
IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

36

A Modified Genetic Algorithm for Process Scheduling
in Distributed System

Vinay Harsora
B.V.M. Engineering College

Charatar Vidya Mandal
Vallabh Vidyanagar, India

 Dr.Apurva Shah
G.H.Patel College of

Engineering & Technology
Charutar Vidya Mandal

Vallabh Vidyanagar, India.

ABSTRACT

The problem of process scheduling in distributed system is one

of the important and challenging area of research in computer

engineering. Scheduling in distributed operating system has a

important role in overall system performance. Process

scheduling in distributed system can be defined as allocating

processes to processor so that total execution time will be

minimized, utilization of processors will be maximized and load

balancing will be maximized. The scheduling in distributed

system is known as NP-Complete problem. Genetic algorithm is

one of the widely used techniques for constrain optimization.

Genetic algorithm is basically search algorithm based on natural

selection and natural genetics. In this, paper using the power of

genetic algorithms. We solve this problem considering load

balancing efficiently. We evaluate the performance and

efficiency of the proposed algorithm using simulation result.

Keywords
 Distributed system, DAG, Genetic algorithm.

1. INTRODUCTION
The computational complicated process cannot be executed on

the computing machine in an accepted interval time. Therefore,

they must be divided into small sub-process. The sub-process

can be executed either in the expensive multiprocessor or in the

distributed system. Distributed system is preferred due to better

ratio of cost per performance [1]. Scheduling in distributed

operating systems is a critical factor in overall system

performance. Process scheduling in a distributed operating

system can be stated as allocating processes to processors so that

total execution time will be minimized, utilization of processors

will be maximized, and load balancing will be maximized.

Process scheduling in distributed system is done in two phases:

in first phase processes are distributed on computers and in

second processes execution order on each processor must be

determined [2].

The methods used to solve scheduling problem in distributed

computing system can be classified into three categories graph

theory based approaches [3], mathematical models based

methods [4] and heuristic techniques [5].

Heuristic algorithm can be classified into three categories

iterative improvement algorithms [17], the probabilistic

optimization algorithms and constructive heuristics. Heuristic

can obtain sub optimal solution in ordinary situations and

optimal solution in particulars.

The first phase of process scheduling in a distributed system is

process distribution on computer. The critical aspects of this

phase are load balancing. Recently created processes may be

overloaded heavily while the others are under loaded or idle.

The main objectives of load balancing are to speared load on

processors equally, maximizing processors utilization and

minimizing total execution time [6].

The second phase of process scheduling in distributed

computing system is process execution ordering on each

processor. Genetic algorithm used for this phase. Genetic

algorithm is guided random search method which mimics the

principles of evolution and natural genetics [18]. Genetic

algorithms search optimal solution from entire solution space.

They often can obtain reasonable solution in all situations.

Nevertheless, their main drawback is to spend much time for

schedule. Hence, we propose a modified genetic algorithm to

overcome from drawback through this paper.

In this paper using the power of genetic algorithms we solve this

problem. Process distribution on different processor done based

on processors load. The proposed algorithm maps each schedule

with a chromosome that shows the execution order of all

existing process on processors. The fittest chromosomes are

selected to reproduce offspring: chromosomes which their

corresponding schedules have less total execution time, better

load balance and processor utilization. We assume that the

distributed system processes are non uniform and non-

preemptive, that is the processors may be different and a

processor completes current process before executing a new one

the load balancing mechanism used in this paper only schedule

process without process migration.

Reset of the paper organized as follows, In section 2 the

preliminaries in this section system and problem description and

principles of the genetic algorithm are introduced. Section 3 our

proposed genetic algorithm is explains. Section 4 for experiment

result and section 5 for conclusions.

2. PRELIMINARIES

2.1 System and Process model
The system used for simulation is loosely coupled non-uniform

system, all task are non-pre-emptive and no process migration

are assumed. The process scheduling problem considered in this

paper is based on the deterministic model. A distributed system

with m processors, m>1 should be modelled as follows:

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

37

P= {p1, p2, p3,..., pm} is the set of processors in the distributed

system. Each processor can only execute one process at each

moment, a processor completes current process before executing

a new one, and a process cannot be moved to another processor

during execution. G is an m × m matrix, where the element guv

1≤ u,v ≤ m of G, is the communication delay rate between Pu

and Pv. H is an m × m matrix, where the element huv 1≤ u, v ≤m

of H, is the time required to transmit a unit of data from Pu and

Pv. It is obvious that huu=0 and ruu=0.

T = {t1,t2,t3,...,tn} is the set of processes to execution. E is an n ×

m matrix, where the element eij 1 ≤ i ≤ n, 1 ≤ j ≤ m of E, is the

execution time of process ti on processor pj. In distributed

systems the execution time of an individual process ti on all

processors is equal.

F is a linear matrix, where the element fi 1≤ i ≤ n of F, is the

target processor that is selected for process ti to be executed on.

C is a linear matrix, where the element ci i ≤ i ≤ n of C, is the

processor that the process ti is presented on just now.

The problem of process scheduling is to assign for each process

ti Є T a processor fi Є P so that total execution time will be

minimized, utilization of processors will be maximized, and load

balancing will be maximized.

The processor load for each processor is the sum of process

execution times allocated to that process [2].

+

The length of schedule T is the maximal finishing time of all

processes or maximum load [2].

The processor utilization for each processor is obtained by

dividing the sum of processing times by scheduling length. The

average of process utilization is obtained by dividing the sum of

all utilizations by number of processors [2].

2.2 Genetic algorithm [20]
Genetic algorithm is guided random search algorithm based on

the principles of evolution and natural genetics. It combines the

exploitation of the past results with the exploration of new areas

of the search space. By using survival of the fittest techniques

and a structured yet randomized information exchange, genetic

algorithm can mimic some of the innovative flair of human

search. Graph algorithm is randomized but not simple random

walks. It exploits historical information efficiently to speculate

on new search points with expected improvement.

Genetic algorithm maintains a population of candidate solutions

that evolves over time and ultimately converges. Individuals in

the population are represented with chromosomes. Each

individual is numeric fitness value that measures how well this

solution solves the problem. Genetic algorithm contains three

operators. The selection operator selects the fittest individuals of

the current population to serve as parents of the next generation.

The crossover operation chooses randomly a pair of individuals

and exchanges some part of the information. The mutation

operator takes an individual randomly and alters it. As natural

genetics, the probability of crossover is usually high, the

population evolves iteratively (in the genetic algorithm

terminology, through generation) in order to improve the fitness

of its individuals.

The structure of genetic algorithm is a loop composed of a

selection, followed by a sequence of crossovers and mutations.

Probabilities of crossover and mutation are constants and fixed

in the beginning. Finally, genetic algorithm is executed until

some termination condition achieved, such as the number of

iterations, execution time, execution time, result stability, etc.

3. PROPOSED GENETIC ALGORITHM
The newly created process on machine calculate load with it on

each processor. These processes are assigned to less loaded or

under loaded processors. For that each machine maintain table

on it, of processor speed and communication channel speed etc.

Here, our concentration on process scheduling instead of process

distribution. Processes are non- pre-emptive and no process

migration is assumed.

3.1 String representation
The genetic representation of individuals is called genotype. The

main criteria in selecting the string representation for the search

node is that the new string generated from the application of

genetic operator must represents legal search node for the

problem. A legal search node is one that satisfies (1) the

precedence relation among the task. (2) Every process is present

and appears only once in the schedule. The string representation

used in this paper is an array of n × m digits, where n is the

number of processes and m shows the processor that the process

is assigned to. Process index shows the order of execution on

that processor.

3.2 Initial population
Genetic algorithm search many nodes in search space. This

requires us to generate an initial population of the search node

randomly. The population size is typically problem dependent

and has to be determined experimentally. Here, each solution i is

generated as, one of the unscheduled processes is randomly

selected, and then assigned to one of the processors. This

operation is repeated until all of processes have been assigned.

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

38

An initial population with size of POPSIZE is generated by

repeating this method.

3.3. Fitness function
The fitness function is essentially the objective function for the

problem. It provides a mean to evaluate the search nodes and

also controls the reproduction process. For the process

scheduling in distributed system problem, we can consider

factor such as load-balancing, processors utilization etc. We take

into account this objective in following equation. Fitness

function of schedule T is

this equation shows that a fitter solution has less scheduling

length and higher processor utilization.

3.4 Reproduction
The reproduction process is typically based on the fitness values

of the strings. The principal is that string with higher fitness

value will have higher chance of surviving to the next

generation. Here, to reduce searching time of genetic algorithm.

We calculate fitness of the entire individual in population,

picking the best individual of them and then form a group. We

can make a slight modification to basic reproduction operation

by always passing the best string in the current generation to the

next generation. This modification will increase the performance

of genetic algorithm.

3.5 Crossover
Crossover is generally used to exchange portions between

strings. The crossover operation picks top two strings from best

group. Random task Ti from one of these two strings picks and

put on the new string with care of precedence relation. If Ti task

at same position then Ti is coping on the same place for new

string. If we randomly choose two same parents (A=B) and if

one of parents e.g. A the best string we use operator mutation on

the second B string. It is elitism. Otherwise we mutate the first

set and child generate randomly.

3.6 Mutation
Mutation is used to change the genes in the chromosomes.

Mutation replaces the value of a gene with a new value from

defined domain for that gene. The mutation operator, first

generate two random number r and c for the processor. The

condition for that is a) r # c and b) set r isn’t empty.

After that from set r, choose one task at random and remove

them in the set c.

3.7 Termination condition
We can apply multiple choices for termination condition:

maximum number of generation, equal fitness for fittest selected

chromosomes in respective iterations.

We can now combined all the component discussed above to

form the genetic algorithm for distributed process scheduling.

Fig-1 Modify genetic algorithm steps

4. EXPERIMENT RESULT
We have simulated our proposed algorithm on Pentium IV with

2.8 MHz Intel processor and 512 MB of RAM. For experiment

test, we have used ready standard task graph from [21]. We have

implemented program to simulate proposed algorithm. We have

tried different values of population size, number of generation to

find which values would steer the search towards the best

solution. The measurement of performance of these algorithms

was based on total completion time means scheduling length and

average processor utilization. In our experiment, we have

considered population size is 1000 and group size is 20. The

default parameters were varied and the results collected from

test runs were used to study the effects of changing these

parameters.

We have studied the effect of increasing number of processes on

scheduling length and average processor utilization. The obtain

result are shown in Fig. 2 and Fig 3. A important point in Fig-3

is that when number of process is increased, higher utilization is

obtained.

When the number of generations was increased our proposed

algorithm had a better function. The obtained result are shown in

Fig-4 and Fig-5. While the number of generation was increased

the scheduling length was reduced, it is because the quality of

the generated process assignment improves after each

generation. A important point in these is that when number of

generation was increased higher utilization is obtained.

Modified Genetic Algorithm

{

 Randomly Create an initial population

 Assign a fitness value to each individual

 Form Group of best individual

 WHILE NOT termination criteria DO

 {

 Assign a priority value to the individual in group

 Choose two best individual from the group;

 Crossover surviving individuals;

 Mutation child;

 Recorded best individual in group and eliminate worst one

in group.

 }

}

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

39

5. CONCLUSIONS

Scheduling in distributed operating system has a significant role

in overall system performance and throughput. We have present

and evaluate new genetic algorithm based method to solve this

problem in a way that simultaneously minimizes scheduling

length and maximize average processor utilization and also

minimize the computation time of genetic algorithm. Most of

existing approaches tend to focus on one of the objectives.

Experimental results prove that our proposed algorithm tend to

focus on more objective simultaneously and optimize them.

Fig-2 Relation of Scheduling Length with Number of

Processes

Fig-3 Relation of Average CPU Utilization with Number of

Processes

Fig-4 Relation of Scheduling Length with Number of

Generation

Fig-5 Relation of Average CPU Utilization with Number of

Generation

6. REFERENCES
[1] Amir Masoud Rahmani and Mijtaba Rezvani “ A Novel

Genetic Algorithm for Static task scheduling in distributed

systems”, International Journal of Computer Theory and

Engineering Vol. 1, No. 1 , April 2009 1793-8201.

[2] M. Nikravan and M.H.Kashani “ A Genetic Algorithm For

Process Scheduling in Distributed Operating systems

considering Load Balancing”, European Conference on

Modelling and simulation.

[3] C.C.Shen, & W.H.Tsai, “A Graph Matching Approach to

Optimal Task Assignment in Distributed Computing

Using a Minimax Criterion”, IEEE Trans. On Computers,

34(3), 1985, 197-203.

0

20

40

60

80

100

20 30 40 50

Sc
h

e
d

u
lin

g
Le

n
gt

h

Number of Processes

Scheduling length

Scheduling
length

0

20

40

60

80

100

120

20 30 40 50

A
ve

ra
ge

 C
P

U
 U

ti
liz

at
io

n

Number of Processes

Average Processor
Utilization

Average
Processor
Utilization

86

88

90

92

94

96

98

100

102

10 20 30 40

Sc
h

e
d

u
lin

g
Le

n
gt

h

Number of Generation

Scheduling length

Scheduling
length

75

80

85

90

95

100

105

10 20 30 40A
ve

ra
ge

 C
P

U
 U

ti
liz

at
io

n

Number of Generation

Average Processor
Utilization

Average
Processor
Utilization

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

40

[4] P.Y.R.Ma, E.Y.S.Lee, & J.Tsuchiya, “A Task Allocation

Model for Distributed Computing Systems”, IEEE Trans.

On Computers, 31(1), 1982, 41-47.

[5] W.Yao, J.Yao, & B.Li, “Main Sequences Genetic

Scheduling For Multiprocessor Systems Using Task

Duplication”, International Journal of Microprocessors

and Microsystems, 28, 2004, 85-94.

[6] G.L.Park, “Performance Evaluation of a List Scheduling

Algorithm In Distributed Memory Multiprocessor

Systems”, International Journal of Future Generation

Computer Systems 20, 2004, 249-256.

[7] A.T. Haghighat, K. Faez, M. Dehghan, A. Mowlaei, & Y.

Ghahremani, “GA-based heuristic algorithms for

bandwidth-delay-constrained least-cost multicast routing”,

International Journal of Computer Communications 27,

2004, 111–127.

[8] M. Moore, “An Accurate and Efficient Parallel Genetic

Algorithm to Schedule Tasks on a Cluster”, Proceedings

of the IEEE International Parallel and Distributed

Processing Symposium, 2003.

[9] V. D. Martino, “Sub Optimal Scheduling in a Grid using

Genetic Algorithms”, Proceedings of the IEEE

International Parallel and Distributed Processing

Symposium, 2003.

[10] C.I.Park, & T.Y.Choe, “An optimal scheduling algorithm

based on task duplication” , IEEE Trans. on Computers,

51(4), 2002, 444–448.

[11] A.T. Haghighat, K. Faez, M. Dehghan, A. Mowlaei, & Y.

Ghahremani, “Multicast routing with multiple constraints

in high-speed networks based on genetic algorithms” , In

ICCC 2002 Conf., India, 2002, 243–249.

[12] A.Y.Zomaya, & Y.Teh, “Observations on Using Genetic

Algorithms for Dynamic Load-Balancing”, IEEE Trans

.On Parallel and Distributed Systems, 12(9), 2001, 899-

911.

[13] K.Qureshi, and M.Hatanaka, “A Practical Approach of

Task Scheduling and Load Balancing on Hetrogeneous

Distributed Raytracing Systems”, Information Processing

Letters 79, 2001, 65-71.

[14] L.M.Schmitt, “Fundamental Study Theory of Genetic

Algorithms” , International Journal of Modelling and

Simulation Theoretical Computer Science 259, 2001, 1 –

61.

[15] A.Y.Zomaya, C.Ward, & B.Macey, “Genetic Scheduling

for Parallel Processor Systems: Comparative Studies and

Performance Issues”, IEEE Trans. On Parallel and

Distributed Systems, 10(8), 1999, 795-812.

[16] S. Salleh, & A.Y. Zomaya, “Scheduling in Parallel

Computing Systems: Fuzzy and Annealing Techniques”,

Kluwer Academic, 1999.

[17] M.Lin, & L.T.Yang, “Hybrid Genetic Algorithms for

Scheduling Partially Ordered Tasks in a Multi-processor

Environment”, Proc. of the 6
th

IEEE Conf. on Real-Time

Computer Systems and Applications, 1999, 382–387.

[18] D.Goldberg genetic algorithm in search optimization and

machine learing reading Mass addssion wesly 1989.

[19] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim, Tack-

Don Han, "Task scheduling in distributed computing

systems with a genetic algorithm", High-Performance

Computing on the Information Superhighway, HPC-Asia

'97, 1997, p. 301.

[20] A.Y. Zomaya, C. Ward, and B.Macey “Genetic

Scheduling for Parallel Process System: Comparative

studies and Performance Issues”, IEEE Tansaction on

Parallel and Distributed Systems, Vol.10, No.8 pp795-812

Aug. 1999.

[21] Task graph downloaded from site

http://www.kasahara.elec.waseda.ac.jp/schedule

