
International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

8

Analysis of Bug Triage using Data Preprocessing
(Reduction) Techniques

G. Parthasarathy
Research Scholar, Dept of

CSE
Sathyabama University,

Chennai, India

D.C. Tomar
Professor, Dept of IT
Jerusalem College of

Engineering,
Chennai, India

Blessy John
Student, Dept of CSE
Maamallan Institute of

Technology
Sriperumpudur, India

ABSTRACT
In the bug triage we have an unavoidable step of fixing the bugs

which helps in correctly assigning a developer to a new bug.

Text classification and binary classification techniques are

applied to decrease the time cost in manual work and to

enhance the working of automatic bug triage. We address the

problem of data reduction and hence we combine the instance

selection and the feature selection algorithms to simultaneously

reduce the data scale and enhance the accuracy of the bug

reports in the bug triage. We determine a predictive model to

perform the algorithms which adds on to prioritize the

developer to a new bug by extracting attributes and the bug data

set from the historical table. By leveraging data mining

techniques, mining software repositories can uncover

interesting information in software repositories and solve real-

world software problem like Eclipse, Mozilla and GNOME.

Keywords
Bug Triage, Data Reduction in bug report, preprocessing the

bug report, Fixing Bugs

1. INTRODUCTION

A time-consuming step of handling software bugs is bug triage,

which aims to assign a correct developer to fix a new bug [1]. In

traditional software development, new bugs are manually

triaged by an expert developer, i.e., a human triager. Due to the

large number of daily bugs and the lack of expertise of all the

bugs, manual bug triage is expensive in time cost and low in

accuracy. In manual bug triage in Eclipse, 44 percent of bugs

are assigned by mistake while the time cost between opening

one bug and its first triaging is 19.3 days on average. Taking an

open source project Eclipse as an example an average of 30 new

bugs are reported to bug repositories per day in 2007[7]. From

2001-2010 333,371 bugs have been reported to Eclipse by over

34917 developers and users [5]. To avoid the expensive cost of

manual bug triage, existing work [1] has proposed an automatic

bug triage approach, which applies text-classification

techniques to predict developers for bug reports. In this

approach, a bug report is mapped to a document and a related

developer is mapped to the label of the document.
In this paper, we address the problem of data reduction for bug

triage, i.e., how to reduce the bug data to save the labor cost of

developers and improve the quality to facilitate the process of

bug triage. Data reduction for bug triage aims to build a small-

scale and high-quality set of bug data by removing bug reports

and words, which are redundant or non-informative. In our

work, we combine existing techniques of instance selection and

feature selection to simultaneously reduce the bug dimension

and the word dimension. The reduced bug data contain fewer

bug reports and fewer words than the original bug data and

provide similar information over the original bug data. We

evaluate the reduced bug data according to two criteria: the

scale of a data set and the accuracy of bug triage.

Given an instance selection algorithm and a feature selection

algorithm, the order of applying these two algorithms may

affect the results of bug triage. In this paper, we propose a

predictive model to determine the order of applying instance

selection and feature selection. We refer to such determination

as prediction for reduction orders. Drawn on the experiences in

software metrics, we extract the attributes from historical bug

data sets. Then, we train a binary classifier on bug data sets with

extracted attributes and predict the order of applying instance

selection and feature selection for a new bug data set.

In the experiments, we evaluate the data reduction for bug

triage on bug reports of two large open source projects, namely

Eclipse and Mozilla. Experimental results show that applying

the instance selection technique to the data set can reduce bug

reports but the accuracy of bug triage may be decreased;

applying the feature selection technique can reduce words in the

bug data and the accuracy can be increased. Meanwhile,

combining both techniques can increase the accuracy, as well as

reduce bug reports and words. For example, when 50 percent of

bugs and 70 percent of words are removed, the accuracy of

Naive Bayes on Eclipse improves by 2 to 12 percent and the

accuracy on Mozilla improves by 1 to 6 percent[7]. Based on

the attributes from historical bug data sets, our predictive model

can provide the accuracy of 71.8 percent for predicting the

reduction order. Based on top node analysis of the attributes,

results show that no individual attribute can determine the

reduction order and each attribute is helpful to the prediction.

The primary contributions of this paper are as follows:

1) We present the problem of data reduction for bug triage. This

problem aims to augment the data set of bug triage in two

aspects, namely a) to simultaneously reduce the scales of the

bug dimension and the word dimension and b) to improve the

accuracy of bug triage.

2) We propose a combination approach to addressing the

problem of data reduction. This can be viewed as an application

of instance selection and feature selection in bug repositories.

3) We build a binary classifier to predict the order of applying

instance selection and feature selection. To our knowledge, the

order of applying instance selection and feature selection has

not been investigated in related domains.

2. MOTIVATION FOR DATA

REDUCTION
In the bug repositories, all the bug reports are filled by the

developers in natural languages. The low quality bugs

accumulate in bug repositories with the growth in scale.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

9

Consider some examples:

We list the bug report of bug 205900 of Eclipse in Example 1

(the description in the bug report is partially omitted) to study

the words of bug reports.

a) Example 1 (Bug 205900). Current version in Eclipse

Europa discovery repository broken.

[Plug-ins] all installed correctly and do not show any

errors in Plug-in configuration view. Whenever I try

to add a [diagram name] diagram, the wizard cannot

be started due to a missing [class name] class ...

In this bug report, some words, e.g., installed, show,

started, and missing, are commonly used for

describing bugs. For text classification, such common

words are not helpful for the quality of prediction.

Hence, we tend to remove these words to reduce the

computation for bug triage. However, for the text

classification, the redundant words in bugs cannot be

removed directly. Thus, we want to adapt a relevant

technique for bug triage . To study the noisy bug

report, we take the bug report of bug 201598 as

Example 2 (Note that both the summary and the

description are included).

b) Example 2 (Bug 201598). 3.3.1 about says 3.3.0.

Build id: M20070829-0800. 3.3.1 about says 3.3.0.)

This bug report presents the error in the version

dialog. But the details are not clear. Unless a

developer is very familiar with the background of this

bug, it is hard to find the details. According to the

item history, this bug is fixed by the developer who

has reported this bug. But the summary of this bug

may make other developers confused.

Moreover, from the perspective of data processing,

especially automatic processing, the words in this bug

may be removed since these words are not helpful to

identify this bug. Thus, it is necessary to remove the

noisy bug reports and words for bug triage. To study

the redundancy between bug reports, we list two bug

reports of bugs 200019 and 204653 in Example 3

(the items description are omitted).

c) Example 3. Bugs 200019 and 204653.

(Bug 200019) Argument popup not highlighting the

correct argument ...(Bug 204653) Argument

highlighting incorrect ...

In bug repositories, the bug report of bug 200019 is

marked as a duplicate one of bug 204653 (a duplicate

bug report, denotes that a bug report describes one

software fault, which has the same root cause as an

existing bug report [4]). The textual contents of these

two bug reports are similar. Hence, one of these two

bug reports may be chosen as the representative one.

Thus, we want to use a certain technique to remove

one of these bug reports. Thus, a technique to remove

extra bug reports for bug triage is needed.

Based on the above three examples, it is necessary to

propose an approach to reducing the scale (e.g., large

scale words in Example 1) and augmenting the

quality of bug data (e.g., noisy bug reports in

Example 2) and redundant bug reports in Example 3).

3. RELATED WORK
Usually when a fault or a new bug report is encountered we

have to assign a developer to fix the bug. We use a classifier to

know to which developer we need to assign the bug. This can

be done by retrieving the information from the history table

where we can extract the details like which developer has fixed

the bug efficiently, how much time each developer has taken to

fix each bug and how many fixers were needed to fix a

particular bug etc. Now we reduce the data scale in the bug data

sets by using instance selection and feature selection

algorithms.

First we use the text classification technique to classify the

words in the bug triage. Then we propose a predictive model to

determine the reduction order. After which the bug data

reduction process takes place (i.e) we use the instance selection

and the feature selection algorithms. The Feature selection aims

to obtain a subset of relevant features by removing the

uninformative words in the bug reports and the instance

selection is used to obtain a subset of relevant instances (bug

reports in the bug data). Hence by combining both these

algorithms we get a reduced bug data set and replace it with the

original bug data. Now this information is sent to the classifier

and when a new bug report is encountered the classifier

correctly assigns a developer.

3.1 Related Questions
a) If 500 reports are encountered at a time , then which report

has to be checked first?

The solution to this is we take the entropy of severity of the bug

reports(i.e) predicting the severity of the bug reports[3].

Severity is nothing but the importance.

The severity depends on the following priorities:

 How fast you can fix the bug?

 Whether it can be postponed?

 It can never be fixed.

b) How do we assign the right developer to fix the bug?

We can model a system to rank the developers. We face the

problems like ranking, evaluation time and tolerance of noisy

comments. All these can be removed and the prioritizing of the

developers is done using a Socio Network technique[5]. This is

useful to improvise the

 Bug triage

 Severity of the bug reports

 Prediction of the reopened bugs.

c) How do we select the report?

Opinion analysis is mainly the process of identifying the

polarity used in any comments or sentences. The main aim is to

identify the polarity used in the context with respect to a

particular citation. Similarly when a report is posted the weight

of the words and its frequencies are calculated.

3.2 Techniques Used
3.2.1 Text Classification Technique

In this technique, [8]some of the main concepts are :

a) Tokenization

It is the process of replacing sensitive data with unique

identification symbols that retain all the essential information

about the data.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

10

b) Stop words

Removing the non-informative words which includes articles,

prepositions, conjunctions and certain high frequency words

(verbs, adverbs and adjectives).

c) Stemming

Stemming is a technique to reduce words to their grammatical

roots so that they can be represented with a only term.

Text data can be represented as strings, though simplified

representations are used for effective processing. The most

common representation for text is the vector-space

representation [9].

The vector-space representation treats each document as an

unordered ―bag of words‖. While the vector-space

representation is very efficient because of its simplicity, it loses

information about the structural ordering of the words in the

document, when used purely in the form of individual word

representations.

One advantage of the vector-space representation is that its

simplicity lends itself to straightforward processing. The

efficiency of the vector-space representation has been a key

reason that it has remained the technique of choice for a variety

of text processing applications.

On the other hand, the vector-space representation is very lossy

because it contains absolutely no information about the ordering

of the words in the document. While the vector-space

representation maintains no information about the ordering of

the words, the string representation is at the other end of

spectrum in maintaining all ordering information.

 Distance graphs [9] are a natural intermediate representation

which preserve a high level of information about the ordering

and distance between the words in the document. At the same

time, the structural representation of distance graphs makes it

an effective representation for text processing

.Distance graphs can be defined to be of a variety of orders

depending upon the level of distance information which is

retained.

3.2.2 Instance Selection
Instance Selection also known as Bug dimension is the process

of removing redundant instances. Supervised learning which

provides previously known information is used to classify new

instances. In common, several instances are stored in the

training set but some of them are not useful for classifying

therefore we ignore the non-useful cases.

Given a training set T, the goal of an instance selection method

(Fig. 1) is to obtain a subset S ⊂ T such that S does not contain

superfluous instances and Acc(S) ∼= Acc(T)where Acc(X)is

the classification accuracy obtained using X as training set

(henceforth, S is used to denote the selected subset). Instance

selection methods can either start with S = Ø (incremental

method) or S = T (decremental method). The difference is that

the incremental methods include instances in S during the

selection process and decremental methods remove instances

from S along the selection [14].

We define the problem of instance selection as the need to

extract the most useful set of instances from a database which

we know (or suspect) contains instances which are superfluous

or harmful. In the context of instance-based learning, we seek to

discard the cases which are superfluous or harmful to the

classification process.

We want to isolate the smallest set of instances which enable us

to predict the class of a query instance with the same (or higher)

accuracy than the original set The Nearest Neighbour Classifier

is a simple supervised concept learning scheme which classifies

unseen (i.e., unclassified) instances by finding the closest

previously observed instance, taking note of its class, and

predicting this class for the unseen instance .Learners that

employ this classification scheme are also termed Instance-

Based Learners, Lazy Learners, Memory-Based Learners, and

Case-Based Learners [13].

There are situations in which unlabeled data is abundant but

manually labeling is expensive. In such a scenario, learning

algorithms can actively query the user/teacher for labels. This

type of iterative semi supervised learning is called active

learning[13]. The need for automated mining and discovering

knowledge from large-scale data, referred to as Knowledge

discovery and data mining (KDD), is widely recognized.

Common approaches in KDD are to either:

a) generate patterns without supervision, such as clustering

b) use some previously labeled instances to assist the pattern

discovery process, such as supervised learning

To select most critical instances from the unlabeled sample set

for labeling such that a model trained on them can achieve the

maximum prediction accuracy, compared to simple solutions

such as randomly labeling the same number of instances:

1. Utility metrics merely based on uncertainty of IID

instances:
Methods in this category treat samples as independent

and identically distributed (IID) instances, where the

selection criteria only depend on the uncertainty

values computed with respect to each individual

instance’s own information. Accordingly, one

possible problem is that this type of approach may

select similar instances in the candidate set, which

results in redundancy in the candidate set

2. Utility metrics further taking into account instance

correlations

To take the sample redundancy into consideration,

uncertainty metrics based on instance correlation

utilizes some similarity measures to discriminate

differences between instances. By uncovering

inherent relationships between instances, the utility of

the instances calculated by this scheme integrates

sample correlations, through which a selected

candidate set may not always contain the ―most

uncertain‖ instances. Whereas, together, the selected

instances form an optimal candidate set by balancing

the uncertainty and diversity.
We can divide the instance selection methods in two

groups[14]:

a) Wrapper: The selection criterion is based on the accuracy

obtained by a classifier.

b) Filter: The selection criterion uses a selection function

which is not based on a classifier.

Advantages
a) Accuracy is achieved at a higher level since the redundant

and the superfluous instances are removed.

3.2.3 Feature Selection

The feature selection is the process of detecting the relevant

features and discarding the irrelevant ones. This focuses mainly

on constructing and selecting subsets of features that are useful

to build a good predictor. This contrasts with the problem of

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

11

finding or ranking all potentially relevant variables. Selecting

the most relevant variables is usually suboptimal for building a

predictor, particularly if the variables are redundant [11] . This

Feature selection process [10] depends on two concepts:
a) Individual Evaluation: Feature ranking is based on the

degree of relevance.
b) Subset Evaluation : Produces candidate features based on

certain search strategy.

The feature selection process takes place in 3 approaches [10]:

a) Filters: relies on the general characteristic of training data

and carries out the feature selection process as a preprocessing

step with the independence of the induction algorithm

(extracting some formal rules from a set of observations).

Information Gain is one of the most common attribute

evaluation methods. This univariate filter provides an ordered

ranking of all the features, and then a threshold is required. In

this work the threshold will be set up selecting the features

which obtain a positive information gain value.

The Interact algorithm is a subset filter based on

symmetrical uncertainty (SU) and the consistency contribution,

which is an indicator about how significantly the elimination of

a feature will affect consistency. The algorithm consists of two

major parts. In the first part, the features are ranked in

descending order based on their SU values. In the second part,

features are evaluated one by one starting from the end of the

ranked feature list. If the consistency contribution of a feature is

less than an established threshold, the feature is removed,

otherwise it is selected. The authors stated that this method can

handle feature interaction, and efficiently selects relevant

features.

b) Embedded Methods Performs feature selection in the

process of training and are usually specific to given learning

machines.

SVM-RFE (Recursive Feature Elimination for Support

Vector Machines)was introduced by Guyon. This embedded

method performs feature selection by iteratively training a SVM

classifier with the current set of features and removing the least

important feature indicated by the SVM. Two versions of this

methods will be tested: the original one, using a linear kernel

and an extension using a nonlinear kernel in order to solve more

complex problems.

FS-P (Feature Selection—Perceptron) is an embedded method

based on a perceptron. A perceptron is a type of artificial neural

network that can be seen as the simplest kind of feedforward

neural network: a linear classifier. The basic idea of this method

consists on training a perceptron in the context of supervised

learning. The interconnection weights are used as indicators of

which features could be the most relevant and provide a

ranking.

c) Wrappers This involves in optimizing a predictor as a

part of the selection process. This evaluates attribute sets by

using a learning scheme. Cross-validation is used to estimate

the accuracy of the learning scheme for a set of attributes. The

algorithm starts with the empty set of attributes and searches

forward, adding attributes until performance does not improve

further. In this work, two well-known learning schemes will be

used: SVM and C4.5.

Advantages
There are many potential benefits of variable and feature

selection: facilitating data visualization and data understanding,

reducing the measurement and storage requirements, reducing

training and utilization times, defying the curse of

dimensionality to improve prediction performance [11].

a) Reducing the data scale : In word dimension we use

feature selection to remove noisy or duplicate words in a data

set. Based on feature selection, the reduced data set can be

handled more easily by automatic techniques (e.g., bug triage

approaches) than the original data set. Besides bug triage, the

reduced data set can be further used for other software tasks

after bug triage (e.g., severity identification, time prediction,

and reopened bug analysis)

b) Improving Accuracy: In Word dimension by removing

uninformative words, feature selection improves the accuracy

of bug triage .This can recover the accuracy loss by instance

selection.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

12

3.3. THE OVERALL ARCHITECTURE

Fault Estimation Data Reduction

Fig 1. Architecture of Bug Triage

In this paper we propose a predictive model to determine the

order of reduction (i.e) which of the two algorithms have to be

performed first.

Fig 2. Predicting the reduction order

a) First we retrieve the information from the history

table (i.e) the bug data set.

b) We derive its attributes from the bug data set. With

just one attribute we cannot predict the reduction

order. Hence we use a list of attributes since each

attribute contributes to the prediction.

c) Some of the attributes are :

 Length of the bug report

 Words per fixer

 Entropy of severity

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

13

 Fixers

 Unique word

 Entropy of priority

 Entropy of components

 Ratio of sparseness

 Entropy of product

 Bug reports per reporter

 Similarities between fixers.

d) We are using a top node analysis for predicting the

reduction order. This is done using the decision tree

algorithm. Only nodes in Level 0 to level 2 of

decision tree are presented and in each level we omit

an attribute if its frequency is equal to 1.

e) Now in all the 3 levels we check for the attribute

which has occurred in each level and consider it as

the representative attribute.

Table 1. Top Node Analysis of Predicting Reduction Order

Level Frequency Index Attribute Name

0 2

2

B3

D3

Length of bug reports

#Words per fixer

1 3

3

2

2

B6

D1

B3

B4

Entropy of severity

#Fixers

Length of bug reports

#Unique words

2 4

3

3

2

2

2

2

2

2

B6

B7

B9

B3

B4

B5

B8

D5

D8

Entropy of severity

Entropy of priority

Entropy of component

Length of bug reports

#Unique words

Ratio of sparseness

Entropy of product

#Bug reports per reporter

Similarity between fixers and reporters

f) Using this representative attribute, we can predict the

reduction order i.e when a new bug report is

encountered this representative attribute is used to

check the reports in the history table for the reports

which have their attributes similar to it.

g) By doing so we can obtain accuracy and at the same

time enhance the bug triage

4. EXPERIMENTAL RESULTS
4.1 Data Preparation

In this part, we present the data preparation for applying the bug

data reduction. We evaluate the bug data reduction on bug

repositories of two large open source projects, namely Eclipse

and Mozilla. Eclipse [16] is a multi-language software

development environment, including an Integrated

Development Environment (IDE) and an extensible plug-in

system; Mozilla [15] is an Internet application suite, including

some classic products, such as the Firefox browser and the

Thunderbird email client. Up to December 31, 2011, 366,443

bug reports over 10 years have been recorded to Eclipse while

643,615 bug reports over 12 years have been recorded to

Mozilla. In our work, we collect continuous 300,000 bug

reports for each project of Eclipse and Mozilla, i.e., bugs 1-

300000 in Eclipse and bugs 300001- 600000 in Mozilla.

Actually, 298,785 bug reports in Eclipse and 281,180 bug

reports in Mozilla are collected since some of bug reports are

removed from bug repositories (e.g., bug 5315 in Eclipse) or

not allowed anonymous access (e.g., bug 40020 in Mozilla). For

each bug report, we download web- pages from bug repositories

and extract the details of bug reports for experiments. Since bug

triage aims to predict the developers who can fix the bugs, we

follow the existing work [1], to remove unfixed bug reports,

e.g., the new bug reports or will not fix bug reports. Thus, we

only choose bug reports, which are fixed and duplicate (based

on the items status of bug reports). Moreover, in bug

repositories, several developers have only fixed very few bugs.

Such inactive developers are removed.

In our work, we remove the developers, who have fixed less

than 10 bugs. To conduct text classification, we extract the

summary and the description of each bug report to denote the

content of the bug. For a newly reported bug, the summary and

the description are the most representative items, which are also

used in manual bug triage [1]. As the input of classifiers, the

summary and the description are converted into the vector space

model [9]. We employ two steps to form the word vector space,

namely tokenization and stop word removal. First, we tokenize

the summary and the description of bug reports into word

vectors. Each word in a bug report is associated with its word

frequency, i.e., the times that this word appears in the bug. Non-

alphabetic words are removed to avoid the noisy words, e.g.,

memory address like 0x0902f00 in bug 200220 of Eclipse.

Second, we remove the stop words, which are in high frequency

and provide no helpful information for bug triage, e.g., the word

―the‖ or ―about‖. We do not use the stemming technique in our

work since existing work [1], has examined that the stemming

technique is not helpful to bug triage. Hence, the bug reports are

converted into vector space model for further experiments.

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

14

4.2 Experiments on Bug Data Reduction

4.2.1 Data Sets and Evaluation
The results of data reduction for bug triage can be measured in

two aspects, namely the scales of data sets and the quality of

bug triage. Based on Algorithm 1, the scales of data sets

(including the number of bug reports and the number of words)

are configured as input parameters. The quality of bug triage

can be measured with the accuracy of bug triage, which is

defined as

Accuracyk = # correctly assigned bug reports in k candidates

all bug reports in the test set

Table 2. Ten Data Sets in Eclipse and Mozilla

For each data set in Table 2, the first 80 percent of bug reports

are used as a training set and the left 20 percent of bug reports

are as a test set. In the following of this paper, data reduction on

a data set is used to denote the data reduction on the training set

of this data set since we cannot change the test set.

4.2.2 Results of Rates of Selected Bug Reports

and Words
For either instance selection or feature selection algorithm, the

number of instances or features should be determined to obtain

the final scales of data sets. We investigate the changes of

accuracy of bug triage by varying the rate of selected bug

reports in instance selection and the rate of selected words in

feature selection. We evaluate the results of data reduction for

bug triage on data sets in Table 2. First, we individually

examine each instance selection algorithm and each feature

selection algorithm based on one bug triage algorithm, Naive

Bayes. Second, we combine the best instance selection (ICF)

algorithm and the best feature selection(CH) algorithm to

examine the data reduction text based bug triage algorithms.

4.2.3 Results on Predicting the Reduction order
The results in Tables 3 and 4 show that the order of applying

instance selection and feature selection can impact the final

accuracy of bug triage.

Table 3. Accuracy (percent) of Data Reduction on DS- E1

Naïve Bayes

Origin CH-> ICF ICF-> CH

25.85 25.42 27.24

35.71 39.00 39.56

41.88 46.88 47.58

45.84 51.77 52.45

48.95 55.55 55.89

Table 4. Accuracy (percent) of Data Reduction on DS-M1

Naïve Bayes

Origin CH->ICF ICF->CH

10.86 17.07 19.45

27.29 31.77 32.11

37.99 41.67 40.28

44.74 48.43 46.47

49.11 53.38 51.40

First we measure the differences of reduced data set by CH-

>ICF and ICF->CH. By referring fig.3 we observe that by using

CH->ICF more no of words (2150) are removed and thus

reduces the data set when compared with ICF->CH(1655) and it

keeps the vive versa.

a)Words in data sets b)Bug reports in data sets

Fig 3.Bug reports and words in DS- E1(i.e bugs 200001-

220000 in Eclipse by applying CH->ICF and ICF->CH

Second we check the duplicate the bug reports in the data set by

CH->ICF and ICF->CH. By referring fig.3 we observe that by

using ICF->CH(262) more no of redundant bug reports are

removed and thus reduces the data set when compared with

CH->ICF(198).

Thirdly, we check the blank bug reports during the data

reduction. Here a blank bug report refers to a zero word bug

report, whose words are removed by feature selection. Such

blank reports are removed. The removed bug reports and words

can be viewed as a kind of noisy data. ICF->CH removes

comparatively a higher no of noisy blank bug reports. Thus we

find out that the order of applying instance and feature selection

impacts the ability of removing the noisy and redundant data.

5. CONCLUSION
Bug triage is an expensive step of software maintenance in both

labor cost and time cost. In this paper, we combine feature

selection with instance selection to reduce the scale of bug data

sets as well as improve the data quality. To determine the order

of applying instance selection and feature selection for a new

bug data set, we extract attributes of each bug data set and train

a predictive model based on historical data sets. We empirically

investigate the data reduction for bug triage in bug repositories

of two large open source projects, namely Eclipse and Mozilla.

Our work provides an approach to leveraging techniques on

International Journal of Computer Applications (0975 – 8887)

Volume 125 – No.9, September 2015

15

data processing to form reduced and high-quality bug data in

software development and maintenance. In future work, we

plan on improving the results of data reduction in bug triage to

explore how to prepare a high quality bug data set and tackle a

domain-specific software task. For predicting reduction orders,

we plan to pay efforts to find out the potential relationship

between the attributes of bug data sets and the reduction orders.

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy, ―Who should fix

this bug?‖ in Proc. 28th Int. Conf. Softw. Eng., May 2006,

pp. 361–370.

[2] S. Artzi, A. Kie_ zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar,

[3] and M. D.Ernst, ―Finding bugs in web applications using

dynamic test generation and explicit-state model

checking,‖ IEEE Softw., vol. 36,no. 4, pp. 474–494,

Jul./Aug.2010.

[4] A.Lamkanfi, S. Demeyer, E. Giger, and B. Goethals,

[5] ―Predicting the severity of a reported bug,‖ in Proc. 7th

IEEE Working Conf. Mining Softw. Repositories, May

2010, pp. 1–10.

[6] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, ―An

approach to detecting duplicate bug reports using natural

language and execution information,‖ in Proc. 30th Int.

Conf. Softw. Eng., May 2008,pp. 461–470.

[7] J. Xuan, H. Jiang, Z. Ren, andW. Zou, ―Developer

prioritization in bug repositories,‖ in Proc. 34th Int. Conf.

Softw. Eng., 2012, pp. 25–35.

[8] Jifeng Xuan, He Jiang, ―Towards effective bug triage with

software dropping techniques‖, IEEE Transactions on

Knowledge and Data Engineering, Vol 27, No.1 Jan 2015.

[9] J.R. Mendez, E.L Iglesias, F.Fdez Riverola, F.Diaz,

―Tokenizing, Stemming and Stop word removal on Anti

spam filtering Domain‖, CAEPIA 2005,

LNAI4177,pp.449- 458,2006.

[10] C. C. Aggarwal and P. Zhao, ―Towards graphical models

for text processing,‖ Knowl. Inform. Syst., vol. 36, no. 1,

pp. 1– 21, 2013.

[11] V. Bolon-Canedo, N. Sanchez-Maro no, and A. Alonso-

Betanzos, ―A review of feature selection methods on

synthetic data,‖ Knowl. Inform. Syst., vol. 34, no. 3,

pp.483–519,2013.

A. Guyon and A. Elisseeff, ―An introduction to variable and

feature selection,‖ J. Mach. Learn. Res., vol. 3, pp. 1157–

1182, 2003.

[12] Y. Fu, X. Zhu, and B. Li, ―A survey on instance selection

for active learning,‖ Knowl. Inform. Syst., vol. 35, no. 2,

pp. 249–283, 2013.

[13] H. Brighton and C. Mellish, ―Advances in instance

selection for instance-based learning algorithms,‖ Data

Mining Knowl. Discovery, vol. 6, no. 2, pp. 153–172, Apr.

2002.

[14] J. A. Olvera-Lopez, J. A.Carrasco-Ochoa, J. F. Martınez-

Trinidad, and J. Kittler, ―A review of instance selection

methods,‖ Artif. Intell. Rev., vol. 34, no. 2, pp. 133–143,

2010.

[15] Mozilla. (2014). [Online]. Available: http://mozilla.org/

[16] Eclipse. (2014). [Online]. Available: http://eclipse.org/.

[17] G.Parthasarathy and D.C Tomar, ― Sentiment analysis of

Journal Citations from citatation databases, IEEE, 2014.

IJCATM : www.ijcaonline.org

