, such common 

words are not helpful for the quality of prediction. 

Hence, we tend to remove these words to reduce the 

computation for bug triage. However, for the text 

classification, the redundant words in bugs cannot be 

removed directly. Thus, we want to adapt a relevant 

technique for bug triage . To study the noisy bug 

report, we take the bug report of bug 201598 as 

Example 2 (Note that both the summary and the 

description are included). 

b)  Example 2 (Bug 201598). 3.3.1 about says 3.3.0. 

Build id: M20070829-0800. 3.3.1 about says 3.3.0.) 

This bug report presents the error in the version 

dialog. But the details are not clear. Unless a 

developer is very familiar with the background of this 

bug, it is hard to find the details. According to the 

item history, this bug is fixed by the developer who 

has reported this bug. But the summary of this bug 

may make other developers confused. 

Moreover, from the perspective of data processing, 

especially automatic processing, the words in this bug 

may be removed since these words are not helpful to 

identify this bug. Thus, it is necessary to remove the 

noisy bug reports and words for bug triage. To study 

the redundancy between bug reports, we list two bug 

reports of bugs 200019 and 204653 in Example 3  

(the items description are omitted). 

c) Example 3. Bugs 200019 and 204653. 

(Bug 200019) Argument popup not highlighting the 

correct argument ...(Bug 204653) Argument 

highlighting incorrect ... 

In bug repositories, the bug report of bug 200019 is 

marked as a duplicate one of bug 204653 (a duplicate 

bug report, denotes that a bug report describes one 

software fault, which has the same root cause as an 

existing bug report [4]). The textual contents of these 

two bug reports are similar. Hence, one of these two 

bug reports may be chosen as the representative one. 

Thus, we want to use a certain technique to remove 

one of these bug reports. Thus, a technique to remove 

extra bug reports for bug triage is needed. 

Based on the above three examples, it is necessary to 

propose an approach to reducing the scale (e.g., large 

scale words in Example 1) and augmenting the 

quality of bug data (e.g., noisy bug reports in 

Example 2) and redundant bug reports in Example 3). 

 

 

3. RELATED WORK  
Usually when a fault or a new bug report is encountered we 

have to assign a developer to fix the bug. We use a classifier to 

know to which developer we need to assign the bug. This can 

be done by retrieving the information from the history table 

where we can extract the details like which developer has fixed 

the bug efficiently, how much time each developer has taken to 

fix each bug and how many fixers were needed to fix a 

particular bug etc. Now we reduce the data scale in the bug data 

sets by using instance selection and feature selection 

algorithms. 

First we use the text classification technique to classify the 

words in the bug triage. Then we propose a predictive model to 

determine the reduction order. After which the bug data 

reduction process takes place (i.e) we use the instance selection 

and the feature selection algorithms. The Feature selection aims 

to obtain a subset of relevant features by removing the 

uninformative words in the bug reports and the instance 

selection is used to obtain a subset of relevant instances (bug 

reports in the bug data). Hence by combining both these 

algorithms we get a reduced bug data set and replace it with the 

original bug data.  Now this information is sent to the classifier 

and when a new bug report is encountered the classifier 

correctly assigns a developer. 

3.1  Related Questions 
a) If 500 reports are encountered at a time , then which report 

has to be checked first? 

The solution to this is we take the entropy of severity of the bug 

reports(i.e) predicting the severity of the bug reports[3]. 

Severity is nothing but the importance. 

The severity depends on the following priorities: 

 How fast you can fix the bug? 

 Whether it can be postponed? 

 It can never be fixed. 

b) How do we assign the right developer to fix the bug? 

We can model a system to rank the developers. We face the 

problems like ranking, evaluation time and tolerance of noisy 

comments. All these can be removed  and the prioritizing of the 

developers is done using a Socio Network technique[5]. This is 

useful to improvise the  

 Bug triage 

 Severity of the bug reports 

 Prediction of the reopened bugs. 

c)  How do we select the report? 

Opinion analysis is mainly the process of identifying the 

polarity used in any comments or sentences. The main aim is to 

identify the polarity used in the context with respect to a 

particular citation. Similarly when a report is posted the weight 

of the words and its frequencies are calculated.  

3.2  Techniques Used 
3.2.1 Text Classification Technique 

In this technique, [8]some of the main concepts are :  

a)   Tokenization 

It is the process of replacing sensitive data with unique 

identification symbols that retain all the essential information 

about the data. 
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b)   Stop words   

Removing the non-informative words which includes articles, 

prepositions, conjunctions and certain high frequency words 

(verbs, adverbs and adjectives). 

c)   Stemming  

Stemming is a technique to reduce words to their grammatical 

roots so that they can be represented with a only term.  

 

Text data can be represented as strings, though simplified 

representations are used for effective processing. The most 

common representation for text is the vector-space 

representation [9].  

The vector-space representation treats each document as an 

unordered ―bag of words‖. While the vector-space 

representation is very efficient because of its simplicity, it loses 

information about the structural ordering of the words in the 

document, when used purely in the form of individual word 

representations.  

One advantage of the vector-space representation is that its 

simplicity lends itself to straightforward processing. The 

efficiency of the vector-space representation has been a key 

reason that it has remained the technique of choice for a variety 

of text processing applications.  

On the other hand, the vector-space representation is very lossy 

because it contains absolutely no information about the ordering 

of the words in the document. While the vector-space 

representation maintains no information about the ordering of 

the words, the string representation is at the other end of 

spectrum in maintaining all ordering information. 

 Distance graphs [9] are a natural intermediate representation 

which preserve a high level of information about the ordering 

and distance between the words in the document. At the same 

time, the structural representation of distance graphs makes it 

an effective representation for text processing 

.Distance graphs can be defined to be of a variety of orders 

depending upon the level of distance information which is 

retained. 

3.2.2 Instance Selection 
Instance Selection also known as Bug dimension is the process 

of removing redundant instances. Supervised learning which 

provides previously known information is used to classify new 

instances. In common, several instances are stored in the 

training set but some of them are not useful for classifying 

therefore we ignore the non-useful cases.  

Given a training set T, the goal of an instance selection method 

(Fig. 1) is to obtain a subset S ⊂ T such that S does not contain 

superfluous instances and Acc(S) ∼= Acc(T )where Acc(X)is 

the classification accuracy obtained using X as training set 

(henceforth, S is used to denote the selected subset). Instance 

selection methods can either start with S = Ø (incremental 

method) or S = T (decremental method). The difference is that 

the incremental methods include instances in S during the 

selection process and decremental methods remove instances 

from S along the selection [14]. 

We define the problem of instance selection as the need to 

extract the most useful set of instances from a database which 

we know (or suspect) contains instances which are superfluous 

or harmful. In the context of instance-based learning, we seek to 

discard the cases which are superfluous or harmful to the 

classification process.   

We want to isolate the smallest set of instances which enable us 

to predict the class of a query instance with the same (or higher) 

accuracy than the original set The Nearest Neighbour Classifier 

is a simple supervised concept learning scheme which classifies 

unseen (i.e., unclassified) instances by finding the closest 

previously observed instance, taking note of its class, and 

predicting this class for the unseen instance .Learners that 

employ this classification scheme are also termed Instance-

Based Learners, Lazy Learners, Memory-Based Learners, and 

Case-Based Learners [13]. 

There are situations in which unlabeled data is abundant but 

manually labeling is expensive. In such a scenario, learning 

algorithms can actively query the user/teacher for labels. This 

type of iterative semi supervised learning is called active 

learning[13]. The need for automated mining and discovering 

knowledge from large-scale data,  referred to as Knowledge 

discovery and data mining (KDD), is widely recognized. 

Common approaches in KDD are to either:  

a)   generate patterns without supervision, such as clustering   

b) use some previously labeled instances to assist the pattern 

discovery process,  such as supervised learning 

To select most critical instances from the unlabeled sample set 

for labeling such that a model trained on them can achieve the 

maximum prediction accuracy, compared to simple solutions 

such as randomly labeling the same number of instances: 

1. Utility metrics merely based on uncertainty of IID 

instances: 
Methods in this category treat samples as independent 

and identically distributed (IID) instances, where the 

selection criteria only depend on the uncertainty 

values computed with respect to each individual 

instance’s own information. Accordingly, one 

possible problem is that this type of approach may 

select similar instances in the candidate set, which 

results in redundancy in the candidate set  

2. Utility metrics further taking into account instance 

correlations 

To take the sample redundancy into consideration, 

uncertainty metrics based on instance correlation 

utilizes some similarity measures to discriminate 

differences between instances. By uncovering 

inherent relationships between instances, the utility of 

the instances calculated by this scheme integrates 

sample correlations, through which a selected 

candidate set may not always contain the ―most 

uncertain‖ instances. Whereas, together, the selected 

instances form an optimal candidate set by balancing 

the uncertainty and diversity.  
We can divide the instance selection methods in two 

groups[14]:  

 

a) Wrapper: The selection criterion is based on the accuracy 

obtained by a classifier. 

b) Filter: The selection criterion uses a selection function 

which is not based on a classifier. 

Advantages 
a)  Accuracy is achieved at a higher level since the redundant 

and the superfluous instances are removed.   

3.2.3 Feature Selection 

The feature selection is the process of detecting the relevant 

features and discarding the irrelevant ones. This focuses mainly 

on constructing and selecting subsets of features that are useful 

to build a good predictor. This contrasts with the problem of 
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finding or ranking all potentially relevant variables. Selecting 

the most relevant variables is usually suboptimal for building a 

predictor, particularly if the variables are redundant [11] . This 

Feature selection process [10] depends on two concepts: 
a)   Individual Evaluation: Feature ranking is based on the 

degree of      relevance. 
b)   Subset Evaluation  :  Produces candidate features based on 

certain search strategy. 

The feature selection process takes place in 3 approaches [10]: 

a)  Filters: relies on the general characteristic of training data 

and carries out the feature selection process as  a preprocessing 

step with the independence of the induction algorithm 

(extracting some formal rules from a set of observations).  

Information Gain  is one of the most common attribute 

evaluation methods. This univariate filter provides an ordered 

ranking of all the features, and then a threshold is required. In 

this work the threshold will be set up selecting the features 

which obtain a positive information gain value. 

The Interact algorithm is a subset filter based on 

symmetrical uncertainty (SU) and the consistency contribution, 

which is an indicator about how significantly the elimination of 

a feature will affect consistency. The algorithm consists of two 

major parts. In the first part, the features are ranked in 

descending order based on their SU values. In the second part, 

features are evaluated one by one starting from the end of the 

ranked feature list. If the consistency contribution of a feature is 

less than an established threshold, the feature is removed, 

otherwise it is selected. The authors stated that this method can 

handle feature interaction, and efficiently selects relevant 

features. 

b)  Embedded Methods Performs feature selection in the 

process of training and are usually specific to given learning 

machines.  

SVM-RFE (Recursive Feature Elimination for Support 

Vector Machines)was introduced by Guyon. This embedded 

method performs feature selection by iteratively training a SVM 

classifier with the current set of features and removing the least 

important feature indicated by the SVM. Two versions of this 

methods will be tested: the original one, using a linear kernel 

and an extension using a nonlinear kernel in order to solve more 

complex problems. 

FS-P (Feature Selection—Perceptron)  is an embedded method 

based on a perceptron. A perceptron is a type of artificial neural 

network that can be seen as the simplest kind of feedforward 

neural network: a linear classifier. The basic idea of this method 

consists on training a perceptron in the context of supervised 

learning. The interconnection weights are used as indicators of 

which features could be the most relevant and provide a 

ranking. 

c)   Wrappers This involves in optimizing a predictor as a 

part of the selection process.  This evaluates attribute sets by 

using a learning scheme. Cross-validation is used to estimate 

the accuracy of the learning scheme for a set of attributes. The 

algorithm starts with the empty set of attributes and searches 

forward, adding attributes until performance does not improve 

further. In this work, two well-known learning schemes will be 

used: SVM and C4.5. 

Advantages  
There are many potential benefits of variable and feature 

selection: facilitating data visualization and data understanding, 

reducing the measurement and storage requirements, reducing 

training and utilization times, defying the curse of 

dimensionality to improve prediction performance [11]. 

a)   Reducing the data scale : In word dimension we use 

feature selection to remove noisy or duplicate words in a data 

set. Based on feature selection, the reduced data set can be 

handled more easily by automatic techniques (e.g., bug triage 

approaches) than the original data set. Besides bug triage, the 

reduced data set can be further used for other software tasks 

after bug triage (e.g., severity identification, time prediction, 

and reopened bug analysis) 

b) Improving Accuracy: In Word dimension by removing 

uninformative words, feature selection improves the accuracy 

of bug triage .This can recover the accuracy loss by instance 

selection. 
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3.3. THE OVERALL ARCHITECTURE 

 

                       

Fault Estimation       Data Reduction      

     
 

      
 
 
 
 

 

Fig 1. Architecture of Bug Triage 

 
In this paper we propose a predictive model to determine the 

order of reduction (i.e) which of the two algorithms have to be 

performed first. 

 

Fig 2. Predicting the reduction order 

 

a) First we retrieve the information from the history 

table (i.e) the bug data set. 

b) We derive its attributes from the bug data set. With 

just one attribute we cannot predict the reduction 

order. Hence we use a list of attributes since each 

attribute contributes to the prediction.  

c) Some of the attributes are : 

 Length of the bug report 

 Words per fixer 

 Entropy of severity 
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 Fixers 

 Unique word 

 Entropy of priority 

 Entropy of components 

 Ratio of sparseness 

 Entropy of product 

 Bug reports per reporter 

 Similarities between fixers. 

d) We are using a top node analysis for predicting the 

reduction order. This is done using the decision tree 

algorithm. Only nodes in Level 0 to level 2 of 

decision tree are presented and in each level we omit 

an attribute if its frequency is equal to 1. 

e) Now in all the 3 levels we check for the attribute 

which has occurred in each level and consider it as 

the representative attribute. 

 

Table 1. Top Node Analysis of Predicting Reduction Order 

Level Frequency Index Attribute Name 

0 2 

2 

B3 

D3 

Length of bug reports 

#Words per fixer 

1 3 

3 

2 

2 

B6 

D1 

B3 

B4 

Entropy of severity 

#Fixers 

Length of bug reports 

#Unique words 

2 4 

3 

3 

2 

2 

2 

2 

2 

2 

B6 

B7 

B9 

B3 

B4 

B5 

B8 

D5 

D8 

Entropy of severity 

Entropy of priority 

Entropy of component 

Length of bug reports 

#Unique words 

Ratio of sparseness 

Entropy of product 

#Bug reports per reporter 

Similarity between fixers and reporters 

 

 

f) Using this representative attribute, we can predict the 

reduction order i.e when a new bug report is 

encountered this representative attribute is used to 

check the reports in the history table for the reports 

which have their attributes similar to it. 

g) By doing so we can obtain accuracy and at the same 

time enhance the bug triage 

4. EXPERIMENTAL RESULTS 
4.1 Data Preparation 

In this part, we present the data preparation for applying the bug 

data reduction. We evaluate the bug data reduction on bug 

repositories of two large open source projects, namely Eclipse 

and Mozilla. Eclipse [16] is a multi-language software 

development environment, including an Integrated 

Development Environment (IDE) and an extensible plug-in 

system; Mozilla [15] is an Internet application suite, including 

some classic products, such as the Firefox browser and the 

Thunderbird email client. Up to December 31, 2011, 366,443 

bug reports over 10 years have been recorded to Eclipse while 

643,615 bug reports over 12 years have been recorded to 

Mozilla. In our work, we collect continuous 300,000 bug 

reports for each project of Eclipse and Mozilla, i.e., bugs 1-

300000 in Eclipse and bugs 300001- 600000 in Mozilla. 

Actually, 298,785 bug reports in Eclipse and 281,180 bug 

reports in Mozilla are collected since some of bug reports are 

removed from bug repositories (e.g., bug 5315 in Eclipse) or 

not allowed anonymous access (e.g., bug 40020 in Mozilla). For 

each bug report, we download web- pages from bug repositories 

and extract the details of bug reports for experiments. Since bug 

triage aims to predict the developers who can fix the bugs, we 

follow the existing work [1], to remove unfixed bug reports, 

e.g., the new bug reports or will not fix bug reports. Thus, we 

only choose bug reports, which are fixed and duplicate (based 

on the items status of bug reports). Moreover, in bug 

repositories, several developers have only fixed very few bugs. 

Such inactive developers are removed. 

In our work, we remove the developers, who have fixed less 

than 10 bugs. To conduct text classification, we extract the 

summary and the description of each bug report to denote the 

content of the bug. For a newly reported bug, the summary and 

the description are the most representative items, which are also 

used in manual bug triage [1]. As the input of classifiers, the 

summary and the description are converted into the vector space 

model [9]. We employ two steps to form the word vector space, 

namely tokenization and stop word removal. First, we tokenize 

the summary and the description of bug reports into word 

vectors. Each word in a bug report is associated with its word 

frequency, i.e., the times that this word appears in the bug. Non-

alphabetic words are removed to avoid the noisy words, e.g., 

memory address like 0x0902f00 in bug 200220 of Eclipse. 

Second, we remove the stop words, which are in high frequency 

and provide no helpful information for bug triage, e.g., the word 

―the‖ or ―about‖. We do not use the stemming technique in our 

work since existing work [1], has examined that the stemming 

technique is not helpful to bug triage. Hence, the bug reports are 

converted into vector space model for further experiments. 
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4.2 Experiments on Bug Data Reduction 

4.2.1 Data Sets and Evaluation 
The results of data reduction for bug triage can be measured in 

two aspects, namely the scales of data sets and the quality of 

bug triage. Based on Algorithm 1, the scales of data sets 

(including the number of bug reports and the number of words) 

are configured as input parameters. The quality of bug triage 

can be measured with the accuracy of bug triage, which is 

defined as 

Accuracyk = # correctly assigned bug reports in k candidates                                                                                                                                                       

# all bug reports in the test set 

Table 2. Ten Data Sets in Eclipse and Mozilla 

 
For each data set in Table 2, the first 80 percent of bug reports 

are used as a training set and the left 20 percent of bug reports 

are as a test set. In the following of this paper, data reduction on 

a data set is used to denote the data reduction on the training set 

of this data set since we cannot change the test set. 

4.2.2 Results of Rates of Selected Bug Reports 

and Words 
For either instance selection or feature selection algorithm, the 

number of instances or features should be determined to obtain 

the final scales of data sets. We investigate the changes of 

accuracy of bug triage by varying the rate of selected bug 

reports in instance selection and the rate of selected words in 

feature selection. We evaluate the results of data reduction for 

bug triage on data sets in Table 2. First, we individually 

examine each instance selection algorithm and each feature 

selection algorithm based on one bug triage algorithm, Naive 

Bayes. Second, we combine the best instance selection (ICF) 

algorithm and the best feature selection(CH) algorithm to 

examine the data reduction text based bug triage algorithms. 

4.2.3 Results on Predicting the Reduction order 
The results in Tables 3 and 4 show that the order of applying 

instance selection and feature selection can impact the final 

accuracy of bug triage.  

 

 

 

 

 

Table 3. Accuracy (percent) of Data Reduction on DS- E1 

Naïve Bayes  

Origin CH-> ICF ICF-> CH 

25.85 25.42 27.24 

35.71 39.00 39.56 

41.88 46.88 47.58 

45.84 51.77 52.45 

48.95 55.55 55.89 

Table 4. Accuracy (percent) of Data Reduction on DS-M1 

Naïve Bayes 

Origin CH->ICF ICF->CH 

10.86 17.07 19.45 

27.29 31.77 32.11 

37.99 41.67 40.28 

44.74 48.43 46.47 

49.11 53.38 51.40 

 

First we measure the differences of reduced data set by CH-

>ICF and ICF->CH. By referring fig.3 we observe that by using 

CH->ICF more no of words (2150) are removed and thus 

reduces the data set when compared with ICF->CH(1655) and it 

keeps the vive versa. 

 

a)Words in data sets  b)Bug reports in data sets 

Fig 3.Bug reports and words in DS- E1(i.e bugs 200001-

220000 in Eclipse by applying CH->ICF and ICF->CH 

Second we check the duplicate the bug reports in the data set by 

CH->ICF and ICF->CH. By referring fig.3 we observe that by 

using ICF->CH(262) more no of redundant bug reports are 

removed and thus reduces the data set when compared with 

CH->ICF(198). 

Thirdly, we check the blank bug reports during the data 

reduction. Here a blank bug report refers to a zero word bug 

report, whose words are removed by feature selection. Such 

blank reports are removed. The removed bug reports and words 

can be viewed as a kind of noisy data. ICF->CH removes 

comparatively a higher no of noisy blank bug reports. Thus we 

find out that the order of applying instance and feature selection 

impacts the ability of removing the noisy and redundant data. 

5. CONCLUSION 
Bug triage is an expensive step of software maintenance in both 

labor cost and time cost. In this paper, we combine feature 

selection with instance selection to reduce the scale of bug data 

sets as well as improve the data quality. To determine the order 

of applying instance selection and feature selection for a new 

bug data set, we extract attributes of each bug data set and train 

a predictive model based on historical data sets. We empirically 

investigate the data reduction for bug triage in bug repositories 

of two large open source projects, namely Eclipse and Mozilla. 

Our work provides an approach to leveraging techniques on 
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data processing to form reduced and high-quality bug data in 

software development and maintenance. In future work, we 

plan on improving the results of data reduction in bug triage to 

explore how to prepare a high quality bug data set and tackle a 

domain-specific software task. For predicting reduction orders, 

we plan to pay efforts to find out the potential relationship 

between the attributes of bug data sets and the reduction orders. 
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